Current and Projected Water Use in the Texas Mining & Oil & Gas Industry

Total Page:16

File Type:pdf, Size:1020Kb

Current and Projected Water Use in the Texas Mining & Oil & Gas Industry June 2011 Current and Projected Water Use in the Texas Mining and Oil and Gas Industry Prepared for Texas Water Development Board Bureau of Economic Geology Scott W. Tinker, Director Jackson School of Geosciences The University of Texas at Austin Austin, Texas 78713-8924 Cover photo: Aggregate facility in Bexar County (courtesy of Google Earth) Prepared for Texas Water Development Board under Contract No. 0904830939 Jean-Philippe Nicot, P.E., P.G., Anna K. Hebel, Stephanie M. Ritter, Steven Walden1, Russ Baier1, Peter Galusky2, P.E., P.G., James Beach3, P.G., Richard Kyle4, P.G., Leigh Symank3, and Cari Breton June 2011 Bureau of Economic Geology Scott W. Tinker Director Jackson School of Geosciences The University of Texas at Austin Austin, Texas 78713-8924 1Steve Walden Consulting, Austin, TX 2Texerra, Midland, TX 3LBG-Guyton Associates, Austin, TX 4Department of Geological Sciences, The University of Texas at Austin, Austin, TX Table of Contents Table of Contents .......................................................................................................................... iii List of Figures ......................................................................................................................... vii List of Tables ........................................................................................................................ xiii Glossary and Abbreviations...........................................................................................................xv Acknowledgments....................................................................................................................... xvii 1 Executive Summary.................................................................................................................1 2 Introduction ............................................................................................................................9 2.1 Overview of Mining Activities in Texas and a High-Level Perspective on Water Use in the Industry ................................................................................................9 2.1.1 Mined Substances..........................................................................................................9 2.1.2 Mining Facilities..........................................................................................................11 2.1.3 Water-Use Overview...................................................................................................12 2.2 Overview of Recent Projections ....................................................................................13 3 Methodology and Sources of Information .............................................................................25 3.1 General Sources of Information.....................................................................................25 3.2 Definition of Mining Water Use for the Purpose in this Report....................................27 3.3 Methodology: Historical Water Use ..............................................................................28 3.3.1 Oil and Gas Industry ....................................................................................................28 3.3.1.1 Gas Shales and Other Tight Formations ........................................................... 28 3.3.1.2 Waterflooding and Drilling............................................................................... 30 3.3.2 Coal/Lignite .................................................................................................................31 3.3.3 Aggregates ...................................................................................................................32 3.3.4 Other Mined Substances ..............................................................................................35 3.3.5 Groundwater–Surface Water Split...............................................................................35 3.4 Methodology: Future Water Use ...................................................................................35 3.4.1.1 Gas Shales......................................................................................................... 38 3.4.1.2 Tight Formations............................................................................................... 42 3.4.1.3 Drilling and Waterflooding of Oil and Gas Reservoirs .................................... 43 3.4.1.4 Coal................................................................................................................... 43 3.4.1.5 Aggregates ........................................................................................................ 43 3.4.1.6 Other Mineral Commodities ............................................................................. 45 4 Current Water Use .................................................................................................................57 4.1 Shales and Tight Sands ..................................................................................................57 4.1.1 Location and Extent .....................................................................................................57 4.1.2 Gas (and Oil) Shales ....................................................................................................58 4.1.2.1 Barnett Shale..................................................................................................... 58 4.1.2.2 Haynesville and Bossier Shales ........................................................................ 59 4.1.2.3 Eagle Ford Shale............................................................................................... 60 4.1.2.4 Woodford, Pearsall, Bend, and Barnett-PB Shales........................................... 60 4.1.2.5 Conclusions on Gas Shales ............................................................................... 61 4.1.3 Tight Reservoirs...........................................................................................................85 4.1.3.1 Anadarko Basin................................................................................................. 85 4.1.3.2 East Texas Basin............................................................................................... 85 4.1.3.3 Fort Worth Basin............................................................................................... 86 iii 4.1.3.4 Permian Basin................................................................................................... 86 4.1.3.5 Maverick Basin and Gulf Coast........................................................................ 87 4.1.3.6 Conclusions on Tight Formations..................................................................... 88 4.2 Oil and Gas Drilling and Waterflooding......................................................................111 4.2.1 Waterflooding ............................................................................................................111 4.2.1.1 Information available before this study .......................................................... 111 4.2.1.2 Extrapolations from the RRC 1995 Survey .................................................... 112 4.2.1.3 Current Waterflooding Water Use.................................................................. 114 4.2.2 Drilling.......................................................................................................................115 4.3 Coal and Lignite...........................................................................................................134 4.4 Aggregates ...................................................................................................................143 4.4.1 General Aggregate Distribution.................................................................................143 4.4.2 Description of Mining Processes ...............................................................................143 4.4.2.1 Crushed Limestone Mining............................................................................. 143 4.4.2.2 Sand and Gravel Mining ................................................................................. 144 4.4.3 External Data Sets......................................................................................................145 4.4.3.1 TCEQ Central Registry................................................................................... 145 4.4.3.2 TCEQ Surface-Water Diversion..................................................................... 145 4.4.3.3 TCEQ TPDES................................................................................................. 146 4.4.3.4 TCEQ SWAP Database .................................................................................. 146 4.4.4 BEG Survey Results ..................................................................................................146 4.4.4.1 Survey of Facilities ......................................................................................... 146 4.4.4.2 Survey of GCDs.............................................................................................. 148 4.4.5 Historical and Current Aggregate Water Use ............................................................148 4.5 Other Nonfuel Minerals ...............................................................................................160 4.5.1 Dimension Stone........................................................................................................160 4.5.2 Industrial Sand...........................................................................................................161
Recommended publications
  • Please Pass the Salt: Using Oil Fields for the Disposal of Concentrate from Desalination Plants
    FINAL REPORT - June 2005 Please Pass the Salt: Using Oil Fields for the Disposal of Concentrate from Desalination Plants PRESSURE 8 0 % % 0 8 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 6 J l 0 C % % a 0 C 0 J + 6 + J J M 4 JJ J O 4 JJ J JJ J J J g 0 J JJ J J J J S JJ JJ J % % J J J J JJ J 1,000 J JJJJJJ J JJJ J J 0 JJJ J JJJJJ JJJJ J J J J 4 JJJ JJJJJ JJ JJ J J J JJJJJJJJJ JJJJJJJJJ JJ 2 JJJJ JJJ JJ J J 0 J JJJJJ JJ JJJJ J J JJ J JJJJJJJJ J J % % J J JJJJJJJJJJ J JJ 2,000 JJ JJJ JJJJJ J J JJJ J 0 J JJJ JJJJJJJJJ JJJ J J JJ 2 JJ JJJJ J J J J JJJ JJ J J JJ J J J JJJJJ J JJ J J J JJ JJJJJJJJ J JJ J J JJJ J J JJJ J J 3,000 JJ JJ JJ J J J J JJ JJ J JJ J J JJ J J J J J J JJ J J J J J J J J JJ J JJJJ J J J JJ J JJ JJ JJJ JJJ J J JJJ J J J J JJ J JJ J J J J 4,000 J J J JJ JJJJJ J J J J JJJJ J J J J J JJ JJJJJ J J JJJJ DEPTH J J J J JJ JJJJ 5,000 J JJJ JJ JJ 2 JJJJ 0 % J JJ % 0 J JJJJ 2 J J J J 80% N JJJ 80% a JJ JJJ 3 6,000 JJJ J + J J O 4 JJ C 0 % K JJJ % J 0 J JJ H S g 4 JJ J O 60% JJ JJ J 60% M 4 7,000 6 JJ 0 J JJ J J J % % J JJ J J J J J 0 J JJ JJJ J J J J 6 JJJJ J 40% J J J J J J J J J J JJ 40% J J J JJ J JJ JJ J JJ 8,000 J J J J J 8 J J J J J JJJJJJ J J J J J J J 0 J J J J JJ JJ J J J J % J JJ J J J J JJ J JJ JJ J % J J JJJ JJJJ JJJJ J JJ J J J JJJJ JJJ J J 0 J JJJJJJ JJJJJJ J J JJJ J J JJ JJJ JJJJJJJ J JJ J 8 J JJ JJJJ JJJJJJ J JJ JJJ J JJ 20% J J JJJ JJJJJJJJJJ JJ JJJJJJ J J J J J JJJ JJJJJJ JJJJJJJ JJJ J JJJJ J 20% J JJ JJJJ JJJJJJJJJJJJJ J JJJ JJJ JJJJ J JJ JJJJJ JJJJJJJJJJJJJJJJJJJ JJJJJJJ J J J JJJJJJJJJJJJJJJJJJJJJJJJ JJJJJJJJJJ
    [Show full text]
  • Water Workforce Renewing
    RENEWING THE WATER WORKFORCE Improving water infrastructure and creating a pipeline to opportunity JOSEPH KANE AND ADIE TOMER, JUNE 2018 BROOKINGS METROPOLITAN POLICY PROGRAM 2 TABLE OF CONTENTS Summary 4 Introduction 6 Background 8 Methodology 12 Findings 15 Implications 34 Recommendations 39 Conclusion 50 Appendix A: Water Workforce methodology 60 RENEWING THE WATER WORKFORCE 3 SUMMARY s the U.S. economy continues to grow, many communities are struggling to translate this growth into more equitable and inclusive employment opportunities. Simultaneously, many of the Anation’s water infrastructure assets are in urgent need of repair, maintenance, and restoration. Yet the workers capable of carrying out these efforts are in short supply due to an aging workforce eligible for retirement and the lack of a pipeline for new talent. However, addressing these two challenges operating, and governing U.S. water together offers an enormous infrastructure and infrastructure, spanning a variety of economic opportunity. Constructing, operating, industries and regions. Water utilities employ designing, and governing water infrastructure many workers, but multiple other industries systems demands a skilled workforce, and and establishments, including engineering firms hiring a diverse workforce can support greater and construction contractors, are essential to economic mobility. To unlock this opportunity, the water sector too. Collectively, the water local, state, and national leaders must work workforce fills 212 different occupations—from together to better understand current workforce positions in the skilled trades like electricians challenges and develop new techniques to hire, and technicians to financial, administrative, train, and retain water workers. and management positions—that are found everywhere, from big metropolitan markets to By analyzing occupational employment data, smaller rural areas.
    [Show full text]
  • BEYOND the STATUS QUO: 2015 EQB Water Policy Report
    BEYOND THE STATUS QUO: 2015 EQB Water Policy Report LAKE ST. CROIX TABLE OF CONTENTS Introduction . 4 Health Equity and Water. 5 GOAL #1: Manage Water Resources to Meet Increasing Demands . .6 GOAL #2: Manage Our Built Environment to Protect Water . 14 GOAL #3: Increase and Maintain Living Cover Across Watersheds .. 20 GOAL #4: Ensure We Are Resilient to Extreme Rainfall . .28 Legislative Charge The Environmental Quality Board is mandated to produce a five year water Contaminants of Emerging Concern . .34 policy report pursuant to Minnesota Statutes, sections 103A .204 and 103A .43 . Minnesota’s Water Technology Industry . 36 This report was prepared by the Environmental Quality Board with the Board More Information . .43 of Water and Soil Resources, Department of Agriculture, Department of Employment and Economic Development, Department of Health, Department Appendices available online: of Natural Resources, Department of Transportation, Metropolitan Council, • 2015 Groundwater Monitoring Status Report and Pollution Control Agency . • Five-Year Assessment of Water Quality Degradation Trends and Prevention Efforts Edited by Mary Hoff • Minnesota’s Water Industry Economic Profile Graphic Design by Paula Bohte • The Agricultural BMP Handbook for Minnesota The total cost of preparing this report was $76,000 • Water Availability Assessment Report 2 Beyond the Status Quo: 2015 EQB Water Policy Report Minnesota is home to more than 10,000 lakes, 100,000 miles of rivers and streams, and abundant groundwater resources. However, many of these waters are not clean enough. In 2015, we took a major step toward improving our water by enacting a law that protects water quality by requiring buffers on more than 100,000 acres of land adjacent to water.
    [Show full text]
  • Municipal and Industrial Water Supply ! I
    APPENDIXES TO THE MAIN REPORT LOWER COLORADO RIDlON APPENDIX I- HISTORY OF STUDY APPENDIX II - THE HEGION APPENDIX III - LEGAL AND INSTITUTIONAL ENVIRONMENT APPENDIX IV - ECONOMIC BASE AND PROJECTIONS APPENDIX V- WATER RESOURCES APPENDIX VI - LAND RESOURCES AND USE APPENDIX VII - MINERAL RESOURCES APPENDIX VIII - WATERSHED MANAGEMENT APPENDIX IX - FLOOD CONTROL APPENDIX X- IRRIGATION AND DRAINAGE APPENDIX XI - MUNICIPAL AND INDUSTRIAL WATER APPENDIX XII - RECREATION APPENDIX XIII - FISH AND WILDLIFE APPENDIX XIV - ELECTRIC POWER APPENDIX XV - WATER QUALITY, POLLUTION CONTROL, AND HEALTH FACTORS APPENDIX XVI - SHORELINE PROTECTION AND DEVELOPMENT (NOT APPLICABLE) APPENDIX XVII - NAVIGATION (NOT APPLICABLE) APPENDIX XVIII - GENERAL PROGRAM AND ALTERNATIVES IIII/iliIII/lllillllIIII1I111IIIII1II11II!IIIII LCR[)1855 LOWER COLORADO REGION COMPREHENSIVE FRAMEWORK STUDY APPENDIX XI MUNICIPAL AND INDUSTRIAL WATER SUPPLY ! I This report of the Lower Colorado Region Framework Study State­ Federal Interagency Group was prepared at field-level and presents the water and related land resources of the Lower Colorado Region. This report is subject to review by the interested Federal agencies at the departmental level, by the Governors of the affected States, and by the Water Resources Council prior to its transmittal to the Congress for its consideration. JUNE 1971 --"---- INDEX MAP EXPLANATION ---- Lower Colorado Region boundary --- Subregion boundary CD Lower Moin Stem o Little Colorado ® Gila .. ... .... Lower Colorado Basin boundary ~ Existing dam o"d reservoir 18:&'41 Existing dam o"d Intermittent lake COMPREHENSIVE FRAMEWORK STUDY LOWER COLORADO REGION - HYDROLOGIC GENERAL LOCATION MAP MAP NO. 1019-314-45 " SCALE· OF MILES " This appendix prepared by the MUNICIPAL AND INDUSTRIAL WATER SUPPLY WORKGROUP of the LOWER COLORADO REGION STATE-FEDERAL INTERAGENCY GROUP for the PACIFIC SOUTHWEST INTERAGENCY COMMITTEE WATER RESOURCES COUNCIL Workgroup Members Robert H.
    [Show full text]
  • Creating a Water and Wastewater Educational Program with Incorporated Experiential Training
    AC 2012-5150: CREATING A WATER AND WASTEWATER EDUCATIONAL PROGRAM WITH INCORPORATED EXPERIENTIAL TRAINING Mr. Joseph Lee Gutenson, Western Kentucky University Joseph Gutenson is an Environmental Support Specialist with the Center for Water Resource Studies at Western Kentucky University. During his brief professional career he has participated in the construction of TMDL reports for the Panther Creek and Long Falls Creek Watersheds and site reconnaissance for the Bacon Creek TMDL. He has also participated in research related to the water industries workforce and serves as a presence for the Water Training Institute’s recruitment efforts. His present work includes aiding in the creation of a software packaged, created with funding from the Department of Homeland Security (DHS), that will assist drinking water utilities in decontaminating there system after a natural or intentional contamination event. He graduated in December of 2010, magna cum laude, from Western Kentucky University with a degree in Geography, with an emphasis in Sustainable Development and a minor in Economics. Joseph is currently taking graduate coursework at Western Kentucky University. Ms. Jana Fattic, Western Kentucky University Dr. Andrew N.S. Ernest, Western Kentucky University c American Society for Engineering Education, 2012 Creating a Water and Wastewater Educational Program with Incorporated Experiential Training Abstract The EPA requires in the Final Guidelines for the Certification and Recertification of the Operators of Community and Nontransient Noncommunity Public Water Systems Notice (1999) that states and US territories establish some sort of experiential or on-the-job training requirement for incumbent water or wastewater operators before they can legally become licensed professionals.
    [Show full text]
  • Henderson Tourism Pages
    Time for a Change, Escape to Downtown Henderson, A National Register Historic District Henderson A Texas Main Street City Attractions: Area Attractions: Come join the excitement of what visitors see Learn why there is an odor in natural gas! The and say while shopping in the National Regis- London Museum, located in New London ter Downtown Historic Square. (Historic chronicles the town’s history and tragedy of the Downtown Walking Tour Maps are available.) worst school explosion in history. The London Henderson has the most picturesque downtown Museum Tea Room also features an old time square in East Texas. Upscale shopping, eat- soda fountain. The museum is open year around, eries, antiques, floral, dolls, custom jewelry and 9 a.m.-4p.m. Monday-Friday, and the tea room more are found in our downtown! Henderson is open 11 a.m.-2 p.m. Monday-Friday, and after also has a variety of restaurants and shopping on hours and Saturday by appointment. For ap- Highway U.S. 79/259, the main artery though pointment call 903-895-4602. ($3.00 admission) town. Enjoy spending a few days in our area. The Gaston Museum is located just 6.2 miles History comes alive at the Depot Museum. from Henderson on Hwy 64. You are invited to Visit the nine buildings, saw mill and oil derrick stop and step back in time to the 1930’s. Visit on the five acre complex located just a few blocks life in the “East Texas Oil Fields” which was once away from the square at 514 North High Street.
    [Show full text]
  • Higher Education in the Water Sector: a Global Overview
    UNU-INWEH REPORT SERIES 07 Higher Education in the Water Sector: A Global Overview Colin Mayfield www.inweh.unu.edu About UNU-INWEH UNU-INWEH’s mission is to help resolve pressing water challenges that are of concern to the United Nations, its Member States, and their people, through critical analysis and synthesis of existing bodies of scientific discovery; targeted research that identifies emerging policy issues; application of on-the-ground scalable science-based solutions to water issues; and global outreach. UNU-INWEH carries out its work in cooperation with the network of other research institutions, international organisations and individual scholars throughout the world. UNU-INWEH is an integral part of the United Nations University (UNU) – an academic arm of the UN, which includes 13 institutes and programmes located in 12 countries around the world, and dealing with various issues of development. UNU-INWEH was established, as a public service agency and a subsidiary body of the UNU, in 1996. Its operations are secured through long-term host-country and core-funding agreements with the Government of Canada. The Institute is located in Hamilton, Canada, and its facilities are supported by McMaster University. About UNU-INWEH Report Series UNU-INWEH Reports normally address global water issues, gaps and challenges, and range from original research on specific subject to synthesis or critical review and analysis of a problem of global nature and significance. Reports are published by UNU-INWEH staff, in collaboration with partners, as / when applicable. Each report is internally and externally peer-reviewed. UNU-INWEH Reports are an open access publication series, available from the Institute’s web site and in hard copies.
    [Show full text]
  • STATE of the WATER INDUSTRY REPORT 2016 State of the Water Industry Report
    2016 Ideal crop marks AWWA STATE OF THE WATER INDUSTRY REPORT 2016 State of the Water Industry Report Established in 1881, the American Water Works Association is the largest nonprofit, scientific, and educational association dedicated to providing solutions to manage the world’s most important resource – water. With over 50,000 members and 5,000 volunteers, AWWA provides solutions to improve public health, protect the environment, strengthen the economy, and enhance our quality of life. Contents EXECUTIVE SUMMARY .......................................................................................................................................... 2 PART 1 –PURPOSE AND METHODOLOGY ........................................................................................................ 4 Purpose .................................................................................................................................................................... 4 Methodology ........................................................................................................................................................... 5 PART 2 - STATE OF THE WATER INDUSTRY ................................................................................................... 11 Background ........................................................................................................................................................... 11 State of the Water Industry ................................................................................................................................
    [Show full text]
  • Innovations for Water and Development
    UNESCO-IHE Institute for Water Education is the largest international graduate water education facility in the world and it is based in Delft, the Netherlands. The Institute confers fully accredited MSc degrees, and PhD degrees in collaboration with partners. Over 14,500 water professionals from more than 160 mainly developing countries and countries in transition have been educated at the Institute. The mission of UNESCO-IHE is to contribute to the education and training of professionals, to expand the knowledge base through research and to build the capacity of sector organizations, knowledge centres and other institutions active in the Innovations fields of water, the environment and infrastructure in developing countries and countries in transition. for Water and ISBN 978-1-56581-231-4 Development 52250 9 781565 812314 UNESCO-IHE envisions a world in which people manage their water and environmental resources in a sustainable manner, and in which all sectors of society, particularly the poor, can enjoy the benefits of basic services. Realizing that present and future water- related problems require out of the box thinking, business as unusual approaches, changes of paradigms, and inventive and unconventional solutions leading to the translation of inventions into innovative products, services, processes and new activities that are introduced to the real world, UNESCO-IHE is increasingly committed to innovations concerning all three pillars of its operations, namely, research, education and capacity development. Our innovations are often of a technological nature, but their adoption also has social, economic, environmental, governance, institutional and political dimensions. Research- based innovations originate from the six research themes of UNESCO-IHE that are well aligned with relevant international and national science programmes.
    [Show full text]
  • Energy-Water Nexus: the Water Sector's Energy
    Energy-Water Nexus: The Water Sector’s Energy Use Claudia Copeland Specialist in Resources and Environmental Policy Nicole T. Carter Acting Section Research Manager January 24, 2017 Congressional Research Service 7-5700 www.crs.gov R43200 Energy-Water Nexus: The Water Sector’s Energy Use Summary Water and energy are resources that are reciprocally and mutually linked, because meeting energy needs requires water, often in large quantities, for mining, fuel production, hydropower, and power plant cooling, and energy is needed for pumping, treatment, and distribution of water and for collection, treatment, and discharge of wastewater. This interrelationship is often referred to as the energy-water nexus, or the water-energy nexus. There is growing recognition that “saving water saves energy.” Energy efficiency initiatives offer opportunities for delivering significant water savings, and likewise, water efficiency initiatives offer opportunities for delivering significant energy savings. In addition, saving water also reduces carbon emissions by saving energy otherwise generated to move and treat water. This report provides background on energy for facilities that treat and deliver water to end users and also dispose of and discharge wastewater. Energy use for water is a function of many variables, including water source (surface water pumping typically requires less energy than groundwater pumping), treatment (high ambient quality raw water requires less treatment than brackish or seawater), intended end-use, distribution (water pumped long distances requires more energy), amount of water loss in the system through leakage and evaporation, and level of wastewater treatment (stringency of water quality regulations to meet discharge standards). Likewise, the intensity of energy use of water, which is the relative amount of energy needed for a task such as pumping water, varies depending on characteristics such as topography (affecting groundwater recharge), climate, seasonal temperature, and rainfall.
    [Show full text]
  • America's Water Sector Workforce Initiative: a Call to Action
    America’s Water Sector Workforce Initiative: A Call to Action The water sector workforce is the front line of public health and environmental protection and is vital to sustaining our critical water infrastructure investments. Working with federal agencies and state, local, and tribal partners, we will take actions that encourage innovative workforce practices at water systems, highlight the value water protection specialists provide every day, and help make water a career of choice through education and sustained public outreach. — Andrew Wheeler, Administrator, U.S. EPA, October 2020 CONTENTS Foreword .......................................................................................................................................................1 Introduction ..................................................................................................................................................2 1: Provide Federal Leadership to Create National Momentum and Coordinate Efforts .....................................8 1.1 A History of Successful Collaborations Within the Federal Government ..........................................................8 1.2 Federal Agency Collaboration to Support the Water Workforce ......................................................................8 2: Partner to Build the Water Workforce of the Future .................................................................................. 16 2.1 EPA’s Workforce Collaboration with Associations and Utilities ....................................................................
    [Show full text]
  • Promoting Entry to Career Pathways in the Drinking Water and Wastewater Sector
    Promoting Entry to Career Pathways in the Drinking Water and Wastewater Sector A Report by Madeline Snow Lowell Center for Sustainable Production Lowell Center for Sustainable Production University of Massachusetts Lowell University of Massachusetts Lowell and The Massachusetts Workforce Alliance Deborah Mutschler Massachusetts Workforce Alliance M A y 2012 Funded by: “Maintaining a well-trained, high caliber workforce is essential but no small challenge in the era of tight budgets, increasingly sophisticated facilities, under-appreciation of the industry and profession, and graying of staff.” —New England Interstate Water Pollution Control Commission, special edition, Keeping the Plants in Good Hands, Interstate Water Report, January 2005 “Everyone’s time and resources are limited, but if each of us “does our part” in our professional spheres of influence, we can recruit, develop and retain a competent, motivated, professional workforce to ensure a bright future for the drinking water and wastewater professions.” —Chip Mackey, New Hampshire Department of Environmental Services, former Chair of NEWWA’s Operator Certification Committee, and Incoming President of the Association of Boards of Certification SkillWorks Program Officer Patricia Maguire Authors Madeline Snow Lowell Center for Sustainable Production, University of Massachusetts Lowell [email protected] Deborah Mutschler Massachusetts Workforce Alliance [email protected] Table of Contents Executive Summary 1 I. Introduction 2 II. Overview of Issues 3 Aging Infrastructure
    [Show full text]