Mammalia/Primates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Browsing and Non-Browsing Extant and Extinct Giraffids Evidence From
Browsing and non-browsing extant and extinct giraffids Evidence from dental microwear textural analysis Gildas Merceron, Marc Colyn, Denis Geraads To cite this version: Gildas Merceron, Marc Colyn, Denis Geraads. Browsing and non-browsing extant and extinct giraffids Evidence from dental microwear textural analysis. Palaeogeography, Palaeoclimatology, Palaeoecol- ogy, Elsevier, 2018, 505, pp.128-139. 10.1016/j.palaeo.2018.05.036. hal-01834854v2 HAL Id: hal-01834854 https://hal-univ-rennes1.archives-ouvertes.fr/hal-01834854v2 Submitted on 6 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Browsing and non-browsing extant and extinct giraffids: evidence from dental microwear 2 textural analysis. 3 4 Gildas MERCERON1, Marc COLYN2, Denis GERAADS3 5 6 1 Palevoprim (UMR 7262, CNRS & Université de Poitiers, France) 7 2 ECOBIO (UMR 6553, CNRS & Université de Rennes 1, Station Biologique de Paimpont, 8 France) 9 3 CR2P (UMR 7207, Sorbonne Universités, MNHN, CNRS, UPMC, France) 10 11 1Corresponding author: [email protected] 12 13 Abstract: 14 15 Today, the family Giraffidae is restricted to two genera endemic to the African 16 continent, Okapia and Giraffa, but, with over ten genera and dozens of species, it was far 17 more diverse in the Old World during the late Miocene. -
Biodiversity Surveys in the Forest Reserves of the Uluguru Mountains
Biodiversity surveys in the Forest Reserves of the Uluguru Mountains Part II: Descriptions of the biodiversity of individual Forest Reserves Nike Doggart Jon Lovett, Boniface Mhoro, Jacob Kiure and Neil Burgess Biodiversity surveys in the Forest Reserves of the Uluguru Mountains Part II: Descriptions of the biodiversity of individual Forest Reserves Nike Doggart Jon Lovett, Boniface Mhoro, Jacob Kiure and Neil Burgess Dar es Salaam 2004 A Report for: The Wildlife Conservation Society of Tanzania (WCST) The Uluguru Mountains Biodiversity Conservation Project in collaboration with the Uluguru Mountains Agricultural Development Project The Regional Natural Resources Office, and the Regional Catchment Forest Project With support from the Tanzania Forest Conservation Group TABLE OF CONTENTS PART II 1) Introduction to Part II ............................................................................................................... 4 2) Forest Reserve descriptions ..................................................................................................... 7 2.1 Bunduki I and III Catchment Forest Reserves .................................................................... 7 2.2 Kasanga Local Authority Forest Reserve ......................................................................... 14 2.3 Kimboza Catchment Forest Reserve ................................................................................ 23 2.4 Konga Local Authority Forest Reserve ............................................................................ -
OIK-02296 Ferger, SW, Dulle, HI, Schleuning, M
Oikos OIK-02296 Ferger, S. W., Dulle, H. I., Schleuning, M. and Böhning- Gaese, K: 2015. Frugivore diversity increases frugivory rates along a large elevational gradient. – Oikos doi: 10.1111/oik.02296 Appendix 1. Map of Mt Kilimanjaro showing the location of the 64 study plots in 13 different habitat types. Appendix 2. List of all 187 bird species that were observed, their average body mass and their feeding guild. Appendix 3. Effect of bird abundance/richness and fruit color on the proportion of pecked vs. unpecked artificial fruits without controlling for vertical vegetation heterogeneity and natural fruit abundance. Appendix 4. Effect of vertical vegetation heterogeneity, natural fruit abundance and fruit color on the proportion of pecked versus unpecked artificial fruits. 1 Appendix 1 Map of Mount Kilimanjaro showing the location of the 64 study plots in 13 different habitat types. The near-natural habitat types are savannah (sav), lower montane forest (flm), Ocotea forest (foc), Podocarpus forest (fpo), Erica forest (fer) and Helichrysum scrub (hel). The disturbed habitat types are maize field (mai), Chagga homegarden (hom), shaded coffee plantation (cof), unshaded coffee plantation (sun), grassland (gra), disturbed Ocotea forest (fod) and disturbed Podocarpus forest (fpd). Each habitat type is represented by five replicate plots, except for the unshaded coffee plantation, which is covered by four replicate plots. One of these five (respectively four) plots per habitat type is used as ‘focal plot’ (yellow squares) for especially labor-intensive studies like the artificial fruits experiment presented in this study. As background map, we used the National Geographic World Map developed by National Geographic and Esri (<http://goto.arcgisonline.com/maps/NatGeo_World_Map>). -
Population Solver
Population Solver AiS Challenge Final Report April 3, 2002 Team Members: Matt Higgins Josh Neidigh Levi Valdez Executive Summary Populations of different species of animals are very important to many people in the United States. Some species of animals in the US are doing very well, while others are on the verge of extinction or have extremely small and unhealthy populations. Animals like the White Tail Deer and Snow Geese are doing very well, but others like the Californian Condor and Whooping Crane are not doing that great. Game populations are very important to game managers; they try to get all species at a reasonable population that is not too great nor to low. These people try to find different management plans that will work effectively and efficiently, both economically and environmentally. They also need to know what non-native species would harm native ones, and what non-invasive species would be a plus in our society. With some revision and adaptation this program could be of use to Game Managers and Biologists around the world to find good management plans and predict future populations. In the early 1960’s, the New Mexico Department of Game and Fish and the New Mexico State Game Commission began a program of exotic big game introduction to increase and diversify hunting opportunities. Habitats with low potential for native big game were targeted for exotic introduction. Over a nine-year period beginning in 1969, gemsbok (Oryx gazella) or oryx, a native of Africa, were released into creosote and mesquite brush land areas on the White Sands Missile Range. -
Galictis Cuja Molina, 1782) As Host of Dioctophyme Renale Goeze, 1782 Furão Pequeno (Galictis Cuja Molina, 1782) Como Hospedeiro De Dioctophyme Renale Goeze, 1782
ANIMAL PARASITOLOGY / SCIENTIFIC COMMUNICATION DOI: 10.1590/1808-1657000312016 Lesser Grison (Galictis cuja Molina, 1782) as host of Dioctophyme renale Goeze, 1782 Furão Pequeno (Galictis cuja Molina, 1782) como hospedeiro de Dioctophyme renale Goeze, 1782 Daniela Pedrassani1*, Mayana Worm1, Jéssica Drechmer1, Margareth Cristina Iazzetti Santos1 ABSTRACT: The Dioctophyme renale is a helminth parasite RESUMO: O Dioctophyme renale é um helminto parasita renal of the kidney usually seen in domestic and wild carnivores and observado normalmente em carnívoros domésticos e silvestres e rarely in human beings. This is a report about the parasitism excepcionalmente em seres humanos. Relata-se o parasitismo por D. of D. renale found in the kidney of two roadkill lesser grisons renale em rim de dois furões pequenos (Galictis cuja) encontrados (Galictis cuja) in the North of the state of Santa Catarina, mortos por atropelamento no Norte do estado de Santa Catarina, Brazil. The report of this parasitism in this species is important Brasil. Relatar esse parasitismo nessa espécie é importante, para to complement the records about this native carnivore as a que se possam somar dados relativos a participação deste carnívoro contributor in the epidemiologic chain while host/disseminator nativo na cadeia epidemiológica como hospedeiro/ veiculador desse of this helminth with zoonotic potential. helminto com potencial zoonótico. KEYWORDS: Dioctophyma; wild animal; mustelids; roadkill; PALAVRAS-CHAVE: Dioctophyma; animal silvestre; mustelí- kidney parasitism. deo; atropelamento em rodovia; parasitismo renal. 1Universidade do Contestado (UnC) – Canoinhas (SC), Brazil. *Corresponding author: [email protected] Received on: 04/22/2016. Accepted on: 09/12/2017 Arq. Inst. Biol., v.84, 1-4, e0312016, 2017 1 D. -
The Role of Agriculture in Avian Conservation in the Taita Hills, Kenya
This is a repository copy of Birds in the matrix : The role of agriculture in avian conservation in the Taita Hills, Kenya. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/129736/ Version: Accepted Version Article: Norfolk, Olivia, Jung, Martin, Platts, Philip J. orcid.org/0000-0002-0153-0121 et al. (3 more authors) (2017) Birds in the matrix : The role of agriculture in avian conservation in the Taita Hills, Kenya. African Journal of Ecology. pp. 530-540. ISSN 0141-6707 https://doi.org/10.1111/aje.12383 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Birds in the matrix: the role of agriculture in avian conservation in the Taita Hills, Kenya Norfolk, O.1,2, Jung, M.3, Platts, P.J.4, Malaki, P.5, Odeny, D6. and Marchant, R.1 1. York Institute for Tropical Ecosystems, Environment Department, University of York, Heslington, York, UK, YO10 5NG 2. -
Final Report
The Rufford Foundation Final Report Congratulations on the completion of your project that was supported by The Rufford Foundation. We ask all grant recipients to complete a Final Report Form that helps us to gauge the success of our grant giving. The Final Report must be sent in word format and not PDF format or any other format. We understand that projects often do not follow the predicted course but knowledge of your experiences is valuable to us and others who may be undertaking similar work. Please be as honest as you can in answering the questions – remember that negative experiences are just as valuable as positive ones if they help others to learn from them. Please complete the form in English and be as clear and concise as you can. Please note that the information may be edited for clarity. We will ask for further information if required. If you have any other materials produced by the project, particularly a few relevant photographs, please send these to us separately. Please submit your final report to [email protected]. Thank you for your help. Josh Cole, Grants Director Grant Recipient Details Your name Prosper Umuntunundi ‘Non-primate mammalian wildlife abundance Project title and distribution in Africa’s youngest national park — Gishwati - Mukura NP in Rwanda’. RSG reference 20936-1 Reporting period 13/1/2017-13/1/2018 Amount of grant £4962 Your email address [email protected] Date of this report 15th May 2018 1. Please indicate the level of achievement of the project’s original objectives and include any relevant comments on factors affecting this. -
Notes on the Distribution, Status, and Research Priorities of Little-Known Small Carnivores in Brazil
Notes on the distribution, status, and research priorities of little-known small carnivores in Brazil Tadeu G. de OLIVEIRA Abstract Ten species of small carnivores occur in Brazil, including four procyonids, four mustelids (excluding otters), and two mephitids. On the IUCN Red List of Threatened Species eight are assessed as Least Concern and two as Data Deficient. The state of knowledge of small carnivores is low compared to other carnivores: they are among the least known of all mammals in Brazil. The current delineation of Bassaricyon and Galictis congeners appears suspect and not based on credible information. Research needs include understanding dis- tributions, ecology and significant evolutionary units, with emphasis on theAmazon Weasel Mustela africana. Keywords: Amazon weasel, Data Deficient, Olingo, Crab-eating Raccoon, Hog-nosed Skunk Notas sobre la distribución, estado y prioridades de investigación de los pequeños carnívoros de Brasil Resumen En Brasil ocurren diez especies de pequeños carnívoros, incluyendo cuatro prociónidos, cuatro mustélidos (excluyendo nutrias) y dos mephitidos. De acuerdo a la Lista Roja de Especies Amenazadas de la UICN, ocho especies son evaluadas como de Baja Preocupación (LC) y dos son consideradas Deficientes de Datos (DD). El estado de conocimiento de los pequeños carnívoros es bajo comparado con otros carnívoros y se encuentran entre los mamíferos menos conocidos de Brasil. La delineación congenérica actual de Bassaricyon y Galictis parece sospechosa y no basada en información confiable. Las necesidades de investigación incluyen el entendimiento de las distribuciones, ecología y unidades evolutivas significativas, con énfasis en la ComadrejaAmazónica Mustela africana. Palabras clave: Comadreja Amazónica, Deficiente de Datos, Mapache Cangrejero, Olingo, Zorrillo Introduction 1999), but recently has been recognised (e.g. -
South Africa and Namibia, 20 July - 12 August 2017
South Africa and Namibia, 20 July - 12 August 2017. VLADIMIR DINETS This trip was an introduction to Africa for my wife and daughter; the latter was two and a half years old at the time and enjoyed it a lot. We had three weeks to kill while a container with our stuff was traveling from New Jersey to our new home in Okinawa. We started from Cape Town, drove east to Hermanus and then north to Oranjemund, flew to Windhoek, briefly explored a few locations up to Etosha, returned to Windhoek and spent one day and two nights in Johannesburg. In 2017, Cape Town area, Namaqualand and Namibia were experiencing a major drought. Full moon was on August 7; that made finding small mammals difficult during the Namibian part of the trip. I had six Sherman traps and caught only twelve rodents of two species (two pygmy mice in the far south and Namaqua rock rats almost everywhere else). Bats seemed absent with few exceptions. I saw almost a hundred species, all but four of which I had seen before (see my 2008 trip report), and removed a few species from my “better view much desired” list. South Africa Simon’s Town is a convenient base for exploring the area; M4 south from it is a good place to look for chacma baboons, while humpback whales are often feeding offshore (we saw one, and heard a few while scuba diving). Watch for South African fur seals, too. Four-striped grass mice (locally called “field mice”) were abundant in wooded parts of penguin colonies. -