The Formal Semantics of Programming Languages: an Introduction, Glynn Winskel, 1993 the Formal Semantics of Programming Languages an Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Types and Programming Languages by Benjamin C
< Free Open Study > . .Types and Programming Languages by Benjamin C. Pierce ISBN:0262162091 The MIT Press © 2002 (623 pages) This thorough type-systems reference examines theory, pragmatics, implementation, and more Table of Contents Types and Programming Languages Preface Chapter 1 - Introduction Chapter 2 - Mathematical Preliminaries Part I - Untyped Systems Chapter 3 - Untyped Arithmetic Expressions Chapter 4 - An ML Implementation of Arithmetic Expressions Chapter 5 - The Untyped Lambda-Calculus Chapter 6 - Nameless Representation of Terms Chapter 7 - An ML Implementation of the Lambda-Calculus Part II - Simple Types Chapter 8 - Typed Arithmetic Expressions Chapter 9 - Simply Typed Lambda-Calculus Chapter 10 - An ML Implementation of Simple Types Chapter 11 - Simple Extensions Chapter 12 - Normalization Chapter 13 - References Chapter 14 - Exceptions Part III - Subtyping Chapter 15 - Subtyping Chapter 16 - Metatheory of Subtyping Chapter 17 - An ML Implementation of Subtyping Chapter 18 - Case Study: Imperative Objects Chapter 19 - Case Study: Featherweight Java Part IV - Recursive Types Chapter 20 - Recursive Types Chapter 21 - Metatheory of Recursive Types Part V - Polymorphism Chapter 22 - Type Reconstruction Chapter 23 - Universal Types Chapter 24 - Existential Types Chapter 25 - An ML Implementation of System F Chapter 26 - Bounded Quantification Chapter 27 - Case Study: Imperative Objects, Redux Chapter 28 - Metatheory of Bounded Quantification Part VI - Higher-Order Systems Chapter 29 - Type Operators and Kinding Chapter 30 - Higher-Order Polymorphism Chapter 31 - Higher-Order Subtyping Chapter 32 - Case Study: Purely Functional Objects Part VII - Appendices Appendix A - Solutions to Selected Exercises Appendix B - Notational Conventions References Index List of Figures < Free Open Study > < Free Open Study > Back Cover A type system is a syntactic method for automatically checking the absence of certain erroneous behaviors by classifying program phrases according to the kinds of values they compute. -
The Gnu Binary Utilities
The gnu Binary Utilities Version cygnus-2.7.1-96q4 May 1993 Roland H. Pesch Jeffrey M. Osier Cygnus Support Cygnus Support TEXinfo 2.122 (Cygnus+WRS) Copyright c 1991, 92, 93, 94, 95, 1996 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modi®ed versions of this manual under the conditions for verbatim copying, provided also that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modi®ed versions. The GNU Binary Utilities Introduction ..................................... 467 1ar.............................................. 469 1.1 Controlling ar on the command line ................... 470 1.2 Controlling ar with a script ............................ 472 2ld.............................................. 477 3nm............................................ 479 4 objcopy ....................................... 483 5 objdump ...................................... 489 6 ranlib ......................................... 493 7 size............................................ 495 8 strings ........................................ 497 9 strip........................................... 499 Utilities 10 c++®lt ........................................ 501 11 nlmconv .................................... -
Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpretation
1 Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpretation Patrick Cousota aD´epartement d’Informatique, Ecole´ Normale Sup´erieure, 45 rue d’Ulm, 75230 Paris cedex 05, France, [email protected], http://www.di.ens.fr/~cousot We construct a hierarchy of semantics by successive abstract interpretations. Starting from the maximal trace semantics of a transition system, we derive the big-step seman- tics, termination and nontermination semantics, Plotkin’s natural, Smyth’s demoniac and Hoare’s angelic relational semantics and equivalent nondeterministic denotational se- mantics (with alternative powerdomains to the Egli-Milner and Smyth constructions), D. Scott’s deterministic denotational semantics, the generalized and Dijkstra’s conser- vative/liberal predicate transformer semantics, the generalized/total and Hoare’s partial correctness axiomatic semantics and the corresponding proof methods. All the semantics are presented in a uniform fixpoint form and the correspondences between these seman- tics are established through composable Galois connections, each semantics being formally calculated by abstract interpretation of a more concrete one using Kleene and/or Tarski fixpoint approximation transfer theorems. Contents 1 Introduction 2 2 Abstraction of Fixpoint Semantics 3 2.1 Fixpoint Semantics ............................... 3 2.2 Fixpoint Semantics Approximation ...................... 4 2.3 Fixpoint Semantics Transfer .......................... 5 2.4 Semantics Abstraction ............................. 7 2.5 Fixpoint Semantics Fusion ........................... 8 2.6 Fixpoint Iterates Reordering .......................... 8 3 Transition/Small-Step Operational Semantics 9 4 Finite and Infinite Sequences 9 4.1 Sequences .................................... 9 4.2 Concatenation of Sequences .......................... 10 4.3 Junction of Sequences ............................. 10 5 Maximal Trace Semantics 10 2 5.1 Fixpoint Finite Trace Semantics ....................... -
Computer Matching Agreement
COMPUTER MATCHING AGREEMENT BETWEEN NEW tvIEXICO HUMAN SERVICES DEPARTMENT AND UNIVERSAL SERVICE ADMINISTRATIVE COMPANY AND THE FEDERAL COMMUNICATIONS COMMISSION INTRODUCTION This document constitutes an agreement between the Universal Service Administrative Company (USAC), the Federal Communications Commission (FCC or Commission), and the New Mexico Human Services Department (Department) (collectively, Parties). The purpose of this Agreement is to improve the efficiency and effectiveness of the Universal Service Fund (U SF’) Lifeline program, which provides support for discounted broadband and voice services to low-income consumers. Because the Parties intend to share information about individuals who are applying for or currently receive Lifeline benefits in order to verify the individuals’ eligibility for the program, the Parties have determined that they must execute a written agreement that complies with the Computer Matching and Privacy Protection Act of 1988 (CMPPA), Public Law 100-503, 102 Stat. 2507 (1988), which was enacted as an amendment to the Privacy Act of 1974 (Privacy Act), 5 U.S.C. § 552a. By agreeing to the terms and conditions of this Agreement, the Parties intend to comply with the requirements of the CMPPA that are codified in subsection (o) of the Privacy Act. 5 U.S.C. § 552a(o). As discussed in section 11.B. below, U$AC has been designated by the FCC as the permanent federal Administrator of the Universal Service funds programs, including the Lifeline program that is the subject of this Agreement. A. Title of Matching Program The title of this matching program as it will be reported by the FCC and the Office of Management and Budget (0MB) is as follows: “Computer Matching Agreement with the New Mexico Human Services Department.” B. -
Project1: Build a Small Scanner/Parser
Project1: Build A Small Scanner/Parser Introducing Lex, Yacc, and POET cs5363 1 Project1: Building A Scanner/Parser Parse a subset of the C language Support two types of atomic values: int float Support one type of compound values: arrays Support a basic set of language concepts Variable declarations (int, float, and array variables) Expressions (arithmetic and boolean operations) Statements (assignments, conditionals, and loops) You can choose a different but equivalent language Need to make your own test cases Options of implementation (links available at class web site) Manual in C/C++/Java (or whatever other lang.) Lex and Yacc (together with C/C++) POET: a scripting compiler writing language Or any other approach you choose --- must document how to download/use any tools involved cs5363 2 This is just starting… There will be two other sub-projects Type checking Check the types of expressions in the input program Optimization/analysis/translation Do something with the input code, output the result The starting project is important because it determines which language you can use for the other projects Lex+Yacc ===> can work only with C/C++ POET ==> work with POET Manual ==> stick to whatever language you pick This class: introduce Lex/Yacc/POET to you cs5363 3 Using Lex to build scanners lex.yy.c MyLex.l lex/flex lex.yy.c a.out gcc/cc Input stream a.out tokens Write a lex specification Save it in a file (MyLex.l) Compile the lex specification file by invoking lex/flex lex MyLex.l A lex.yy.c file is generated -
Towards a Unified Theory of Operational and Axiomatic Semantics — Extended Abstract —
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Illinois Digital Environment for Access to Learning and Scholarship Repository Towards a Unified Theory of Operational and Axiomatic Semantics — Extended Abstract — Grigore Ros¸u and Andrei S¸tefanescu˘ Department of Computer Science, University of Illinois at Urbana-Champaign fgrosu, [email protected] Abstract. This paper presents a nine-rule language-independent proof system that takes an operational semantics as axioms and derives program properties, including ones corresponding to Hoare triples. This eliminates the need for language-specific Hoare-style proof rules in order to verify programs, and, implicitly, the tedious step of proving such proof rules sound for each language separately. The key proof rule is Circularity, which is coinductive in nature and allows for reasoning about constructs with repetitive behaviors (e.g., loops). The generic proof system is shown sound and has been implemented in the MatchC program verifier. 1 Introduction An operational semantics defines a formal executable model of a language typically in terms of a transition relation cfg ) cfg0 between program configurations, and can serve as a formal basis for language understanding, design, and implementation. On the other hand, an axiomatic semantics defines a proof system typically in terms of Hoare triples f g code f 0g, and can serve as a basis for program reasoning and verification. Operational semantics are well-understood and comparatively easier to define than axiomatic semantics for complex languages. More importantly, operational semantics are typically executable, and thus testable. For example, we can test them by executing the program benchmarks that compiler testers use, as has been done with the operational semantics of C [5]. -
Axiomatic Semantics
Advanced Topics in Programming Languages Spring Semester, 2012 Lecture 6: April 24, 2012 Lecturer: Mooly Sagiv Scribe: Michal Balas and Yair Asa Axiomatic Semantics 6.1 The basic idea The problem we would like to solve is how to prove that a program does what we require of it. Given a program, we specify its required behavior based on our intuitive understanding of it. We can run it according to the operational semantics or denotational semantics and compare to its behavior there. For some programs we need to be more abstract (for example programs that receive input), and then it is necessary to use some logic to reason about the program (and how it behaves on a set of inputs and not in one specific execution path). In this case we may eventually develop a formal proof system for properties of the program or showing that it satisfies a requirement. We can then use the proof system to show correctness. These rules of the proof system are called Hoare or Floyd-Hoare rules. Floyd-rules are for flow-charts and Hoare-rules are for structured languages. Originally their approach was advocated not just for proving properties of programs but also giving a method for explaining the meaning of program. The meaning of a program was specified in terms of \axioms" saying how to prove properties of it, in other words it is given by a set of verification rules. Therefore, this approach was named axiomatic semantics. Axiomatic semantics has many applications, such as: Program verifiers • Symbolic execution tools for bug hunting • Software validation tools • Malware detection • Automatic test generation • It is also used for proving the correctness of algorithms or hardware descriptions, \extended static checking (e.g., checking array bounds), and documenting programs and interfaces. -
'Unix' in a File
============================ AWK COMMANDS ================================ 1) find the total occurances of pattern of 'unix' in a file. ==> $awk '/unix/ {count++} END{print count}' nova.txt 2) find the total line of a file. ==> $awk 'END{print NR}' nova.txt 3) print the total number of even line of a file. ==> $awk 'NR % 2' nova.txt 4) print the total number of odd line of a file. ==> $awk 'NR % 2 == 1' nova.txt 5) print the sums of the field of every line of a file. ==> $awk '{ sum = $3+sum } END{print sum}' emp.txt 6) display those words whose length greater than 10 and consist of digits only in file awk ==> $awk '/^[0-9]+$/ length<10 {print}' t3.txt 7) display those words whose length less than 10 and consist of alpha only in file awk ==> $awk '/^[a-zA-Z]+$/ length >3 {print}' t3.txt 8) print odd number of word in each line ==> awk -F\| '{s="";for (i=1;i<=NF;i+=2) { {s=s? $i:$i} print s }}' nova.txt { s = ""; for (i = 1; i <= NF; i+=2) { s = s ? $i : $i } print s } 9) print even number of word in each line ==> awk -F\| '{s="";for (i=0;i<=NF;i+=2) { {s=s? $i:$i} print s }}' nova.txt ==> { s = ""; for (i = 0; i <= NF; i+=2) { s = s ? $i : $i } print s } 10) print the last character of a string using awk ==> awk '{print substr($0,length($0),1)}' nova.txt ============================ MIX COMMANDS ================================ 1) Assign value of 10th positional parameter to 1 variable x. ==> x=${10} 2) Display system process; ==> ps -e ==> ps -A 3) Display number of process; ==> ps aux 4) to run a utility x1 at 11:00 AM ==> at 11:00 am x1 5) Write a command to print only last 3 characters of a line or string. -
5 Command Line Functions by Barbara C
ADAPS: Chapter 5. Command Line Functions 5 Command Line Functions by Barbara C. Hoopes and James F. Cornwall This chapter describes ADAPS command line functions. These are functions that are executed from the UNIX command line instead of from ADAPS menus, and that may be run manually or by automated means such as “cron” jobs. Most of these functions are NOT accessible from the ADAPS menus. These command line functions are described in detail below. 5.1 Hydra Although Hydra is available from ADAPS at the PR sub-menu, Edit Time Series Data using Hydra (TS_EDIT), it can also be started from the command line. However, to start Hydra outside of ADAPS, a DV or UV RDB file needs to be available to edit. The command is “hydra rdb_file_name.” For a complete description of using Hydra, refer to Section 4.5.2 Edit Time-Series Data using Hydra (TS_EDIT). 5.2 nwrt2rdb This command is used to output rating information in RDB format. It writes RDB files with a table containing the rating equation parameters or the rating point pairs, with all other information contained in the RDB comments. The following arguments can be used with this command: nwrt2rdb -ooutfile -zdbnum -aagency -nstation -dddid -trating_type -irating_id -e (indicates to output ratings in expanded form; it is ignored for equation ratings.) -l loctzcd (time zone code or local time code "LOC") -m (indicates multiple output files.) -r (rounding suppression) Rules • If -o is omitted, nwrt2rdb writes to stdout; AND arguments -n, -d, -t, and -i must be present. • If -o is present, no other arguments are required, and the program will use ADAPS routines to prompt for them. -
The AWK Programming Language
The Programming ~" ·. Language PolyAWK- The Toolbox Language· Auru:o V. AHo BRIAN W.I<ERNIGHAN PETER J. WEINBERGER TheAWK4 Programming~ Language TheAWI(. Programming~ Language ALFRED V. AHo BRIAN w. KERNIGHAN PETER J. WEINBERGER AT& T Bell Laboratories Murray Hill, New Jersey A ADDISON-WESLEY•• PUBLISHING COMPANY Reading, Massachusetts • Menlo Park, California • New York Don Mills, Ontario • Wokingham, England • Amsterdam • Bonn Sydney • Singapore • Tokyo • Madrid • Bogota Santiago • San Juan This book is in the Addison-Wesley Series in Computer Science Michael A. Harrison Consulting Editor Library of Congress Cataloging-in-Publication Data Aho, Alfred V. The AWK programming language. Includes index. I. AWK (Computer program language) I. Kernighan, Brian W. II. Weinberger, Peter J. III. Title. QA76.73.A95A35 1988 005.13'3 87-17566 ISBN 0-201-07981-X This book was typeset in Times Roman and Courier by the authors, using an Autologic APS-5 phototypesetter and a DEC VAX 8550 running the 9th Edition of the UNIX~ operating system. -~- ATs.T Copyright c 1988 by Bell Telephone Laboratories, Incorporated. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopy ing, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America. Published simultaneously in Canada. UNIX is a registered trademark of AT&T. DEFGHIJ-AL-898 PREFACE Computer users spend a lot of time doing simple, mechanical data manipula tion - changing the format of data, checking its validity, finding items with some property, adding up numbers, printing reports, and the like. -
Making Classes Provable Through Contracts, Models and Frames
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CiteSeerX DISS. ETH NO. 17610 Making classes provable through contracts, models and frames A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH (ETH Zurich)¨ for the degree of Doctor of Sciences presented by Bernd Schoeller Diplom-Informatiker, TU Berlin born April 5th, 1974 citizen of Federal Republic of Germany accepted on the recommendation of Prof. Dr. Bertrand Meyer, examiner Prof. Dr. Martin Odersky, co-examiner Prof. Dr. Jonathan S. Ostroff, co-examiner 2007 ABSTRACT Software correctness is a relation between code and a specification of the expected behavior of the software component. Without proper specifica- tions, correct software cannot be defined. The Design by Contract methodology is a way to tightly integrate spec- ifications into software development. It has proved to be a light-weight and at the same time powerful description technique that is accepted by software developers. In its more than 20 years of existence, it has demon- strated many uses: documentation, understanding object-oriented inheri- tance, runtime assertion checking, or fully automated testing. This thesis approaches the formal verification of contracted code. It conducts an analysis of Eiffel and how contracts are expressed in the lan- guage as it is now. It formalizes the programming language providing an operational semantics and a formal list of correctness conditions in terms of this operational semantics. It introduces the concept of axiomatic classes and provides a full library of axiomatic classes, called the mathematical model library to overcome prob- lems of contracts on unbounded data structures. -
UNIX (Solaris/Linux) Quick Reference Card Logging in Directory Commands at the Login: Prompt, Enter Your Username
UNIX (Solaris/Linux) QUICK REFERENCE CARD Logging In Directory Commands At the Login: prompt, enter your username. At the Password: prompt, enter ls Lists files in current directory your system password. Linux is case-sensitive, so enter upper and lower case ls -l Long listing of files letters as required for your username, password and commands. ls -a List all files, including hidden files ls -lat Long listing of all files sorted by last Exiting or Logging Out modification time. ls wcp List all files matching the wildcard Enter logout and press <Enter> or type <Ctrl>-D. pattern Changing your Password ls dn List files in the directory dn tree List files in tree format Type passwd at the command prompt. Type in your old password, then your new cd dn Change current directory to dn password, then re-enter your new password for verification. If the new password cd pub Changes to subdirectory “pub” is verified, your password will be changed. Many systems age passwords; this cd .. Changes to next higher level directory forces users to change their passwords at predetermined intervals. (previous directory) cd / Changes to the root directory Changing your MS Network Password cd Changes to the users home directory cd /usr/xx Changes to the subdirectory “xx” in the Some servers maintain a second password exclusively for use with Microsoft windows directory “usr” networking, allowing you to mount your home directory as a Network Drive. mkdir dn Makes a new directory named dn Type smbpasswd at the command prompt. Type in your old SMB passwword, rmdir dn Removes the directory dn (the then your new password, then re-enter your new password for verification.