On the Equivalence of Coalitional and Individual Strategy$Proofness
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture 4 Rationalizability & Nash Equilibrium Road
Lecture 4 Rationalizability & Nash Equilibrium 14.12 Game Theory Muhamet Yildiz Road Map 1. Strategies – completed 2. Quiz 3. Dominance 4. Dominant-strategy equilibrium 5. Rationalizability 6. Nash Equilibrium 1 Strategy A strategy of a player is a complete contingent-plan, determining which action he will take at each information set he is to move (including the information sets that will not be reached according to this strategy). Matching pennies with perfect information 2’s Strategies: HH = Head if 1 plays Head, 1 Head if 1 plays Tail; HT = Head if 1 plays Head, Head Tail Tail if 1 plays Tail; 2 TH = Tail if 1 plays Head, 2 Head if 1 plays Tail; head tail head tail TT = Tail if 1 plays Head, Tail if 1 plays Tail. (-1,1) (1,-1) (1,-1) (-1,1) 2 Matching pennies with perfect information 2 1 HH HT TH TT Head Tail Matching pennies with Imperfect information 1 2 1 Head Tail Head Tail 2 Head (-1,1) (1,-1) head tail head tail Tail (1,-1) (-1,1) (-1,1) (1,-1) (1,-1) (-1,1) 3 A game with nature Left (5, 0) 1 Head 1/2 Right (2, 2) Nature (3, 3) 1/2 Left Tail 2 Right (0, -5) Mixed Strategy Definition: A mixed strategy of a player is a probability distribution over the set of his strategies. Pure strategies: Si = {si1,si2,…,sik} σ → A mixed strategy: i: S [0,1] s.t. σ σ σ i(si1) + i(si2) + … + i(sik) = 1. If the other players play s-i =(s1,…, si-1,si+1,…,sn), then σ the expected utility of playing i is σ σ σ i(si1)ui(si1,s-i) + i(si2)ui(si2,s-i) + … + i(sik)ui(sik,s-i). -
California Institute of Technology
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors - Main DIVISION OF THE HUM ANITIES AND SO CI AL SCIENCES CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA 91125 IMPLEMENTATION THEORY Thomas R. Palfrey � < a: 0 1891 u. "')/,.. () SOCIAL SCIENCE WORKING PAPER 912 September 1995 Implementation Theory Thomas R. Palfrey Abstract This surveys the branch of implementation theory initiated by Maskin (1977). Results for both complete and incomplete information environments are covered. JEL classification numbers: 025, 026 Key words: Implementation Theory, Mechanism Design, Game Theory, Social Choice Implementation Theory* Thomas R. Palfrey 1 Introduction Implementation theory is an area of research in economic theory that rigorously investi gates the correspondence between normative goals and institutions designed to achieve {implement) those goals. More precisely, given a normative goal or welfare criterion for a particular class of allocation pro blems (or domain of environments) it formally char acterizes organizational mechanisms that will guarantee outcomes consistent with that goal, assuming the outcomes of any such mechanism arise from some specification of equilibrium behavior. The approaches to this problem to date lie in the general domain of game theory because, as a matter of definition in the implementation theory litera ture, an institution is modelled as a mechanism, which is essentially a non-cooperative game. Moreover, the specific models of equilibrium behavior -
A New Approach to Stable Matching Problems
August1 989 Report No. STAN-CS-89- 1275 A New Approach to Stable Matching Problems bY Ashok Subramanian Department of Computer Science Stanford University Stanford, California 94305 3 DISTRIBUTION /AVAILABILITY OF REPORT Unrestricted: Distribution Unlimited GANIZATION 1 1 TITLE (Include Securrty Clamfrcat!on) A New Approach to Stable Matching Problems 12 PERSONAL AUTHOR(S) Ashok Subramanian 13a TYPE OF REPORT 13b TtME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT FROM TO August 1989 34 16 SUPPLEMENTARY NOTATION 17 COSATI CODES 18 SUBJECT TERMS (Contrnue on reverse If necessary and jdentrfy by block number) FIELD GROUP SUB-GROUP 19 ABSTRACT (Continue on reverse if necessary and identrfy by block number) Abstract. We show that Stable Matching problems are the same as problems about stable config- urations of X-networks. Consequences include easy proofs of old theorems, a new simple algorithm for finding a stable matching, an understanding of the difference between Stable Marriage and Stable Roommates, NTcompleteness of Three-party Stable Marriage, CC-completeness of several Stable Matching problems, and a fast parallel reduction from the Stable Marriage problem to the ’ Assignment problem. 20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION q UNCLASSIFIED/UNLIMITED 0 SAME AS Rf’T 0 DTIC USERS 22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL Ernst Mavr DD Form 1473, JUN 86 Prevrous edrtions are obsolete SECURITY CLASSIFICATION OF TYS PAGt . 1 , S/N 0102-LF-014-6603 \ \ ““*5 - - A New Approach to Stable Matching Problems * Ashok Subramanian Department of Computer Science St anford University Stanford, CA 94305-2140 Abstract. -
Implementation Theory*
Chapter 5 IMPLEMENTATION THEORY* ERIC MASKIN Institute for Advanced Study, Princeton, NJ, USA TOMAS SJOSTROM Department of Economics, Pennsylvania State University, University Park, PA, USA Contents Abstract 238 Keywords 238 1. Introduction 239 2. Definitions 245 3. Nash implementation 247 3.1. Definitions 248 3.2. Monotonicity and no veto power 248 3.3. Necessary and sufficient conditions 250 3.4. Weak implementation 254 3.5. Strategy-proofness and rich domains of preferences 254 3.6. Unrestricted domain of strict preferences 256 3.7. Economic environments 257 3.8. Two agent implementation 259 4. Implementation with complete information: further topics 260 4.1. Refinements of Nash equilibrium 260 4.2. Virtual implementation 264 4.3. Mixed strategies 265 4.4. Extensive form mechanisms 267 4.5. Renegotiation 269 4.6. The planner as a player 275 5. Bayesian implementation 276 5.1. Definitions 276 5.2. Closure 277 5.3. Incentive compatibility 278 5.4. Bayesian monotonicity 279 * We are grateful to Sandeep Baliga, Luis Corch6n, Matt Jackson, Byungchae Rhee, Ariel Rubinstein, Ilya Segal, Hannu Vartiainen, Masahiro Watabe, and two referees, for helpful comments. Handbook of Social Choice and Welfare, Volume 1, Edited by K.J Arrow, A.K. Sen and K. Suzumura ( 2002 Elsevier Science B. V All rights reserved 238 E. Maskin and T: Sj'str6m 5.5. Non-parametric, robust and fault tolerant implementation 281 6. Concluding remarks 281 References 282 Abstract The implementation problem is the problem of designing a mechanism (game form) such that the equilibrium outcomes satisfy a criterion of social optimality embodied in a social choice rule. -
Collusion Constrained Equilibrium
Theoretical Economics 13 (2018), 307–340 1555-7561/20180307 Collusion constrained equilibrium Rohan Dutta Department of Economics, McGill University David K. Levine Department of Economics, European University Institute and Department of Economics, Washington University in Saint Louis Salvatore Modica Department of Economics, Università di Palermo We study collusion within groups in noncooperative games. The primitives are the preferences of the players, their assignment to nonoverlapping groups, and the goals of the groups. Our notion of collusion is that a group coordinates the play of its members among different incentive compatible plans to best achieve its goals. Unfortunately, equilibria that meet this requirement need not exist. We instead introduce the weaker notion of collusion constrained equilibrium. This al- lows groups to put positive probability on alternatives that are suboptimal for the group in certain razor’s edge cases where the set of incentive compatible plans changes discontinuously. These collusion constrained equilibria exist and are a subset of the correlated equilibria of the underlying game. We examine four per- turbations of the underlying game. In each case,we show that equilibria in which groups choose the best alternative exist and that limits of these equilibria lead to collusion constrained equilibria. We also show that for a sufficiently broad class of perturbations, every collusion constrained equilibrium arises as such a limit. We give an application to a voter participation game that shows how collusion constraints may be socially costly. Keywords. Collusion, organization, group. JEL classification. C72, D70. 1. Introduction As the literature on collective action (for example, Olson 1965) emphasizes, groups often behave collusively while the preferences of individual group members limit the possi- Rohan Dutta: [email protected] David K. -
Stability and Median Rationalizability for Aggregate Matchings
games Article Stability and Median Rationalizability for Aggregate Matchings Federico Echenique 1, SangMok Lee 2, Matthew Shum 1 and M. Bumin Yenmez 3,* 1 Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA; [email protected] (F.E.); [email protected] (M.S.) 2 Department of Economics, Washington University in St. Louis, St. Louis, MO 63130, USA; [email protected] 3 Department of Economics, Boston College, Chestnut Hill, MA 02467, USA * Correspondence: [email protected] Abstract: We develop the theory of stability for aggregate matchings used in empirical studies and establish fundamental properties of stable matchings including the result that the set of stable matchings is a non-empty, complete, and distributive lattice. Aggregate matchings are relevant as matching data in revealed preference theory. We present a result on rationalizing a matching data as the median stable matching. Keywords: aggregate matching; median stable matching; rationalizability; lattice 1. Introduction Following the seminal work of [1], an extensive literature has developed regarding matching markets with non-transferable utility. This literature assumes that there are agent-specific preferences, and studies the existence of stable matchings in which each Citation: Echenique, F.; Lee, S.; agent prefers her assigned partner to the outside option of being unmatched, and there Shum, M.; Yenmez, M.B. Stability and are no pairs of agents that would like to match with each other rather than keeping their Median Rationalizability for assigned partners. Aggregate Matchings. Games 2021, 12, In this paper, we develop the theory of stability for aggregate matchings, which we 33. -
Rationalizable Implementation of Correspondences∗
Rationalizable Implementation of Correspondences∗ Takashi Kunimotoyand Roberto Serranoz This Version: May 2016 Abstract We come close to characterizing the class of social choice correspon- dences that are implementable in rationalizable strategies. We identify a new condition, which we call set-monotonicity, and show that it is necessary and almost sufficient for rationalizable implementation. Set-monotonicity is much weaker than Maskin monotonicity, which is the key condition for Nash implementation and which also had been shown to be necessary for rationalizable implementation of social choice functions. Set-monotonicity reduces to Maskin monotonicity in the case of functions. We conclude that the conditions for rationalizable implementation are not only starkly differ- ent from, but also much weaker than those for Nash implementation, when we consider social choice correspondences. JEL Classification: C72, D78, D82. Keywords: Complete information, implementation, Maskin monotonicity, rationalizability, set-monotonicity, social choice correspondence. 1 Introduction The design of institutions to be used by rational agents has been an important research agenda in economic theory. As captured by the notion of Nash equilib- rium, rationality is encapsulated in two aspects: these are (i) the best responses of agents to their beliefs, and (ii) that those beliefs are correct, the so-called rational ∗Financial support from the Japan Society for the Promotion of Science (24330078, 25780128) (Kunimoto) is gratefully acknowledged. All remaining errors are our own. ySchool of Economics, Singapore Management University, 90 Stamford Road, Singapore 178903; [email protected] zDepartment of Economics, Brown University, Providence, RI 02912, U.S.A.; roberto [email protected] 1 expectations assumption. One can drop the latter and retain the former, moving then into the realm of rationalizability. -
Implementation and Strong Nash Equilibrium
LIBRARY OF THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY Digitized by the Internet Archive in 2011 with funding from Boston Library Consortium Member Libraries http://www.archive.org/details/implementationstOOmask : } ^mm working paper department of economics IMPLEMENTATION AND STRONG NASH EQUILIBRIUM Eric Maskin Number 216 January 1978 massachusetts institute of technology 50 memorial drive Cambridge, mass. 021 39 IMPLEMENTATION AND STRONG NASH EQUILIBRIUM Eric Maskin Number 216 January 1978 I am grateful for the financial support of the National Science Foundation. A social choice correspondence (SCC) is a mapping which assoc- iates each possible profile of individuals' preferences with a set of feasible alternatives (the set of f-optima) . To implement *n SCC, f, is to construct a game form g such that, for all preference profiles the equilibrium set of g (with respect to some solution concept) coincides with the f-optimal set. In a recent study [1], I examined the general question of implementing social choice correspondences when Nash equilibrium is the solution concept. Nash equilibrium, of course, is a strictly noncooperative notion, and so it is natural to consider the extent to which the results carry over when coalitions can form. The cooperative counterpart of Nash is the strong equilibrium due to Aumann. Whereas Nash defines equilibrium in terms of deviations only by single individuals, Aumann 's equilibrium incorporates deviations by every conceivable coalition. This paper considers implementation for strong equilibrium. The results of my previous paper were positive. If an SCC sat- isfies a monotonicity property and a much weaker requirement called no veto power, it can be implemented by Nash equilibrium. -
How to Win at Tic-Tac-Toe
More Than Child’s Play How to Get N in a Row Games with Animals Hypercube Tic-Tac-Toe How to Win at Tic-Tac-Toe Norm Do Undoubtably, one of the most popular pencil and paper games in the world is tic-tac-toe, also commonly known as noughts and crosses. In this talk, you will learn how to beat your friends (at tic-tac-toe), discover why snaky is so shaky, and see the amazing tic-tac-toe playing chicken! March 2007 Norm Do How to Win at Tic-Tac-Toe Tic-Tac-Toe is popular: You’ve all played it while sitting at the back of a boring class. In fact, some of you are probably playing it right now! Tic-Tac-Toe is boring: People who are mildly clever should never lose. More Than Child’s Play How to Get N in a Row Some Facts About Tic-Tac-Toe Games with Animals Games to Beat your Friends With Hypercube Tic-Tac-Toe Some facts about tic-tac-toe Tic-Tac-Toe is old: It may have been played under the name of “terni lapilli” in Ancient Rome. Norm Do How to Win at Tic-Tac-Toe Tic-Tac-Toe is boring: People who are mildly clever should never lose. More Than Child’s Play How to Get N in a Row Some Facts About Tic-Tac-Toe Games with Animals Games to Beat your Friends With Hypercube Tic-Tac-Toe Some facts about tic-tac-toe Tic-Tac-Toe is old: It may have been played under the name of “terni lapilli” in Ancient Rome. -
Game Theory 2021
More Mechanism Design Game Theory 2021 Game Theory 2021 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 More Mechanism Design Game Theory 2021 Plan for Today In this second lecture on mechanism design we are going to generalise beyond the basic scenario of auctions|as much as we can manage: • Revelation Principle: can focus on direct-revelation mechanisms • formal model of direct-revelation mechanisms with money • incentive compatibility of the Vickrey-Clarke-Groves mechanism • other properties of VCG for special case of combinatorial auctions • impossibility of achieving incentive compatibility more generally Much of this is also (somewhat differently) covered by Nisan (2007). N. Nisan. Introduction to Mechanism Design (for Computer Scientists). In N. Nisan et al. (eds.), Algorithmic Game Theory. Cambridge University Press, 2007. Ulle Endriss 2 More Mechanism Design Game Theory 2021 Reminder Last time we saw four auction mechanisms for selling a single item: English, Dutch, first-price sealed-bid, Vickrey. The Vickrey auction was particularly interesting: • each bidder submits a bid in a sealed envelope • the bidder with the highest bid wins, but pays the price of the second highest bid (unless it's below the reservation price) It is a direct-revelation mechanism (unlike English and Dutch auctions) and it is incentive-compatible, i.e., truth-telling is a dominant strategy (unlike for Dutch and FPSB auctions). Ulle Endriss 3 More Mechanism Design Game Theory 2021 The Revelation Principle Revelation Principle: Any outcome that is implementable in dominant strategies via some mechanism can also be implemented by means of a direct-revelation mechanism making truth-telling a dominant strategy. -
The Roommate Problem Revisited
Department of Economics- FEA/USP The Roommate Problem Revisited MARILDA SOTOMAYOR WORKING PAPER SERIES Nº 2016-04 DEPARTMENT OF ECONOMICS, FEA-USP WORKING PAPER Nº 2016-04 The Roommate Problem Revisited Marilda Sotomayor ([email protected]) Abstract: We approach the roommate problem by focusing on simple matchings, which are those individually rational matchings whose blocking pairs, if any, are formed with unmatched agents. We show that the core is non-empty if and only if no simple and unstable matching is Pareto optimal among all simple matchings. The economic intuition underlying this condition is that blocking can be done so that the transactions at any simple and unstable matching need not be undone, as agents reach the core. New properties of economic interest are proved. Keywords: Core; stable matching . JEL Codes: C78; D78. THE ROOMMATE PROBLEM REVISITED by MARILDA SOTOMAYOR1 Department of Economics Universidade de São Paulo, Cidade Universitária, Av. Prof. Luciano Gualberto 908 05508-900, São Paulo, SP, Brazil e-mail: [email protected] 7/2005 ABSTRACT We approach the roommate problem by focusing on simple matchings, which are those individually rational matchings whose blocking pairs, if any, are formed with unmatched agents. We show that the core is non-empty if and only if no simple and unstable matching is Pareto optimal among all simple matchings. The economic intuition underlying this condition is that blocking can be done so that the transactions at any simple and unstable matching need not be undone, as agents reach the core. New properties of economic interest are proved. Keywords: core, stable matching JEL numbers: C78, D78 1 This paper is partially supported by CNPq-Brazil. -
Strong Nash Equilibria and Mixed Strategies
Strong Nash equilibria and mixed strategies Eleonora Braggiona, Nicola Gattib, Roberto Lucchettia, Tuomas Sandholmc aDipartimento di Matematica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy bDipartimento di Elettronica, Informazione e Bioningegneria, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy cComputer Science Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA Abstract In this paper we consider strong Nash equilibria, in mixed strategies, for finite games. Any strong Nash equilibrium outcome is Pareto efficient for each coalition. First, we analyze the two–player setting. Our main result, in its simplest form, states that if a game has a strong Nash equilibrium with full support (that is, both players randomize among all pure strategies), then the game is strictly competitive. This means that all the outcomes of the game are Pareto efficient and lie on a straight line with negative slope. In order to get our result we use the indifference principle fulfilled by any Nash equilibrium, and the classical KKT conditions (in the vector setting), that are necessary conditions for Pareto efficiency. Our characterization enables us to design a strong–Nash– equilibrium–finding algorithm with complexity in Smoothed–P. So, this problem—that Conitzer and Sandholm [Conitzer, V., Sandholm, T., 2008. New complexity results about Nash equilibria. Games Econ. Behav. 63, 621–641] proved to be computationally hard in the worst case—is generically easy. Hence, although the worst case complexity of finding a strong Nash equilibrium is harder than that of finding a Nash equilibrium, once small perturbations are applied, finding a strong Nash is easier than finding a Nash equilibrium.