Descartes' Project

Total Page:16

File Type:pdf, Size:1020Kb

Descartes' Project Descartes’ Project (Rene Descartes, 1596-1650) Descartes’ Project. • His central philosophical project was to build a theory of knowledge, a theory that would apply to our knowledge of the ordinary physical objects and events around us. • This project was influenced by three very NEW ideas (for his time) —actually one old idea (the notion of mathematical proof), and two new ones (the notion of scientific proof and the his own invention of algebra). 1 A. The notion of a mathematical proof. How do you prove that the sum of the interior angles of a triangle is always equal to 180 degrees? 1. Draw two parallel lines. 2 1. Draw two parallel lines. 2. Draw two lines that intersect the parallel lines to form a triangle 1. Draw two parallel lines. 2. Draw two lines that intersect the parallel lines to form a triangle 3 3. Name the angles of the triangle for convenience. A B C To begin any proof, you must start with a set of axioms—some set of rules you know to be true. A B C 4 Here are two “indubitable” facts of geometry. A. A straight line subtends 180 degrees. You know this because a circle subtends 360 degrees (by definition) and if we divide the circle in half with a line then 1/2 X 360 = 1800 Here are two “indubitable” facts of geometry. A. A straight line subtends 180 degrees. B. When a line intersects two parallel lines, the two interior angles on opposite sides of the line, are equal. A A 5 So, start with a triangle, ABC. A B C So, start with a triangle, ABC. 1. Angle B = Angle B’ B’ A B C 6 So, start with a triangle, ABC. 1. Angle B = Angle B’ 2. Angle C = Angle C’ C’ B A B C So, start with a triangle, ABC. 1. Angle B = Angle B’ 2. Angle C = Angle C’ 3. Angles A, B’ and C’ together equal 1800 4. The interior angles of the triangle, A + B + C = 1800 C’ B’ A B C 7 To form a proof—any sort of proof—you need two things: 1. A set of axioms that are self-evidently true. 2. A set of logical rules that, when applied to the axioms, will yield conclusions that are also true. e.g. If p then q, p, therefore q. If you have these two things—premises you know to be true and rules for moving beyond the premises, preserve the truth of the premises—then you are assured true conclusions. Your proof is truth-preserving: starting with true premises, you are guaranteed true conclusions. The Principle of Deductive Closure: If you have two premises, A and B, and if you know A and you know B, and if from A and B together, C follows logically, then if you believe C, you know C. 8 Given the Principle of Deductive Closure, it is easy to see why Descartes is so attracted to a foundational system of knowledge—because if he starts with the right axioms, and proceeds using the rules of logic, he is guaranteed that his system will get him truths about the world. That’s the good news. 9 That’s the good news. Here’s the Bad News. That’s the good news. Here’s the Bad News. Why would ANYONE think that it would be possible to make such a system for proving facts about the nature of the world as opposed to facts about mathematics? About the common objects we run into — about people and trees and plants and chairs? How is THAT supposed to work? 10 The Answer: Descartes’ is counting on the truth of two more views about the nature of science. A. A mechanistic/causal view of the world in which we can explain the behavior of large-scale visible objects in terms of the properties of very small, invisible objects —the ultimate constituents of reality, and; B. Each of us “comes with” certain innate knowledge about the nature of those ultimate constituents which we can discern by careful thought. The Old View: Aristotle’s View (384 -322 BC) The Nature of Objects according to Aristotle Aristotle thinks of objects, not just as existing at a single time, but as existing through time—as having a beginning or birth, a life span, and an end or death. In this sense, Aristotle’s view is quite organic; we can make sense of it best if we think about living organisms as the paradigms of objects. 11 A Substance (an object) = Form + Matter A “substantial form” is the form which any object has throughout its entire life span, the form which defines that object at each moment at which it exists. How and why do objects change the way they do? What accounts for the patterns of change we see in objects? The Famous Ham Sandwich Question. There are two things, a ham sandwich and you. You take the ham sandwich, put it into your mouth, chew it up and ingest it. Some of the ham sandwich becomes a part of you; other parts of the ham sandwich which the body cannot use are excreted. WHY? 12 Of course this is usual sequence of events—this is what usually happens. But WHY? Couldn’t it the story have turned out differently? Of course this is usual sequence of events—this is what usually happens. But WHY? Couldn’t it the story have turned out differently? There are two things, a ham sandwich and you. 13 Of course this is usual sequence of events—this is what usually happens. But WHY? Couldn’t it the story have turned out differently? There are two things, a ham sandwich and you. You take the ham sandwich, put it into your mouth, chew it up and ingest it. Of course this is usual sequence of events—this is what usually happens. But WHY? Couldn’t it the story have turned out differently? There are two things, a ham sandwich and you. You take the ham sandwich, put it into your mouth, chew it up and ingest it. Parts of you turn into the ham sandwich, making a bigger (and no doubt) better ham sandwich. 14 Of course this is usual sequence of events—this is what usually happens. But WHY? Couldn’t it the story have turned out differently? There are two things, a ham sandwich and you. You take the ham sandwich, put it into your mouth, chew it up and ingest it. Parts of you turn into the ham sandwich, making a bigger (and no doubt) better ham sandwich. Other parts of you are not needed for the bigger and better ham sandwich, and they are excreted from the ham sandwich. If this alternative scenario is possible (i.e. if there is a possible world in which this occurs), then we need to explain why what does happen is what happens — why the ham sandwich turns into you and not the other way around. 15 Aristotle’s Answer There are four kinds of causes in the world — I.e. things that affect or bring about change. Material causes: what the object is made of Efficient causes: the events that brought it into being Formal cause: what it is; its substantial form Final cause: what it is for, its role in the world The process of change is not random: it is governed by the formal and final causes of a substance (object). The goal of science according to Aristotle is the discovery of formal and final causes. Formal and final causes are discoverable by observation. By observing an object over the course of its lifetime, we can see: • what it is (essentially) or its formal cause; • what it is for, its final cause. In other words, although such causes are not sensible (immediately apparent to the senses), they are none the less known by observation: by the careful observation of the life events of the object. Therefore, the challenge of science is to explain the observable events/properties of the world in terms of other observable properties. 16 The new conception of science a. the advent of experimental method in the sciences; the postulation of hypotheses which are then tested. b. the explanation of the observable features of the world in terms of their hidden constituents (Galileo’s Corpuscular theory) The final element: Descartes’ own discovery/invention of algebra What analytic geometry does, in effect, is to “translate” geometric forms into algebraic equations. Its gives us a way of describing, using an equation, a geometric form. And of course, once we have these equations, we can use them in mathematical proofs. 17 PUTTING IT TOGETHER. Descartes’ Great Idea PUTTING IT TOGETHER. Descartes’ Great Idea 1. The New Science. What science is about is describing the nature and interaction of the ultimate constituents of reality. 18 PUTTING IT TOGETHER. Descartes’ Great Idea. 1. The New Science. What science is about is describing the nature and interaction of the ultimate constituents of reality. 2. The Thesis of Rationalism. We come into the world with, in some sense, knowledge of the most basic principles of physics—of the notion of a cause, of the understanding that matter must take up space, that one things cannot be in two different places at one, etc. PUTTING IT TOGETHER. Descartes’ Great Idea 1. The New Science. What science is about is describing the nature and interaction of the ultimate constituents of reality. 2. The Thesis of Rationalism. We come into the world with, in some sense, knowledge of the most basic principles of physics—of the notion of a cause, of the understanding that matter must take up space, that one things cannot be in two different places at one, etc.
Recommended publications
  • Logic, Reasoning, and Revision
    Logic, Reasoning, and Revision Abstract The traditional connection between logic and reasoning has been under pressure ever since Gilbert Harman attacked the received view that logic yields norms for what we should believe. In this paper I first place Harman’s challenge in the broader context of the dialectic between logical revisionists like Bob Meyer and sceptics about the role of logic in reasoning like Harman. I then develop a formal model based on contemporary epistemic and doxastic logic in which the relation between logic and norms for belief can be captured. introduction The canons of classical deductive logic provide, at least according to a widespread but presumably naive view, general as well as infallible norms for reasoning. Obviously, few instances of actual reasoning have such prop- erties, and it is therefore not surprising that the naive view has been chal- lenged in many ways. Four kinds of challenges are relevant to the question of where the naive view goes wrong, but each of these challenges is also in- teresting because it allows us to focus on a particular aspect of the relation between deductive logic, reasoning, and logical revision. Challenges to the naive view that classical deductive logic directly yields norms for reason- ing come in two sorts. Two of them are straightforwardly revisionist; they claim that the consequence relation of classical logic is the culprit. The remaining two directly question the naive view about the normative role of logic for reasoning; they do not think that the philosophical notion of en- tailment (however conceived) is as relevant to reasoning as has traditionally been assumed.
    [Show full text]
  • Mathematical Logic
    Proof Theory. Mathematical Logic. From the XIXth century to the 1960s, logic was essentially mathematical. Development of first-order logic (1879-1928): Frege, Hilbert, Bernays, Ackermann. Development of the fundamental axiom systems for mathematics (1880s-1920s): Cantor, Peano, Zermelo, Fraenkel, Skolem, von Neumann. Giuseppe Peano (1858-1932) Core Logic – 2005/06-1ab – p. 2/43 Mathematical Logic. From the XIXth century to the 1960s, logic was essentially mathematical. Development of first-order logic (1879-1928): Frege, Hilbert, Bernays, Ackermann. Development of the fundamental axiom systems for mathematics (1880s-1920s): Cantor, Peano, Zermelo, Fraenkel, Skolem, von Neumann. Traditional four areas of mathematical logic: Proof Theory. Recursion Theory. Model Theory. Set Theory. Core Logic – 2005/06-1ab – p. 2/43 Gödel (1). Kurt Gödel (1906-1978) Studied at the University of Vienna; PhD supervisor Hans Hahn (1879-1934). Thesis (1929): Gödel Completeness Theorem. 1931: “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I”. Gödel’s First Incompleteness Theorem and a proof sketch of the Second Incompleteness Theorem. Core Logic – 2005/06-1ab – p. 3/43 Gödel (2). 1935-1940: Gödel proves the consistency of the Axiom of Choice and the Generalized Continuum Hypothesis with the axioms of set theory (solving one half of Hilbert’s 1st Problem). 1940: Emigration to the USA: Princeton. Close friendship to Einstein, Morgenstern and von Neumann. Suffered from severe hypochondria and paranoia. Strong views on the philosophy of mathematics. Core Logic – 2005/06-1ab – p. 4/43 Gödel’s Incompleteness Theorem (1). 1928: At the ICM in Bologna, Hilbert claims that the work of Ackermann and von Neumann constitutes a proof of the consistency of arithmetic.
    [Show full text]
  • In Defence of Constructive Empiricism: Metaphysics Versus Science
    To appear in Journal for General Philosophy of Science (2004) In Defence of Constructive Empiricism: Metaphysics versus Science F.A. Muller Institute for the History and Philosophy of Science and Mathematics Utrecht University, P.O. Box 80.000 3508 TA Utrecht, The Netherlands E-mail: [email protected] August 2003 Summary Over the past years, in books and journals (this journal included), N. Maxwell launched a ferocious attack on B.C. van Fraassen's view of science called Con- structive Empiricism (CE). This attack has been totally ignored. Must we con- clude from this silence that no defence is possible against the attack and that a fortiori Maxwell has buried CE once and for all, or is the attack too obviously flawed as not to merit exposure? We believe that neither is the case and hope that a careful dissection of Maxwell's reasoning will make this clear. This dis- section includes an analysis of Maxwell's `aberrance-argument' (omnipresent in his many writings) for the contentious claim that science implicitly and per- manently accepts a substantial, metaphysical thesis about the universe. This claim generally has been ignored too, for more than a quarter of a century. Our con- clusions will be that, first, Maxwell's attacks on CE can be beaten off; secondly, his `aberrance-arguments' do not establish what Maxwell believes they estab- lish; but, thirdly, we can draw a number of valuable lessons from these attacks about the nature of science and of the libertarian nature of CE. Table of Contents on other side −! Contents 1 Exordium: What is Maxwell's Argument? 1 2 Does Science Implicitly Accept Metaphysics? 3 2.1 Aberrant Theories .
    [Show full text]
  • Interactive Models of Closure and Introspection
    Interactive Models of Closure and Introspection 1 introduction Logical models of knowledge can, even when confined to the single-agent perspective, differ in many ways. One way to look at this diversity suggests that there doesn’t have to be a single epistemic logic. We can simply choose a logic relative to its intended context of application (see e.g. Halpern [1996: 485]). From a philosophical perspective, however, there are at least two features of the logic of “knows” that are a genuine topic of disagreement, rather than a source of mere diversity or pluralism: closure and introspec- tion. By closure, I mean here the fact that knowledge is closed under known implication, knowing that p puts one in a position to come to know what one knows to be implied by p. By introspection, I shall (primarily) refer to the principle of positive introspection which stipulates that knowing puts one in a position to know that one knows.1 The seemingly innocuous princi- ple of closure was most famously challenged by Dretske [1970] and Nozick [1981], who believed that giving up closure—and therefore the intuitively plausible suggestion that knowledge can safely be extended by deduction— was the best way to defeat the sceptic. Positive introspection, by contrast, was initially defended in Hintikka’s Knowledge and Belief [1962], widely scrutinized in the years following its publication (Danto [1967], Hilpinen [1970], and Lemmon [1967]), and systematically challenged (if not conclu- sively rejected) by Williamson [2000: IV–V]. A feature of these two principles that is not always sufficiently acknowl- edged, is that that there isn’t a unique cognitive capability that corresponds to each of these principles.
    [Show full text]
  • Inconsistency and Uncertainty Handling in Lightweight Description Logics
    Inconsistency and uncertainty handling in lightweight description logics THÈSE présentée et soutenue publiquement le 5 juin 2015 en vue de l’obtention du Doctorat de l’Université d’Artois (Spécialité Informatique) par : Zied Bouraoui devant le jury composé de Anthony HUNTER Professor - University College London, United Kingdom (Rapporteur) Henri PRADE Directeur de recherche CNRS - IRIT Toulouse (Rapporteur) Salem BENFERHAT Professeur des universités - Université d’Artois (Directeur de Thèse) Sylvain LAGRUE Maître de conférences (HDR) - Université d’Artois (Examinateur) Marie-Laure MUGNIER Professeur des universités- Université de Montpellier II (Examinatrice) Odile PAPINI Professeur des universités - Université d’Aix Marseille (Examinatrice) Ramón PINO PÉREZ Professor - University of the Andes, Venezuela (Examinateur) Karim TABIA Maître de conférences - Université d’Artois (Examinateur) CENTRE DE RECHERCHE EN INFORMATIQUE DE LENS – CNRS UMR-8188 UNIVERSITÉ D’ARTOIS, RUE JEAN SOUVRAZ, S.P. 18 F-62307, LENS CEDEX FRANCE SECRÉTARIAT :TÉL.: +33(0)321791723–FAX : +33(0)321791770 http://www.cril.univ-artois.fr ABSTRACT Abstract This thesis investigates the dynamics of beliefs and uncertainty management in DL-Lite, one of the most important lightweight description logics. The first part of the thesis concerns the problem of han- dling uncertainty in DL-Lite. First, we propose an extension of the main fragments of DL-Lite to deal with the uncertainty associated with axioms using a possibility theory framework without additional ex- tra computational costs. We then study the revision of possibilistic DL-Lite bases when a new piece of information is available. Lastly, we propose a min-based assertional merging operator when assertions of ABox are provided by several sources of information having different levels of priority.
    [Show full text]
  • A Relevant Alternatives Analysis of Knowledge
    A RELEVANT ALTERNATIVES ANALYSIS OF KNOWLEDGE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Joshua A. Smith, B. A., M. A. ***** The Ohio State University 2006 Dissertation Committee: Approved by Professor George Pappas, Adviser Professor Louise Antony Adviser Professor William Taschek Graduate Program in Philosophy ABSTRACT This project shows that a relevant alternatives account of knowledge is correct. Such accounts maintain that knowing that something is the case requires eliminating all of the relevant alternatives to what is believed. Despite generating a great deal of interest after Dretske and Goldman introduced them, relevant alternatives accounts have been abandoned by many due to the inability of those who defend such analyses to provide general accounts of what it is for an alternative to be relevant, and what it is for an alternative to be eliminated. To make sense of the notion of relevance, a number of relevant alternatives theorists have adopted contextualism, the view that the truth conditions for knowledge attributions shift from one conversational context to the next. The thought that the only way to make sense of relevance is to adopt a controversial thesis about how knowledge attributions work has led others to despair over the prospects for such accounts. I rescue the relevant alternatives approach to knowledge by providing the missing details, and doing so in purely evidentialist terms, thereby avoiding a commitment to contextualism. The account of relevance I develop articulates what it is for a state of affairs (possible world) to be relevant in terms of whether the person is in a good epistemic position in that state of affairs with respect to what the person actually believes.
    [Show full text]
  • Deductive Systems in Traditional and Modern Logic
    Deductive Systems in Traditional and Modern Logic • Urszula Wybraniec-Skardowska and Alex Citkin Deductive Systems in Traditional and Modern Logic Edited by Urszula Wybraniec-Skardowska and Alex Citkin Printed Edition of the Special Issue Published in Axioms www.mdpi.com/journal/axioms Deductive Systems in Traditional and Modern Logic Deductive Systems in Traditional and Modern Logic Editors Alex Citkin Urszula Wybraniec-Skardowska MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editors Alex Citkin Urszula Wybraniec-Skardowska Metropolitan Telecommunications Cardinal Stefan Wyszynski´ USA University in Warsaw, Department of Philosophy Poland Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Axioms (ISSN 2075-1680) (available at: http://www.mdpi.com/journal/axioms/special issues/deductive systems). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03943-358-2 (Pbk) ISBN 978-3-03943-359-9 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND.
    [Show full text]
  • The Weak Base Method for Constraint Satisfaction
    The Weak Base Method for Constraint Satisfaction Von der Fakult¨atf¨urElektrotechnik und Informatik der Gottfried Wilhelm Leibniz Universit¨atHannover zur Erlangung des Grades einer DOKTORIN DER NATURWISSENSCHAFTEN Dr. rer. nat. genehmigte Dissertation von Dipl.-Math. Ilka Schnoor geboren am 11. September 1979, in Eckernf¨orde 2008 Schlagw¨orter:Berechnungskomplexit¨at,Constraint Satisfaction Probleme, Uni- verselle Agebra Keywords: Computational complexity, Constraint satisfaction problems, Uni- versal algebra Referent: Heribert Vollmer, Gottfried Wilhelm Leibniz Universit¨atHannover Korreferent: Martin Mundhenk, Friedrich-Schiller-Universitt Jena Tag der Promotion: 21.11.2007 iii Danksagung Vor kurzem, so scheint es, begann ich erst mein Studium und nun habe ich diese Arbeit fertiggestellt. In dieser Zeit haben mich viele Menschen auf diesem Weg begleitet und unterst¨utzt.Zuerst sind da meine Betreuer zu nennen: Heribert Vollmer, der mich angeleitet und ermutigt hat und mich auf einer Stelle getra- gen hat, die es eigentlich gar nicht gab, und Nadia Creignou, die unerm¨udlich Verbesserungsvorschl¨agef¨urdiese Arbeit geliefert und viele Formulare f¨urmich ausgef¨ullthat. Dann meine Kollegen Michael Bauland und Anca Vais, die durch ihre lebhafte Art immer wieder Schwung ins Institut bringt und mit der ich gerne ein B¨urogeteilt habe. Und alle meine Coautoren. Ganz besonders Erw¨ahnenm¨ochte ich meine Eltern Frauke und J¨urgenJo- hannsen, die mir die wissenschaftliche Ausbildung erm¨oglicht und mich dabei immer unterst¨utzthaben. Und nat¨urlich Henning, der so vieles f¨urmich ist: Freund, Kollege und mein Mann, und der alle H¨ohenund Tiefen in der Entste- hung dieser Arbeit mit mir durchlebt hat. Euch allen vielen Dank! Acknowledgement Not long ago, it seems, I started to study Mathematics and now I have com- pleted this thesis.
    [Show full text]
  • 1 Abstract. Rationality's Demands on Belief Alexander Liam Worsnip
    Abstract. Rationality’s Demands on Belief Alexander Liam Worsnip 2015 It is common in the literature on practical rationality to distinguish between “structural” or “coherence” requirements of rationality on one hand, and substantive reasons on the other. When it comes to epistemology, however, this distinction is often overlooked, and its significance has not yet been fully appreciated. My dissertation is the first systematic attempt to remedy this. I show that coherence requirements have a distinctive and important role to play in epistemology, one that is not reducible to responding to evidence (reasons), and that must be theorized in its own right. Most radically, I argue that there is a core notion of rational belief, worth caring about and theorizing, that involves only conformity to coherence requirements, and on which – contrary to what most epistemologists either explicitly or implicitly assume – rationality does not require responding to one’s evidence. Though this can strike observers as a merely terminological stance, I show that this reaction is too quick, by arguing that there are cases of conflict between coherence requirements and responding to reasons – that is, where one cannot both satisfy the coherence requirements and respond to all of one’s reasons. As such, there is no single “umbrella” notion of rationality that covers both conformity to coherence requirements and responding to reasons. As well as trying to illuminate the nature and form of coherence requirements, I show that coherence requirements are of real epistemological significance, helping us to make progress in extant debates about higher-order evidence, doxastic voluntarism, deductive constraints, and (more briefly) conditionalization and peer disagreement.
    [Show full text]
  • A Computational Learning Semantics for Inductive Empirical Knowledge
    A COMPUTATIONAL LEARNING SEMANTICS FOR INDUCTIVE EMPIRICAL KNOWLEDGE KEVIN T. KELLY Abstract. This paper presents a new semantics for inductive empirical knowledge. The epistemic agent is represented concretely as a learner who processes new inputs through time and who forms new beliefs from those inputs by means of a concrete, computable learning program. The agent's belief state is represented hyper-intensionally as a set of time-indexed sentences. Knowledge is interpreted as avoidance of error in the limit and as having converged to true belief from the present time onward. Familiar topics are re-examined within the semantics, such as inductive skepticism, the logic of discov- ery, Duhem's problem, the articulation of theories by auxiliary hypotheses, the role of serendipity in scientific knowledge, Fitch's paradox, deductive closure of knowability, whether one can know inductively that one knows inductively, whether one can know in- ductively that one does not know inductively, and whether expert instruction can spread common inductive knowledge|as opposed to mere, true belief|through a community of gullible pupils. Keywords: learning, inductive skepticism, deductive closure, knowability, epistemic logic, serendipity, inference, truth conduciveness, bounded rationality, common knowl- edge. 1. Introduction Science formulates general theories. Can such theories count as knowledge, or are they doomed to the status of mere theories, as the anti-scientific fringe perennially urges? The ancient argument for inductive skepticism urges the latter view: no finite sequence of observations can rule out the possibility of future surprises, so universal laws and theories are unknowable. A familiar strategy for responding to skeptical arguments is to rule out skeptical possi- bilities as \irrelevant" (Dretske 1981).
    [Show full text]
  • Another Problem with Deductive Closure
    Paul D. Thorn HHU Düsseldorf, DCLPS, DFG SPP 1516 High rational personal probability (0.5 < r < 1) is a necessary condition for rational belief. Degree of probability is not generally preserved when one aggregates propositions. 2 Leitgeb (2013, 2014) demonstrated the ‘formal possibility’ of relating rational personal probability to rational belief, in such a way that: (LT) having a rational personal probability of at least r (0.5 < r < 1) is a necessary condition for rational belief, and (DC) rational belief sets are closed under deductive consequences. In light of Leitgeb’s result, I here endeavor to illustrate another problem with deductive closure. 3 Discounting inappropriate applications of (LT) and some other extreme views, the combination of (LT) and (DC) leads to violations of a highly plausible principle concerning rational belief, which I’ll call the “relevant factors principle”. Since (LT) is obviously correct, we have good reason to think that rational belief sets are not closed under deductive consequences. Note that Leitgeb’s theory is not the primary or exclusive target of the argument. 4 The following factors are sufficient to determine whether a respective agent’s belief in a given proposition, , is rational: (I) the agent’s relevant evidence bearing on , (II) the process that generated the agent’s belief that , (III) the agent’s degree of doxastic cautiousness, as represented by a probability threshold, s, (IV) the features of the agent’s practical situation to which belief in are relevant, and (V) the evidential standards applicable to the agent’s belief that , deriving the social context in which the agent entertains .
    [Show full text]
  • A Logic-Based Artificial Intelligence Approach
    ON THE FORMAL MODELING OF GAMES OF LANGUAGE AND ADVERSARIAL ARGUMENTATION Dissertation presented at Uppsala University to be publicly examined in Hö 2, Ekonomikum, Kyrkogårdsgatan 10, Uppsala, Friday, February 27, 2009 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Abstract Eriksson Lundström, J. S. Z. 2009. On the Formal Modeling of Games of Language and Adversarial Argumentation. A Logic-Based Artificial Intelligence Approach. 244 pp. Uppsala. ISBN 978-91-506-2055-9. Argumentation is a highly dynamical and dialectical process drawing on human cognition. Success- ful argumentation is ubiquitous to human interaction. Comprehensive formal modeling and analysis of argumentation presupposes a dynamical approach to the following phenomena: the deductive logic notion, the dialectical notion and the cognitive notion of justified belief. For each step of an argumentation these phenomena form networks of rules which determine the propositions to be allowed to make sense as admissible, acceptable, and accepted. We present a metalogic framework for a computational account of formal modeling and system- atical analysis of the dynamical, exhaustive and dialectical aspects of adversarial argumentation and dispute. Our approach addresses the mechanisms of admissibility, acceptability and acceptance of arguments in adversarial argumentation by use of metalogic representation, reflection, and Artifi- cial Intelligence-techniques for dynamical problem solving by exhaustive search. We elaborate on a common conceptual framework of board games and argumentation games for pursuing the alternatives facing the adversaries in the argumentation process conceived as a game. The analogy to chess is beneficial as it incorporates strategic and tactical operations just as argu- mentation.
    [Show full text]