Deductive Systems in Traditional and Modern Logic

Total Page:16

File Type:pdf, Size:1020Kb

Deductive Systems in Traditional and Modern Logic Deductive Systems in Traditional and Modern Logic • Urszula Wybraniec-Skardowska and Alex Citkin Deductive Systems in Traditional and Modern Logic Edited by Urszula Wybraniec-Skardowska and Alex Citkin Printed Edition of the Special Issue Published in Axioms www.mdpi.com/journal/axioms Deductive Systems in Traditional and Modern Logic Deductive Systems in Traditional and Modern Logic Editors Alex Citkin Urszula Wybraniec-Skardowska MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editors Alex Citkin Urszula Wybraniec-Skardowska Metropolitan Telecommunications Cardinal Stefan Wyszynski´ USA University in Warsaw, Department of Philosophy Poland Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Axioms (ISSN 2075-1680) (available at: http://www.mdpi.com/journal/axioms/special issues/deductive systems). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03943-358-2 (Pbk) ISBN 978-3-03943-359-9 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editors .............................................. vii Alex Citkin and Urszula Wybraniec-Skardowska Deductive Systems in Traditional and Modern Logic Reprinted from: Axioms 2020, 9, 108, doi:10.3390/axioms9030108 ................... 1 Piotr Kulicki Aristotle’s Syllogistic as a Deductive System Reprinted from: Axioms 2020, 9, 56, doi:10.3390/axioms9020056 ................... 5 Peter Simons Term Logic Reprinted from: Axioms 2020, 9, 18, doi:10.3390/axioms9010018 ................... 21 J.-Mart´ın Castro-Manzano Distribution Tableaux, Distribution Models Reprinted from: Axioms 2020, 9, 41, doi:10.3390/axioms9020041 ................... 31 Eugeniusz Wojciechowski The Zahl-Anzahl Distinction in Gottlob Frege: Arithmetic of Natural Numbers with Anzahl as a Primitive Term Reprinted from: Axioms 2020, 9, 6, doi:10.3390/axioms9010006 .................... 41 Valentin Goranko Hybrid Deduction–Refutation Systems Reprinted from: Axioms 2019, 8, 118, doi:10.3390/axioms8040118 ................... 49 Krystyna Mruczek-Nasieniewska and Marek Nasieniewski A Kotas-Style Characterisation of Minimal Discussive Logic Reprinted from: Axioms 2019, 8, 108, doi:10.3390/axioms8040108 ................... 69 Janusz Ciuciura A Note on Fernandez–Coniglio’s´ Hierarchy of Paraconsistent Systems Reprinted from: Axioms 2020, 9, 35, doi:10.3390/axioms9020035 ................... 87 Alex Citkin Deductive Systems with Multiple-Conclusion Rules and the Disjunction Property Reprinted from: Axioms 2019, 8, 100, doi:10.3390/axioms8030100 ................... 99 Dariusz Surowik Minimal Systems of Temporal Logic Reprinted from: Axioms 2020, 9, 67, doi:10.3390/axioms9020067 ...................123 Joanna Golinska-Pilarek ´ and Magdalena Welle Deduction in Non-Fregean Propositional Logic SCI Reprinted from: Axioms 2019, 8, 115, doi:10.3390/axioms8040115 ...................151 Sopo Pkhakadze and Hans Tompits Sequent-Type Calculi for Three-Valued and Disjunctive Default Logic Reprinted from: Axioms 2020, 9, 84, doi:10.3390/axioms9030084 ...................171 v Henrique Antunes,Walter Carnielli, Andreas Kapsner and Abilio Rodrigues Kripke-Style Models for Logics of Evidence and Truth Reprinted from: Axioms 2020, 9, 100, doi:10.3390/axioms9030100 ...................201 Andrzej Malec Deontic Logics as Axiomatic Extensions of First-Order Predicate Logic: An Approach Inspired by Wolniewicz’s Formal Ontology of Situations Reprinted from: Axioms 2019, 8, 109, doi:10.3390/axioms8040109 ...................217 Dorota Leszczynska-Jasion ´ and Szymon Chlebowski Synthetic Tableaux with Unrestricted Cut for First-Order Theories Reprinted from: Axioms 2019, 8, 133, doi:10.3390/axioms8040133 ...................231 Urszula Wybraniec-Skardowska On Certain Axiomatizations of Arithmetic of Natural and Integer Numbers Reprinted from: Axioms 2019, 8, 103, doi:10.3390/axioms8030103 ...................257 Jean-Pierre Descl´es and Anca Christine Pascu Logic of Typical and Atypical Instances of a Concept—A Mathematical Model Reprinted from: Axioms 2019, 8, 104, doi:10.3390/axioms8030104 ...................271 Alfredo Roque Freire Review of “The Significance of the New Logic” Willard Van Orman Quine. Edited and Translated by Walter Carnielli, Frederique Janssen-Lauret, and William Pickering. Cambridge University Press, Cambridge, UK, 2018, pp. 1–200. ISBN-10: 1107179025 ISBN-13: 978-1107179028 Reprinted from: Axioms 2019, 8, 64, doi:10.3390/axioms8020064 ...................285 vi About the Editors Alex Citkin spent 25 years of his career as a research fellow of Uzhgorod State University (Ukraine) studying non-classical and algebraic logics, as well as logical methods of pattern recognition. He was among the pioneers investigating the admissibility of inference rules and structural completeness of propositional logics. After relocating in 1994 to the United States, he was made CIO of Metropolitan Telecommunications (New York, USA). He has authored over 70 research papers in logic, universal algebra, group theory and informatics. Citkin is still actively involved in the research in propositional, modal and algebraic logics. Urszula Wybraniec-Skardowska is a retired professor of logic but is still actively working both scientifically and organizationally. She was named a Prof. of Humanities Science by the President of Poland in 1992. For many years she was a full professor of logic at Opole University and a co-founder and co-chairperson of the Group of Logic, Language and Information established there. Wybraniec-Skardowska is affiliated as a professor at Cardinal Stefan Wyszynski´ University in Warsaw. Her interdisciplinary research interests include: logic, philosophy, logic and philosophy of language, logical theory of communication, formal linguistics, information sciences and mathematics. She was a visiting professor at many outstanding universities. She is also a member of many Polish and international scientific associations, including: The Association for Symbolic Logic, The European Association for Logic, Language and Information, The Association of Logic and Philosophy of Science, Polish Society of Philosophy, Polish Society of Mathematics, Polish Association for Semiotic Studies. She is the author of about 130 publications. Her book “Theory of Language Syntax. Categorial Approach” was awarded for scientific research by the Polish Ministry of Education (1992). She is a recipient of many national awards. vii axioms Editorial Deductive Systems in Traditional and Modern Logic Alex Citkin 1,* and Urszula Wybraniec-Skardowska 2,* 1 Metropolitan Telecommunications, New York, NY 10041, USA 2 Institute of Philosophy, Cardinal Stefan Wyszynski University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland * Correspondence: [email protected] (A.C.); [email protected] (U.W.-S.) Received: 3 September 2020; Accepted: 9 September 2020; Published: 13 September 2020 Since its inception, logic has studied the acceptable rules of reasoning, the rules that allow us to pass from certain statements, serving as premises or assumptions, to a statement taken as a conclusion. The first kinds of such rules were distilled by Aristotle and are known as moduses. Stoics ramified Aristotle’s system, and for centuries, the syllogistic remained the main tool for logical deduction. With the birth of formal logic, new types of deduction emerged, and to support this new kind of inference, the deductive systems were used. Since then, the deductive systems have been at the heart of logical investigations. In one form or the other, they are used in all branches of logic. Contemporary understanding of science, as a theory of a high degree of exactness, requires treating it as a deductive theory (a deductive system). Generally speaking, such a theory (system) is a set of its sentential expressions which are derivable (deducible) from some expressions of the set selected as axioms, by means of deduction (inference) rules. The expressions obtained as a result of derivation from a given set of expressions are consequences; that is, they have a proof. The principal feature of deductive systems (theories) is the deducibility or provability of their theorems. From a very general point of view, there are two methods of deduction: (a) the axiomatic method (Hilbert style method) and (b) the natural deduction method (Ja´skowski–Słupecki–Borkowski, Gentzen or semantic tableaux). Method (b) leads to natural deduction systems, while the most often used method (a) leads to presentation (or characterization) of logical and mathematical theories as axiomatic deductive systems. Methods (a) and (b) are used in different scientific disciplines, such as physics, chemistry, sociology, philosophical and psychological sciences, information sciences, discursive sciences, computer science, and some technical sciences. Deductive sciences have not always been built explicitly
Recommended publications
  • Ling 130 Notes: a Guide to Natural Deduction Proofs
    Ling 130 Notes: A guide to Natural Deduction proofs Sophia A. Malamud February 7, 2018 1 Strategy summary Given a set of premises, ∆, and the goal you are trying to prove, Γ, there are some simple rules of thumb that will be helpful in finding ND proofs for problems. These are not complete, but will get you through our problem sets. Here goes: Given Delta, prove Γ: 1. Apply the premises, pi in ∆, to prove Γ. Do any other obvious steps. 2. If you need to use a premise (or an assumption, or another resource formula) which is a disjunction (_-premise), then apply Proof By Cases (Disjunction Elimination, _E) rule and prove Γ for each disjunct. 3. Otherwise, work backwards from the type of goal you are proving: (a) If the goal Γ is a conditional (A ! B), then assume A and prove B; use arrow-introduction (Conditional Introduction, ! I) rule. (b) If the goal Γ is a a negative (:A), then assume ::A (or just assume A) and prove con- tradiction; use Reductio Ad Absurdum (RAA, proof by contradiction, Negation Intro- duction, :I) rule. (c) If the goal Γ is a conjunction (A ^ B), then prove A and prove B; use Conjunction Introduction (^I) rule. (d) If the goal Γ is a disjunction (A _ B), then prove one of A or B; use Disjunction Intro- duction (_I) rule. 4. If all else fails, use RAA (proof by contradiction). 2 Using rules for conditionals • Conditional Elimination (modus ponens) (! E) φ ! , φ ` This rule requires a conditional and its antecedent.
    [Show full text]
  • Logic, Reasoning, and Revision
    Logic, Reasoning, and Revision Abstract The traditional connection between logic and reasoning has been under pressure ever since Gilbert Harman attacked the received view that logic yields norms for what we should believe. In this paper I first place Harman’s challenge in the broader context of the dialectic between logical revisionists like Bob Meyer and sceptics about the role of logic in reasoning like Harman. I then develop a formal model based on contemporary epistemic and doxastic logic in which the relation between logic and norms for belief can be captured. introduction The canons of classical deductive logic provide, at least according to a widespread but presumably naive view, general as well as infallible norms for reasoning. Obviously, few instances of actual reasoning have such prop- erties, and it is therefore not surprising that the naive view has been chal- lenged in many ways. Four kinds of challenges are relevant to the question of where the naive view goes wrong, but each of these challenges is also in- teresting because it allows us to focus on a particular aspect of the relation between deductive logic, reasoning, and logical revision. Challenges to the naive view that classical deductive logic directly yields norms for reason- ing come in two sorts. Two of them are straightforwardly revisionist; they claim that the consequence relation of classical logic is the culprit. The remaining two directly question the naive view about the normative role of logic for reasoning; they do not think that the philosophical notion of en- tailment (however conceived) is as relevant to reasoning as has traditionally been assumed.
    [Show full text]
  • Classifying Material Implications Over Minimal Logic
    Classifying Material Implications over Minimal Logic Hannes Diener and Maarten McKubre-Jordens March 28, 2018 Abstract The so-called paradoxes of material implication have motivated the development of many non- classical logics over the years [2–5, 11]. In this note, we investigate some of these paradoxes and classify them, over minimal logic. We provide proofs of equivalence and semantic models separating the paradoxes where appropriate. A number of equivalent groups arise, all of which collapse with unrestricted use of double negation elimination. Interestingly, the principle ex falso quodlibet, and several weaker principles, turn out to be distinguishable, giving perhaps supporting motivation for adopting minimal logic as the ambient logic for reasoning in the possible presence of inconsistency. Keywords: reverse mathematics; minimal logic; ex falso quodlibet; implication; paraconsistent logic; Peirce’s principle. 1 Introduction The project of constructive reverse mathematics [6] has given rise to a wide literature where various the- orems of mathematics and principles of logic have been classified over intuitionistic logic. What is less well-known is that the subtle difference that arises when the principle of explosion, ex falso quodlibet, is dropped from intuitionistic logic (thus giving (Johansson’s) minimal logic) enables the distinction of many more principles. The focus of the present paper are a range of principles known collectively (but not exhaustively) as the paradoxes of material implication; paradoxes because they illustrate that the usual interpretation of formal statements of the form “. → . .” as informal statements of the form “if. then. ” produces counter-intuitive results. Some of these principles were hinted at in [9]. Here we present a carefully worked-out chart, classifying a number of such principles over minimal logic.
    [Show full text]
  • Admissible Rules and Their Complexity
    Admissible rules and their complexity Emil Jeřábek [email protected] http://math.cas.cz/~jerabek/ Institute of Mathematics of the Czech Academy of Sciences, Prague 24th Applications of Logic in Philosophy and the Foundations of Mathematics Szklarska Poręba, May 2019 Outline of the talks 1 Logics and admissibility 2 Transitive modal logics 3 Toy model: logics of bounded depth 4 Projective formulas 5 Admissibility in clx logics 6 Problems and complexity classes 7 Complexity of derivability 8 Complexity of admissibility Logics and admissibility 1 Logics and admissibility 2 Transitive modal logics 3 Toy model: logics of bounded depth 4 Projective formulas 5 Admissibility in clx logics 6 Problems and complexity classes 7 Complexity of derivability 8 Complexity of admissibility Propositional logics Propositional logic L: Language: formulas built from atoms x0; x1; x2;::: using a fixed set of finitary connectives Consequence relation: a relation Γ `L ' between sets of formulas and formulas s.t. I ' `L ' I Γ `L ' implies Γ; ∆ `L ' I Γ; ∆ `L ' and 8 2 ∆ Γ `L imply Γ `L ' I Γ `L ' implies σ(Γ) `L σ(') for every substitution σ Emil Jeřábek Admissible rules and their complexity ALPFM 2019, Szklarska Poręba 1:78 Unifiers and admissible rules Γ; ∆: finite sets of formulas L-unifier of Γ: substitution σ s.t. `L σ(') for all ' 2 Γ Single-conclusion rule: Γ = ' Multiple-conclusion rule: Γ = ∆ I Γ = ∆ is L-derivable (or valid) if Γ `L δ for some δ 2 ∆ I Γ = ∆ is L-admissible (written as Γ ∼L ∆) if every L-unifier of Γ also unifies some δ 2 ∆ NB: Γ is L-unifiable
    [Show full text]
  • Mathematical Logic
    Proof Theory. Mathematical Logic. From the XIXth century to the 1960s, logic was essentially mathematical. Development of first-order logic (1879-1928): Frege, Hilbert, Bernays, Ackermann. Development of the fundamental axiom systems for mathematics (1880s-1920s): Cantor, Peano, Zermelo, Fraenkel, Skolem, von Neumann. Giuseppe Peano (1858-1932) Core Logic – 2005/06-1ab – p. 2/43 Mathematical Logic. From the XIXth century to the 1960s, logic was essentially mathematical. Development of first-order logic (1879-1928): Frege, Hilbert, Bernays, Ackermann. Development of the fundamental axiom systems for mathematics (1880s-1920s): Cantor, Peano, Zermelo, Fraenkel, Skolem, von Neumann. Traditional four areas of mathematical logic: Proof Theory. Recursion Theory. Model Theory. Set Theory. Core Logic – 2005/06-1ab – p. 2/43 Gödel (1). Kurt Gödel (1906-1978) Studied at the University of Vienna; PhD supervisor Hans Hahn (1879-1934). Thesis (1929): Gödel Completeness Theorem. 1931: “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I”. Gödel’s First Incompleteness Theorem and a proof sketch of the Second Incompleteness Theorem. Core Logic – 2005/06-1ab – p. 3/43 Gödel (2). 1935-1940: Gödel proves the consistency of the Axiom of Choice and the Generalized Continuum Hypothesis with the axioms of set theory (solving one half of Hilbert’s 1st Problem). 1940: Emigration to the USA: Princeton. Close friendship to Einstein, Morgenstern and von Neumann. Suffered from severe hypochondria and paranoia. Strong views on the philosophy of mathematics. Core Logic – 2005/06-1ab – p. 4/43 Gödel’s Incompleteness Theorem (1). 1928: At the ICM in Bologna, Hilbert claims that the work of Ackermann and von Neumann constitutes a proof of the consistency of arithmetic.
    [Show full text]
  • Mathematical Logic. Introduction. by Vilnis Detlovs And
    1 Version released: May 24, 2017 Introduction to Mathematical Logic Hyper-textbook for students by Vilnis Detlovs, Dr. math., and Karlis Podnieks, Dr. math. University of Latvia This work is licensed under a Creative Commons License and is copyrighted © 2000-2017 by us, Vilnis Detlovs and Karlis Podnieks. Sections 1, 2, 3 of this book represent an extended translation of the corresponding chapters of the book: V. Detlovs, Elements of Mathematical Logic, Riga, University of Latvia, 1964, 252 pp. (in Latvian). With kind permission of Dr. Detlovs. Vilnis Detlovs. Memorial Page In preparation – forever (however, since 2000, used successfully in a real logic course for computer science students). This hyper-textbook contains links to: Wikipedia, the free encyclopedia; MacTutor History of Mathematics archive of the University of St Andrews; MathWorld of Wolfram Research. 2 Table of Contents References..........................................................................................................3 1. Introduction. What Is Logic, Really?.............................................................4 1.1. Total Formalization is Possible!..............................................................5 1.2. Predicate Languages.............................................................................10 1.3. Axioms of Logic: Minimal System, Constructive System and Classical System..........................................................................................................27 1.4. The Flavor of Proving Directly.............................................................40
    [Show full text]
  • The Deduction Rule and Linear and Near-Linear Proof Simulations
    The Deduction Rule and Linear and Near-linear Proof Simulations Maria Luisa Bonet¤ Department of Mathematics University of California, San Diego Samuel R. Buss¤ Department of Mathematics University of California, San Diego Abstract We introduce new proof systems for propositional logic, simple deduction Frege systems, general deduction Frege systems and nested deduction Frege systems, which augment Frege systems with variants of the deduction rule. We give upper bounds on the lengths of proofs in Frege proof systems compared to lengths in these new systems. As applications we give near-linear simulations of the propositional Gentzen sequent calculus and the natural deduction calculus by Frege proofs. The length of a proof is the number of lines (or formulas) in the proof. A general deduction Frege proof system provides at most quadratic speedup over Frege proof systems. A nested deduction Frege proof system provides at most a nearly linear speedup over Frege system where by \nearly linear" is meant the ratio of proof lengths is O(®(n)) where ® is the inverse Ackermann function. A nested deduction Frege system can linearly simulate the propositional sequent calculus, the tree-like general deduction Frege calculus, and the natural deduction calculus. Hence a Frege proof system can simulate all those proof systems with proof lengths bounded by O(n ¢ ®(n)). Also we show ¤Supported in part by NSF Grant DMS-8902480. 1 that a Frege proof of n lines can be transformed into a tree-like Frege proof of O(n log n) lines and of height O(log n). As a corollary of this fact we can prove that natural deduction and sequent calculus tree-like systems simulate Frege systems with proof lengths bounded by O(n log n).
    [Show full text]
  • MOTIVATING HILBERT SYSTEMS Hilbert Systems Are Formal Systems
    MOTIVATING HILBERT SYSTEMS Hilbert systems are formal systems that encode the notion of a mathematical proof, which are used in the branch of mathematics known as proof theory. There are other formal systems that proof theorists use, with their own advantages and disadvantages. The advantage of Hilbert systems is that they are simpler than the alternatives in terms of the number of primitive notions they involve. Formal systems for proof theory work by deriving theorems from axioms using rules of inference. The distinctive characteristic of Hilbert systems is that they have very few primitive rules of inference|in fact a Hilbert system with just one primitive rule of inference, modus ponens, suffices to formalize proofs using first- order logic, and first-order logic is sufficient for all mathematical reasoning. Modus ponens is the rule of inference that says that if we have theorems of the forms p ! q and p, where p and q are formulas, then χ is also a theorem. This makes sense given the interpretation of p ! q as meaning \if p is true, then so is q". The simplicity of inference in Hilbert systems is compensated for by a somewhat more complicated set of axioms. For minimal propositional logic, the two axiom schemes below suffice: (1) For every pair of formulas p and q, the formula p ! (q ! p) is an axiom. (2) For every triple of formulas p, q and r, the formula (p ! (q ! r)) ! ((p ! q) ! (p ! r)) is an axiom. One thing that had always bothered me when reading about Hilbert systems was that I couldn't see how people could come up with these axioms other than by a stroke of luck or genius.
    [Show full text]
  • Chapter 9: Initial Theorems About Axiom System
    Initial Theorems about Axiom 9 System AS1 1. Theorems in Axiom Systems versus Theorems about Axiom Systems ..................................2 2. Proofs about Axiom Systems ................................................................................................3 3. Initial Examples of Proofs in the Metalanguage about AS1 ..................................................4 4. The Deduction Theorem.......................................................................................................7 5. Using Mathematical Induction to do Proofs about Derivations .............................................8 6. Setting up the Proof of the Deduction Theorem.....................................................................9 7. Informal Proof of the Deduction Theorem..........................................................................10 8. The Lemmas Supporting the Deduction Theorem................................................................11 9. Rules R1 and R2 are Required for any DT-MP-Logic........................................................12 10. The Converse of the Deduction Theorem and Modus Ponens .............................................14 11. Some General Theorems About ......................................................................................15 12. Further Theorems About AS1.............................................................................................16 13. Appendix: Summary of Theorems about AS1.....................................................................18 2 Hardegree,
    [Show full text]
  • An Anti-Locally-Nameless Approach to Formalizing Quantifiers Olivier Laurent
    An Anti-Locally-Nameless Approach to Formalizing Quantifiers Olivier Laurent To cite this version: Olivier Laurent. An Anti-Locally-Nameless Approach to Formalizing Quantifiers. Certified Programs and Proofs, Jan 2021, virtual, Denmark. pp.300-312, 10.1145/3437992.3439926. hal-03096253 HAL Id: hal-03096253 https://hal.archives-ouvertes.fr/hal-03096253 Submitted on 4 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. An Anti-Locally-Nameless Approach to Formalizing Quantifiers Olivier Laurent Univ Lyon, EnsL, UCBL, CNRS, LIP LYON, France [email protected] Abstract all cases have been covered. This works perfectly well for We investigate the possibility of formalizing quantifiers in various propositional systems, but as soon as (first-order) proof theory while avoiding, as far as possible, the use of quantifiers enter the picture, we have to face one ofthe true binding structures, α-equivalence or variable renam- nightmares of formalization: quantifiers are binders... The ings. We propose a solution with two kinds of variables in question of the formalization of binders does not yet have an 1 terms and formulas, as originally done by Gentzen. In this answer which makes perfect consensus .
    [Show full text]
  • Starting the Dismantling of Classical Mathematics
    Australasian Journal of Logic Starting the Dismantling of Classical Mathematics Ross T. Brady La Trobe University Melbourne, Australia [email protected] Dedicated to Richard Routley/Sylvan, on the occasion of the 20th anniversary of his untimely death. 1 Introduction Richard Sylvan (n´eRoutley) has been the greatest influence on my career in logic. We met at the University of New England in 1966, when I was a Master's student and he was one of my lecturers in the M.A. course in Formal Logic. He was an inspirational leader, who thought his own thoughts and was not afraid to speak his mind. I hold him in the highest regard. He was very critical of the standard Anglo-American way of doing logic, the so-called classical logic, which can be seen in everything he wrote. One of his many critical comments was: “G¨odel's(First) Theorem would not be provable using a decent logic". This contribution, written to honour him and his works, will examine this point among some others. Hilbert referred to non-constructive set theory based on classical logic as \Cantor's paradise". In this historical setting, the constructive logic and mathematics concerned was that of intuitionism. (The Preface of Mendelson [2010] refers to this.) We wish to start the process of dismantling this classi- cal paradise, and more generally classical mathematics. Our starting point will be the various diagonal-style arguments, where we examine whether the Law of Excluded Middle (LEM) is implicitly used in carrying them out. This will include the proof of G¨odel'sFirst Theorem, and also the proof of the undecidability of Turing's Halting Problem.
    [Show full text]
  • Deontic Logic and Meta-Ethics
    Deontic Logic and Meta-Ethics • Deontic Logic as been a field in which quite apart from the questions of antinomies "paradoxes" have played a decisive roles, since the field has been invented. These paradoxes (like Ross' Paradox or the Good Samaritian) are said to show that some intuitively valid logical principles cannot be true in deontic logic, even if the same principles (like deductive closure within a modality) are valid in alethic modal logic. Paraconsistency is not concerned with solutions to these paradoxes. pp ∧¬∧¬pp • There are, however, lots of problems with ex contradictione qoudlibet Manuel Bremer in deontic logic, since systems of norms and regulations, even more so Centre for Logic, Language and if they are historically grown, have a tendency to contain conflicting Information requirements. To restrict the ensuing problems at least a weak paraconsistent logic is needed. • There may be, further on, real antinomies of deontic logic and meta- ethics (understood comprehensively as including also some basic decision and game theory). Inconsistent Obligations • It often may happen that one is confronted with inconsistent obligations. • Consider for example the rule that term papers have to be handed in at the institute's office one week before the session in question combined with the rule that one must not disturb the secretary at the institute's office if she is preparing an institute meeting. What if the date of handing in your paper falls on a day when an institute meeting is pp ∧¬∧¬pp prepared? Entering the office is now obligatory (i.e. it is obligatory that it is the Manuel Bremer case that N.N.
    [Show full text]