Fusion Proteins MLL . AF4 and AF4 . MLL Confer Resistance to Apoptosis, Cell Cycling Capacity and Growth Transformation

Total Page:16

File Type:pdf, Size:1020Kb

Fusion Proteins MLL . AF4 and AF4 . MLL Confer Resistance to Apoptosis, Cell Cycling Capacity and Growth Transformation Oncogene (2007) 26, 3352–3363 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc ORIGINAL ARTICLE Combined effects of the two reciprocal t(4;11)fusion proteins MLL . AF4 and AF4 . MLL confer resistance to apoptosis, cell cycling capacity and growth transformation A Gaussmann1, T Wenger2,3, I Eberle1, A Bursen1, S Bracharz1, I Herr2, T Dingermann1 and R Marschalek1 1Institute of Pharmaceutical Biology/ZAFES, JWG-University Frankfurt, Biocenter, Frankfurt/Main, Germany and 2Molecular OncoSurgery, Department of Surgery, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany The reciprocal chromosomal translocation t(4;11)is Introduction correlated with infant, childhood, adult and therapy- related high-risk acute leukemia. Here, we investigated Chromosomal translocations t(4;11) are the most the biological effects of MLL . AF4, AF4 . MLL or the frequent chromosomal aberration of the MLL gene combination of both reciprocal fusion proteins in a and are correlated with infant, childhood, adult and conditional in vitro cell culture model system. Several therapy-related acute lymphoblastic leukemia (Felix parameters like cell growth, cell cycling capacity, et al., 1995; for a review see Mitterbauer-Hohendanner apoptotic behavior and growth transformation were and Mannhalter, 2004). In particular, t(4;11) patients investigated under physiological and stress conditions. have a poor prednisone response (Dordelmann et al., Co-transfected cells displayed the highest resistance 1999) and are therefore stratified according to high-risk against apoptotic triggers, cell cycling capacity and loss- acute leukemia protocols (Pui et al., 1994). of-contact inhibition. These analyses were complemented Although t(4;11) translocations are associated with by gene expression profiling experiments and specific gene such a severe disease phenotype, no animal model is signatures were established for each of the three cell lines. currently available that phenocopies the human disease. Interestingly, co-transfected cells strongly upregulate the By using the inverter mouse model and an AF4 knock-in homeobox gene Nanog. In combination with Oct4, the strategy, however, two different transgenic MLL . AF4 Nanog homeoprotein is steering maintenance of pluripo- mouse models have been established recently. Both tency and self-renewal in embryonic stem cells. Transcrip- developed a disseminated large B-cell lymphoma with tion of Nanog and other stem cell factors, like Oct4 and low penetrance and long latency: about 50% of these Bmi1, was verified in biopsy material of t(4;11)patient mice died of B-cell lymphomas after a median time of cells which express both reciprocal t(4;11)fusion genes. In 520–540 days (Chen et al., 2006; Metzler et al., 2006). conclusion, the presence of both reciprocal MLL fusion This clearly indicated that the MLL . AF4 fusion protein proteins confers biological properties known from t(4;11) alone does not cause the known t(4;11) disease leukemia, suggesting that each of the two fusion proteins phenotype. Besides these transgenic attempts, retroviral contribute specific properties and, in combination, also transduction of the MLL . AF4 fusion gene does not lead synergistic effects to the leukemic phenotype. to the development of any hematomalignancy (So et al., Oncogene (2007) 26, 3352–3363. doi:10.1038/sj.onc.1210125; 2004; Lavau et al., 2004, personal communication), even published online 27 November 2006 though a small number of blast-like replating cells could be obtained in semisolid agar. Keywords: MLL; AF4; acute leukemia; t(4;11) fusion Apart from these animal model systems, only a few proteins; Nanog stable cell lines were established from t(4;11) patients; however, they all differ in their biological properties and their karyotypes (Stong et al., 1985; Lange et al., 1987; Greil et al., 1994). They are characterized by the expression of lymphatic and myeloid surface antigens (e.g. CD34 þ , CD19 þ , CD13 þ , CD33 þ , CD133 þ , CD10À) and their ability to efficiently blockapoptosis Correspondence: Professor R Marschalek, Institute of Pharmaceutical under cytotoxic drug treatment (Kersey et al., 1998). Biology/ZAFES, University of Frankfurt, Biocenter, Max-von-Laue- This biological feature may explain the high relapse rate Str. 9, D-60439 Frankfurt/Main, Germany. in these leukemia patients. By contrast, overexpression E-mail: [email protected] of the MLL . AF4 fusion protein in the myelomonocytic 3Present address: Centre d’Immunologie de Marseille-Luminy, Mar- seille, France. leukemia cell line U937 cells caused cell cycle arrest Received 11 July 2006; revised 2 October 2006; accepted 13 October (Caslini et al., 2004), whereas siRNA-mediated knock- 2006; published online 27 November 2006 down of the MLL . AF4 fusion protein in the t(4;11) t(4;11) pathobiology A Gaussmann et al 3353 leukemic cell line SEM led to a strong increase of apoptosis and a reduction in clonogenicity (Thomas et al., 2005). Overexpression of the reciprocal AF4 . MLL fusion protein in MEF led to a loss-of- contact inhibition, and thus to growth transformation (Bursen et al., 2004). All these data sound controversial and did not permit consistent conclusions to be drawn on the pathological disease mechanism(s) of t(4;11) leukemia. Therefore, we aimed to establish an in vitro t(4;11) model system that recapitulates certain aspects of Figure 1 Doxycycline-dependent expression of MLL fusion genes t(4;11) leukemia cells, and thus allows investigation of and protein expression in stably transfected cells. (a) RT–PCR experiments. M ¼ size marker; A ¼ AF4 . MLL-transfected cell line; the specific contribution(s) of each reciprocal MLL B ¼ MLL . AF4-transfected cell line; C ¼ co-transfected cell line; fusion protein. N ¼ negative (water) control; P ¼ positive control (cloned cDNA); For this purpose, mammalian cells were stably 7Dox ¼ presence or absence of 10 mg/ml doxycycline. (b) Western transfected with conditional expression constructs cod- blot experiments. Lane 1: untransfected MEF/tTA cell line; lanes . 2–5: MEF/tTA cell lines stably transfected with Tet-off expression ing for doxycycline-inducible MLL AF4 and/or constructs coding for AF4 . MLL (der4), MLL . AF4 (der11) or AF4 . MLL transgenes. After induction, transfected cells both (der4/11); protein expression was induced by omitting were analysed for their growth properties (cell counts doxycycline in the growth media for 5 days. Upper panel: and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazo- expression of the AF4 . MLL fusion protein; middle panel: lium bromide (MTT) assay), cell cycling capacity, expression of the MLL . AF4 fusion protein; lower panel: b-actin loading controls. Transfected cell lines were treated with MG132 to specific apoptotic rates and growth transformation. In stabilize the expression of the full-length AF4 . MLL fusion protein parallel, gene expression profiling experiments were (328 kDa) that otherwise would be degraded via the proteasomal performed to gain insights into up- and downregulated pathways due to its ability to interact with the E3-ligases SIAH1 or genes due to the presence of either one or both SIAH2, respectively (Bursen et al., 2004). reciprocal MLL fusion proteins. The results obtained suggest that both reciprocal MLL fusion proteins are contributing to the disease phenotype of t(4;11) leuke- mic cells. Moreover, gene expression profiling experi- expression of MLL . AF4 and AF4 . MLL in all three ments revealed the transcriptional upregulation of clones used throughout this study. Nanog and Oct4 in co-transfected cells, whereas single- transfected cells did not show any upregulation of these genes. This novel feature was verified in the biopsy Cell growth, specific apoptosis and cell cycle analysis of material of t(4;11) patients. Nanog codes for an single- and co-transfected cells under normal conditions Antennapedia-class homeobox protein which is – in and serum deprivation conjunction with Oct4 and Sox2 – necessary and All cell clones were grown in the absence of doxycycline sufficient for the self-renewal and maintenance of for 5 days and investigated under normal cell culture embryonic stem cells (Chambers et al., 2003; Mitsui conditions (Dulbecco’s modified Eagle’s medium et al., 2003). The consequences of these novel findings (DMEM)/10%fetal calf serum (FCS)/1% Pen-Strep). will be discussed. A significantly higher growth rate was observed for co- transfected cells, followed by untransfected MEF/tTA cells and AF4 . MLL-transfected cells. Nearly no growth Results was observed for MLL . AF4-transfected cells, indicating that these cells are inhibited in their growth potential Establishing conditional cell lines expressing MLL . AF4, (Figure 2a, see below). Noteworthy, AF4 . MLL-trans- AF4 . MLL or both MLL fusion genes fected and co-transfected cells displayed significantly Stably transfected MEF/tTA cell lines (Tet-off) were higher growth rates according to the data obtained by generated by transfecting them with the above men- the MTT assay, but the net growth of AF4 . MLL- tioned expression constructs. Single-cell clones were transfected cells seems to be compromised due to a selected under appropriate conditions and tested for higher apoptosis rate (2–20% over the observation their ability to induce their transgene(s) (data not period; see below). All other cell lines displayed an shown). Inducible cell clones were chosen and used apoptosis rate below 3% under these cell culture throughout the experiments. As shown in Figure 1a, a conditions (Figure 2b). The MTT assays revealed that doxycycline-dependent increase in transcription could the MEF/tTAHder11 cells displayed significantly lower be demonstrated for all transgenes after withdrawal of growth rates than the MEF/tTAHder4 and the MEF/ doxycycline (À). Time course experiments revealed tTAHder4/11 cell lines, respectively. It was also obvious expression of the resulting fusion proteins after 3–5 that untransfected control cells and MLL . AF4-trans- days (data not shown). Therefore, all subsequent fected cells seem to reduce their growth rates when experiments were performed after 5 days of transgene confluency was reached, whereas AF4 .
Recommended publications
  • Id4, a New Candidate Gene for Senile Osteoporosis, Acts As a Molecular Switch Promoting Osteoblast Differentiation
    Id4, a New Candidate Gene for Senile Osteoporosis, Acts as a Molecular Switch Promoting Osteoblast Differentiation Yoshimi Tokuzawa1., Ken Yagi1., Yzumi Yamashita1, Yutaka Nakachi1, Itoshi Nikaido1, Hidemasa Bono1, Yuichi Ninomiya1, Yukiko Kanesaki-Yatsuka1, Masumi Akita2, Hiromi Motegi3, Shigeharu Wakana3, Tetsuo Noda3,4, Fred Sablitzky5, Shigeki Arai6, Riki Kurokawa6, Toru Fukuda7, Takenobu Katagiri7, Christian Scho¨ nbach8,9, Tatsuo Suda1, Yosuke Mizuno1, Yasushi Okazaki1* 1 Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan, 2 Division of Morphological Science, Biomedical Research Center, Saitama Medical University, Iruma-gun, Saitama, Japan, 3 RIKEN BioResource Center, Tsukuba, Ibaraki, Japan, 4 The Cancer Institute of the Japanese Foundation for Cancer Research, Koto-ward, Tokyo, Japan, 5 Developmental Genetics and Gene Control, Institute of Genetics, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom, 6 Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan, 7 Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan, 8 Division of Genomics and Genetics, Nanyang Technological University School of Biological Sciences, Singapore, Singapore, 9 Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan Abstract Excessive accumulation of bone marrow adipocytes observed in senile osteoporosis or age-related osteopenia is caused by the unbalanced differentiation of MSCs into bone marrow adipocytes or osteoblasts. Several transcription factors are known to regulate the balance between adipocyte and osteoblast differentiation. However, the molecular mechanisms that regulate the balance between adipocyte and osteoblast differentiation in the bone marrow have yet to be elucidated.
    [Show full text]
  • A Core Transcriptional Network Composed of Pax2/8, Gata3 and Lim1 Regulates Key Players of Pro/Mesonephros Morphogenesis
    Developmental Biology 382 (2013) 555–566 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology Genomes and Developmental Control A core transcriptional network composed of Pax2/8, Gata3 and Lim1 regulates key players of pro/mesonephros morphogenesis Sami Kamel Boualia a, Yaned Gaitan a, Mathieu Tremblay a, Richa Sharma a, Julie Cardin b, Artur Kania b, Maxime Bouchard a,n a Goodman Cancer Research Centre and Department of Biochemistry, McGill University, 1160 Pine Ave. W., Montreal, Quebec, Canada H3A 1A3 b Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada H2W 1R7, Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada, H3A 2B2 and Faculté de médecine, Université de Montréal, Montréal, Quebec, Canada, H3C 3J7. article info abstract Article history: Translating the developmental program encoded in the genome into cellular and morphogenetic Received 23 January 2013 functions requires the deployment of elaborate gene regulatory networks (GRNs). GRNs are especially Received in revised form crucial at the onset of organ development where a few regulatory signals establish the different 27 July 2013 programs required for tissue organization. In the renal system primordium (the pro/mesonephros), Accepted 30 July 2013 important regulators have been identified but their hierarchical and regulatory organization is still Available online 3 August 2013 elusive. Here, we have performed a detailed analysis of the GRN underlying mouse pro/mesonephros Keywords: development. We find that a core regulatory subcircuit composed of Pax2/8, Gata3 and Lim1 turns on a Kidney development deeper layer of transcriptional regulators while activating effector genes responsible for cell signaling Transcription and tissue organization.
    [Show full text]
  • KLF2 Induced
    UvA-DARE (Digital Academic Repository) The transcription factor KLF2 in vascular biology Boon, R.A. Publication date 2008 Link to publication Citation for published version (APA): Boon, R. A. (2008). The transcription factor KLF2 in vascular biology. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:23 Sep 2021 Supplementary data: Genes induced by KLF2 Dekker et al. LocusLink Accession Gene Sequence Description Fold p-value ID number symbol change (FDR) 6654 AK022099 SOS1 cDNA FLJ12037 fis, clone HEMBB1001921. 100.00 5.9E-09 56999 AF086069 ADAMTS9 full length insert cDNA clone YZ35C05. 100.00 1.2E-09 6672 AF085934 SP100 full length insert cDNA clone YR57D07. 100.00 6.7E-13 9031 AF132602 BAZ1B Williams Syndrome critical region WS25 mRNA, partial sequence.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • NFX1, Its Isoforms and Roles in Biology, Disease and Cancer
    biology Review NFX1, Its Isoforms and Roles in Biology, Disease and Cancer Sreenivasulu Chintala and Rachel A. Katzenellenbogen * Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; [email protected] * Correspondence: [email protected] Simple Summary: The NFX1 gene, and its gene products, were identified over 30 years ago. Since then, the literature on NFX1 homologs and NFX1 itself has grown. In this review, we summarize the studies to-date on the NFX1 gene and its proteins across species and in humans, describing their role in gene regulation, embryonic development, cellular growth and differentiation, exogenous stress tolerance and metabolism, and an organism’s immune response. We also highlight the roles NFX1 has in human disease and in cancer, with a strong focus on its collaborative role with high-risk human papillomavirus infections that cause cervical and head and neck cancers. We believe this is the first comprehensive review of NFX1 and its functional significance in organisms ranging from yeast to human. Abstract: In 1989, two NFX1 protein products were identified as nuclear proteins with the ability to bind to X-box cis-elements. Since that publication, the NFX1 gene and its homologs have been identified, from yeast to humans. This review article summarizes what is known about the NFX1 gene across species. We describe the gene and protein motifs of NFX1 homologs and their functions in cellular biology, then turn to NFX1 in human biology and disease development. In that, we focus on more recent literature about NFX1 and its two splice variants protein products (NFX1-91 and NFX1- Citation: Chintala, S.; 123) that are expressed in epithelial cells.
    [Show full text]
  • Homeobox Gene Expression Profile in Human Hematopoietic Multipotent
    Leukemia (2003) 17, 1157–1163 & 2003 Nature Publishing Group All rights reserved 0887-6924/03 $25.00 www.nature.com/leu Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development T Taghon1, K Thys1, M De Smedt1, F Weerkamp2, FJT Staal2, J Plum1 and G Leclercq1 1Department of Clinical Chemistry, Microbiology and Immunology, Ghent University Hospital, Ghent, Belgium; and 2Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands Class I homeobox (HOX) genes comprise a large family of implicated in this transformation proces.14 The HOX-C locus transcription factors that have been implicated in normal and has been primarily implicated in lymphomas.15 malignant hematopoiesis. However, data on their expression or function during T-cell development is limited. Using degener- Hematopoietic cells are derived from stem cells that reside in ated RT-PCR and Affymetrix microarray analysis, we analyzed fetal liver (FL) in the embryo and in the adult bone marrow the expression pattern of this gene family in human multipotent (ABM), which have the unique ability to self-renew and thereby stem cells from fetal liver (FL) and adult bone marrow (ABM), provide a life-long supply of blood cells. T lymphocytes are a and in T-cell progenitors from child thymus. We show that FL specific type of hematopoietic cells that play a major role in the and ABM stem cells are similar in terms of HOX gene immune system. They develop through a well-defined order of expression, but significant differences were observed between differentiation steps in the thymus.16 Several transcription these two cell types and child thymocytes.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Angiogenic Patterning by STEEL, an Endothelial-Enriched Long
    Angiogenic patterning by STEEL, an endothelial- enriched long noncoding RNA H. S. Jeffrey Mana,b, Aravin N. Sukumara,b, Gabrielle C. Lamc,d, Paul J. Turgeonb,e, Matthew S. Yanb,f, Kyung Ha Kub,e, Michelle K. Dubinskya,b, J. J. David Hob,f, Jenny Jing Wangb,e, Sunit Dasg,h, Nora Mitchelli, Peter Oettgeni, Michael V. Seftonc,d,j, and Philip A. Marsdena,b,e,f,1 aInstitute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; bKeenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada; cDonnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E2, Canada; dInstitute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; eDepartment of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; fDepartment of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; gArthur and Sonia Labatt Brain Tumour Research Institute, Hospital for SickKids, University of Toronto, Toronto, ON M5G 1X8, Canada; hDivision of Neurosurgery and Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada; iDepartment of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115; and jDepartment of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada Edited by Napoleone Ferrara, University of California, San Diego, La Jolla, CA, and approved January 24, 2018 (received for review August 28, 2017) Endothelial cell (EC)-enriched protein coding genes, such as endothelial formation in vitro and blood vessel formation in vivo.
    [Show full text]
  • T-Box Genes in Limb Development and Disease
    Open Research Online The Open University’s repository of research publications and other research outputs T-box Genes in Limb Development and Disease Thesis How to cite: Rallis, Charalampos (2004). T-box Genes in Limb Development and Disease. PhD thesis The Open University. For guidance on citations see FAQs. c 2004 Charalampos Rallis Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.0000fa0b Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk T-box Genes in Limb Development and Disease Charalampos Rallis Thesis submitted for the degree of Doctor of Philosophy October 2004 Division of Developmental Biology National Institute for Medical Research Mill Hill London Open University ProQuest Number: C819643 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest C819643 Published by ProQuest LLO (2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLO. ProQuest LLO. 789 East Eisenhower Parkway P.Q.
    [Show full text]
  • Geminin Deletion Increases the Number of Fetal Hematopoietic Stem Cells by Affecting the Expression of Key Transcription Factors Dimitris Karamitros1,*, Alexandra L
    © 2015. Published by The Company of Biologists Ltd | Development (2015) 142, 70-81 doi:10.1242/dev.109454 RESEARCH ARTICLE STEM CELLS AND REGENERATION Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors Dimitris Karamitros1,*, Alexandra L. Patmanidi1,*, Panoraia Kotantaki1, Alexandre J. Potocnik2, Tomi Bähr-Ivacevic3, Vladimir Benes3, Zoi Lygerou4, Dimitris Kioussis2,‡ and Stavros Taraviras1,‡ ABSTRACT hematological stress and challenges (Beerman et al., 2010; Balancing stem cell self-renewal and initiation of lineage specification Cheshier et al., 2007). The prevailing model of hematopoiesis programs is essential for the development and homeostasis of the supports the existence of long-term hematopoietic stem cells (LT- hematopoietic system. We have specifically ablated geminin in the HSCs), which can provide long-term multipotent reconstitution of developing murine hematopoietic system and observed profound the hematopoietic system, and of short-term hematopoietic stem defects in the generation of mature blood cells, leading to embryonic cells (ST-HSCs) or multipotent progenitors (MPPs), with the lethality. Hematopoietic stem cells (HSCs) accumulated in the fetal potential to generate all blood lineages but with reduced self- liver following geminin ablation, while committed progenitors were renewal capacity (Luc et al., 2007; Mebius et al., 2001; Morrison reduced. Genome-wide transcriptome analysis identified key HSC et al., 1995; Randall et al., 1996; Traver et al., 2001). transcription factors as being upregulated upon geminin deletion, Even though it remains unclear how the balance between self- revealing a gene network linked with geminin that controls fetal renewal of HSCs and fate commitment is controlled and how a hematopoiesis.
    [Show full text]
  • C/Ebpα Is an Essential Collaborator in Hoxa9/Meis1-Mediated Leukemogenesis
    C/EBPα is an essential collaborator in Hoxa9/Meis1-mediated leukemogenesis Cailin Collinsa, Jingya Wanga, Hongzhi Miaoa, Joel Bronsteina, Humaira Nawera, Tao Xua, Maria Figueroaa, Andrew G. Munteana, and Jay L. Hessa,b,1 aDepartment of Pathology, University of Michigan, Ann Arbor, MI 48109; and bIndiana University School of Medicine, Indianapolis, IN 46202 Edited* by Louis M. Staudt, National Institutes of Health, Bethesda, MD, and approved May 19, 2014 (received for review February 12, 2014) Homeobox A9 (HOXA9) is a homeodomain-containing transcrip- with Hoxa9. In addition, C/EBP recognition motifs are enriched tion factor that plays a key role in hematopoietic stem cell expan- at Hoxa9 binding sites. sion and is commonly deregulated in human acute leukemias. A C/EBPα is a basic leucine-zipper transcription factor that plays variety of upstream genetic alterations in acute myeloid leukemia a critical role in lineage commitment during hematopoietic dif- −/− (AML) lead to overexpression of HOXA9, almost always in associ- ferentiation (18). Whereas Cebpa mice show complete loss of ation with overexpression of its cofactor meis homeobox 1 (MEIS1). the granulocytic compartment, recent work shows that loss of α A wide range of data suggests that HOXA9 and MEIS1 play a syn- C/EBP in adult HSCs leads to both an increase in the number ergistic causative role in AML, although the molecular mechanisms of functional HSCs and an increase in their proliferative and leading to transformation by HOXA9 and MEIS1 remain elusive. In repopulating capacity (19, 20). Conversely, CEBPA overexpression can promote transdifferentiation of a variety of fibroblastic cells to this study, we identify CCAAT/enhancer binding protein alpha (C/ the myeloid lineage and can induce monocytic differentiation in EBPα) as a critical collaborator required for Hoxa9/Meis1-mediated α MLL-fusion protein-mediated leukemias (21, 22).
    [Show full text]
  • Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association Between BMI and Adult-Onset Non- Atopic
    Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non- Atopic Asthma Ayoung Jeong 1,2, Medea Imboden 1,2, Akram Ghantous 3, Alexei Novoloaca 3, Anne-Elie Carsin 4,5,6, Manolis Kogevinas 4,5,6, Christian Schindler 1,2, Gianfranco Lovison 7, Zdenko Herceg 3, Cyrille Cuenin 3, Roel Vermeulen 8, Deborah Jarvis 9, André F. S. Amaral 9, Florian Kronenberg 10, Paolo Vineis 11,12 and Nicole Probst-Hensch 1,2,* 1 Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; [email protected] (A.J.); [email protected] (M.I.); [email protected] (C.S.) 2 Department of Public Health, University of Basel, 4001 Basel, Switzerland 3 International Agency for Research on Cancer, 69372 Lyon, France; [email protected] (A.G.); [email protected] (A.N.); [email protected] (Z.H.); [email protected] (C.C.) 4 ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain; [email protected] (A.-E.C.); [email protected] (M.K.) 5 Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain 6 CIBER Epidemiología y Salud Pública (CIBERESP), 08005 Barcelona, Spain 7 Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy; [email protected] 8 Environmental Epidemiology Division, Utrecht University, Institute for Risk Assessment Sciences, 3584CM Utrecht, Netherlands; [email protected] 9 Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College, SW3 6LR London, UK; [email protected] (D.J.); [email protected] (A.F.S.A.) 10 Division of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 11 MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, W2 1PG London, UK; [email protected] 12 Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy * Correspondence: [email protected]; Tel.: +41-61-284-8378 Int.
    [Show full text]