Strategyproof Exchange with Multiple Private Endowments

Total Page:16

File Type:pdf, Size:1020Kb

Strategyproof Exchange with Multiple Private Endowments Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence Strategyproof Exchange with Multiple Private Endowments Taiki Todo, Haixin Sun, Makoto Yokoo Dept. of Informatics Kyushu University Motooka 744, Fukuoka, JAPAN ftodo, sunhaixin, [email protected] Abstract efficient and individually rational. Moreover, it is the only We study a mechanism design problem for exchange rule that satisfies those three properties (Ma 1994). Due to economies where each agent is initially endowed with these advantages, TTC has been attracting much attention a set of indivisible goods and side payments are not al- from both economists and computer scientists. lowed. We assume each agent can withhold some en- In this paper we consider exchange economies where each dowments, as well as misreport her preference. Under this assumption, strategyproofness requires that for each agent is endowed with a set of multiple goods, instead of agent, reporting her true preference with revealing all a single good. Under that model, Pareto efficiency, indi- her endowments is a dominant strategy, and thus implies vidual rationality, and strategyproofness cannot be simulta- individual rationality. Our objective in this paper is to neously satisfied (Sonmez¨ 1999). Therefore, one main re- analyze the effect of such private ownership in exchange search direction on exchanges with multiple endowments is economies with multiple endowments. As fundamental to achieve strategyproof rules that guarantee a limited notion results, we first show that the revelation principle holds of efficiency. In particular, Papai´ (2003) defined a class of under a natural assumption and that strategyproofness exchange rules and gave a characterization by strategyproof- and Pareto efficiency are incompatible even under the ness and individual rationality with some other weak effi- lexicographic preference domain. We then propose a ciency requirements. class of exchange rules, each of which has a correspond- ing directed graph to prescribe possible trades, and pro- Another important assumption in this work is that each vide necessary and sufficient conditions on the graph agent’s endowments are also private information, and agents structure so that they satisfy strategyproofness. reveal to an exchange rule their endowments, as well as their preferences. Since an exchange rule cannot exactly observe Introduction which agent really owns which goods, guaranteeing strat- The housing market problem, introduced by Shapley and egyproofness seems much harder than in a traditional case Scarf (1974), is a fundamental exchange model where each where ownerships are recognized. Indeed, in environments good is indivisible and monetary transfers are not allowed. with private (and multiple) goods, the possibility of various Precisely, there is a group of agents, each of whom is ini- manipulations via endowments has been pointed out (Postle- tially endowed with one good, say a house, and has a strict waite 1979; Atlamaz and Klaus 2007), such as hiding (or ordering, so-called a preference, over the set of all goods withholding). Furthermore, in some anonymous environ- owned by the agents. An exchange rule (aka., a mechanism) ments, splitting an account into multiple ones might also be takes the preferences revealed by the agents as input and de- problematic (Moulin 2008). termines which goods are traded. The model has been ap- In this paper we first focus on hiding manipulations as plied to various market environments, such as kidney ex- well as misreporting preferences, since they can be easily ¨ changes (Roth, Sonmez,¨ and Unver 2004) and on-campus done by only one agent without any side communication university housing markets (Chen and Sonmez¨ 2002). with other agents. We say an exchange rule is strategyproof One desirable property for a mechanism is strategyproof- if for every agent, reporting her true preference with reveal- ness, which requires that for every agent, the truth revela- ing all her endowments (i.e., not hiding anything) to the rule tion of her private information, say a preference over a set of is a dominant strategy. The main objective of this paper is houses, to the mechanism is a dominant strategy. From the to analyze the effect of such private ownership in exchange revelation principle, it is without loss of generality to focus economies with multiple endowments. More precisely, we on strategyproof direct revelation mechanisms if we are only clarify how the space of possible exchanges by strategyproof interested in exchange rules with dominant strategy equilib- rules shrinks due to the lack of information on ownership. ria. Fortunately, for the housing market problem, Gale’s Top- One of the most closely related works to this paper is Atla- Trading-Cycle (TTC) rule is strategyproof, as well as Pareto maz and Klaus (2007), which also investigates the effect of Copyright c 2014, Association for the Advancement of Artificial hiding manipulations. However, they only focus on hidings Intelligence (www.aaai.org). All rights reserved. and ignore any misreports of preferences. 805 Our Results We investigate exchange problems with mul- Our Model tiple private endowments. In our model an exchange rule is There is a set of agents N = f1; : : : ; ng and a set of in- strategyproof if, for each agent, reporting her true preference divisible goods K in the world. Each agent i 2 N is en- with revealing all her endowments is a dominant strategy. dowed with a set of goods, or endowments, wi ⊂ K. Let The definition implies individual rationality, since hiding all w = (wi)i2N be an endowment distribution to N, satisfy- endowments is equivalent to not participating. We prove that S ing i2N wi ⊆ K and wi \ wj = ? for any pair i; j 2 N. the revelation principle holds under a natural assumption, The endowment distribution is chosen, by nature, from the which is regarded as a variation of Yu’s result (Yu 2011). set W of all possible endowment distributions. We also show that strategyproofness and Pareto efficiency Each agent i 2 N has a linear ordering, or preference, are incompatible, even if we focus on a “smallest” prefer- Ri, over the set of all possible bundles L ⊆ K. Let R ence domain called the lexicographic preference domain. denote a set of all admissible preferences, or a preference 0 0 We next introduce a class of exchange rules called the domain. Given Ri 2 R and a pair L; L ⊆ K, let LRiL 0 agreement cycles rules. They are motivated from segmented denote that L is weakly preferred to L at Ri. We assume trading cycles rules (Papai´ 2003), so that each of them is preferences are strict, i.e., for any pair L; L0 6= L, either 0 0 defined based on a corresponding directed graph called a LPiL or L PiL, where Pi indicates the strict component of 0 0 0 one-for-one trading possibility graph. The performances of Ri. Therefore, LRiL but not LPiL implies L = L . We these rules are fairly better than trivial strategyproof rules. also assume fkgPi? for any i 2 N, any Ri 2 R, and any Under each preference domain, we provide a necessary and k 2 K. Let R = (Ri)i2N denote a preference profile of N sufficient condition on the structure of a one-for-one trading and R−i = (Rj)j6=i denote a preference profile of N n fig. possibility graph for the exchange rule to be strategyproof. In summary, each agent i has two private information, We also show that these rules are split-proof if and only if wi ⊂ K and Ri 2 R. We refer to θi = (wi;Ri) 2 Θw;i as they are strategyproof, where split-proofness requires that i’s type, where Θw;i denotes the set of all reportable types for each agent, using only one identity is a dominant strat- of i when an endowment distribution w is chosen. More pre- egy, even if it can use multiple identities and join an ex- cisely, for a given w, let W (w; i) denote the set of reportable change rule multiple times under them. S goods s.t. i2N W (w; i) = K, W (w; i)\W (w; j) = ? for 1 any pair i; j 2 N, and W (w; i) ⊇ wi for any i 2 N . With W (w;i) Related Works The Shapley-Scarf housing market (Shap- this notation, Θw;i := 2 ×R. Note that at this moment ley and Scarf 1974) has various applications, such as room- there is no restriction on revealed goods w^i of i, as long as mate problems and kidney exchanges. Ma (1994) charac- they are in W (w; i). Let θ 2 Θw = ×i2N Θw;i be a type terized TTC for the problem by strategyproofness, Pareto profile of N and θ−i = (θj)j6=i 2 Θw;−i be a type profile of efficiency, and individual rationality. Roth and Postlewaite agents except i, where Θw;−i = ×j6=iΘw;j. (1977) showed that it always chooses the unique core assign- We then formally define a set of possible assignments. ment. A quite similar model is assignment problems (Papai´ When a set of goods L ⊆ K is reported by agents, let XL 2000), where there are no initial endowments and monetary be a set of the possible assignments of goods to the agents, assignment x 2 X S x = L transfers are still not allowed. s.t. any L satisfies i2N i and xi \ xj = ? for any pair i; j 2 N. A natural extension of the Shapley-Scarf model is one ^ where each agent is allowed to initially have multiple goods. An exchange rule ' maps a reported type profile θ = ^ When at least one agent initially has more than one good, no (w ^i; Ri) 2 Θw into a possible assignment x 2 Xw^, where S ^ rule is strategyproof, Pareto efficient, and individually ra- w^ = i2N w^i.
Recommended publications
  • California Institute of Technology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors - Main DIVISION OF THE HUM ANITIES AND SO CI AL SCIENCES CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA 91125 IMPLEMENTATION THEORY Thomas R. Palfrey � < a: 0 1891 u. "')/,.. () SOCIAL SCIENCE WORKING PAPER 912 September 1995 Implementation Theory Thomas R. Palfrey Abstract This surveys the branch of implementation theory initiated by Maskin (1977). Results for both complete and incomplete information environments are covered. JEL classification numbers: 025, 026 Key words: Implementation Theory, Mechanism Design, Game Theory, Social Choice Implementation Theory* Thomas R. Palfrey 1 Introduction Implementation theory is an area of research in economic theory that rigorously investi­ gates the correspondence between normative goals and institutions designed to achieve {implement) those goals. More precisely, given a normative goal or welfare criterion for a particular class of allocation pro blems (or domain of environments) it formally char­ acterizes organizational mechanisms that will guarantee outcomes consistent with that goal, assuming the outcomes of any such mechanism arise from some specification of equilibrium behavior. The approaches to this problem to date lie in the general domain of game theory because, as a matter of definition in the implementation theory litera­ ture, an institution is modelled as a mechanism, which is essentially a non-cooperative game. Moreover, the specific models of equilibrium behavior
    [Show full text]
  • Game Theory 2021
    More Mechanism Design Game Theory 2021 Game Theory 2021 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 More Mechanism Design Game Theory 2021 Plan for Today In this second lecture on mechanism design we are going to generalise beyond the basic scenario of auctions|as much as we can manage: • Revelation Principle: can focus on direct-revelation mechanisms • formal model of direct-revelation mechanisms with money • incentive compatibility of the Vickrey-Clarke-Groves mechanism • other properties of VCG for special case of combinatorial auctions • impossibility of achieving incentive compatibility more generally Much of this is also (somewhat differently) covered by Nisan (2007). N. Nisan. Introduction to Mechanism Design (for Computer Scientists). In N. Nisan et al. (eds.), Algorithmic Game Theory. Cambridge University Press, 2007. Ulle Endriss 2 More Mechanism Design Game Theory 2021 Reminder Last time we saw four auction mechanisms for selling a single item: English, Dutch, first-price sealed-bid, Vickrey. The Vickrey auction was particularly interesting: • each bidder submits a bid in a sealed envelope • the bidder with the highest bid wins, but pays the price of the second highest bid (unless it's below the reservation price) It is a direct-revelation mechanism (unlike English and Dutch auctions) and it is incentive-compatible, i.e., truth-telling is a dominant strategy (unlike for Dutch and FPSB auctions). Ulle Endriss 3 More Mechanism Design Game Theory 2021 The Revelation Principle Revelation Principle: Any outcome that is implementable in dominant strategies via some mechanism can also be implemented by means of a direct-revelation mechanism making truth-telling a dominant strategy.
    [Show full text]
  • Designing Mechanisms to Make Welfare- Improving Strategies Focal∗
    Designing Mechanisms to Make Welfare- Improving Strategies Focal∗ Daniel E. Fragiadakis Peter Troyan Texas A&M University University of Virginia Abstract Many institutions use matching algorithms to make assignments. Examples include the allocation of doctors, students and military cadets to hospitals, schools and branches, respec- tively. Most of the market design literature either imposes strong incentive constraints (such as strategyproofness) or builds mechanisms that, while more efficient than strongly incentive compatible alternatives, require agents to play potentially complex equilibria for the efficiency gains to be realized in practice. Understanding that the effectiveness of welfare-improving strategies relies on the ease with which real-world participants can find them, we carefully design an algorithm that we hypothesize will make such strategies focal. Using a lab experiment, we show that agents do indeed play the intended focal strategies, and doing so yields higher overall welfare than a common alternative mechanism that gives agents dominant strategies of stating their preferences truthfully. Furthermore, we test a mech- anism from the field that is similar to ours and find that while both yield comparable levels of average welfare, our algorithm performs significantly better on an individual level. Thus, we show that, if done carefully, this type of behavioral market design is a worthy endeavor that can most promisingly be pursued by a collaboration between institutions, matching theorists, and behavioral and experimental economists. JEL Classification: C78, C91, C92, D61, D63, Keywords: dictatorship, indifference, matching, welfare, efficiency, experiments ∗We are deeply indebted to our graduate school advisors Fuhito Kojima, Muriel Niederle and Al Roth for count- less conversations and encouragement while advising us on this project.
    [Show full text]
  • Proportionality and Strategyproofness in Multiwinner Elections
    Session 43: Social Choice Theory 3 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden Proportionality and Strategyproofness in Multiwinner Elections Dominik Peters University of Oxford Oxford, UK [email protected] ABSTRACT focussed on cases where there are no parties, and preferences are Multiwinner voting rules can be used to select a fixed-size com- expressed directly over the candidates [23]. The latter setting allows mittee from a larger set of candidates. We consider approval-based for applications in areas outside the political sphere, such as in committee rules, which allow voters to approve or disapprove can- group recommendation systems. didates. In this setting, several voting rules such as Proportional To formalise the requirement of proportionality in this party-free Approval Voting (PAV) and Phragmén’s rules have been shown to setting, it is convenient to consider the case where input preferences produce committees that are proportional, in the sense that they are given as approval ballots: each voter reports a set of candidates proportionally represent voters’ preferences; all of these rules are that they find acceptable. Even for this simple setting, there isa strategically manipulable by voters. On the other hand, a generalisa- rich variety of rules that exhibit different behaviour [31], and this tion of Approval Voting gives a non-proportional but strategyproof setting gives rise to a rich variety of axioms. voting rule. We show that there is a fundamental tradeoff between One natural way of selecting a committee of k candidates when these two properties: we prove that no multiwinner voting rule can given approval ballots is to extend Approval Voting (AV): for each simultaneously satisfy a weak form of proportionality (a weakening of the m candidates, count how many voters approve them (their of justified representation) and a weak form of strategyproofness.
    [Show full text]
  • Relaxing Strategyproofness in One-Sided Matching
    Relaxing Strategyproofness in One-sided Matching TIMO MENNLE and SVEN SEUKEN University of Zurich We consider the one-sided matching problem, where agents must be matched to indivisible ob- jects. Our first result is a novel characterization of strategyproof mechanisms by three intuitive axioms. Furthermore, we introduce partial strategyproofness, a new relaxation of strategyproof- ness that bridges the gap between full and weak strategyproofness. Partial strategyproofness finds application in the incentive analysis of non-strategyproof mechanisms, such as Probabilistic Serial, different variants of the Boston mechanism, and hybrid mechanisms. In this letter, we summarize the main results from [Mennle and Seuken 2014a] and demonstrate how they can be used for the design and analysis of matching mechanisms.1 Categories and Subject Descriptors: J.4.a [Social and Behavioral Sciences]: Economics General Terms: Economics; Theory Additional Key Words and Phrases: Matching, Mechanism Design, Strategyproofness 1. INTRODUCTION The (probabilistic) one-sided matching problem is concerned with the allocation of indivisible goods to self-interested agents with privately known preferences in domains where monetary transfers are not permitted. Such problems often arise in situations that are of great importance to peoples' lives. For example, students must be matched to schools, teachers to training programs, or tenants to houses. Strategyproof mechanisms, such as Random Serial Dictatorship (RSD), are ap- pealing because they make truthful reporting a dominant strategy for all agents. Participation in the mechanism becomes an easy task as there is no need for delib- eration about the best response, thus reducing cognitive costs for the agents and (likely) endowing the mechanism with correct information about agents' preferences.
    [Show full text]
  • Specification Faithfulness in Networks with Rational Nodes
    Specification Faithfulness in Networks with Rational Nodes Jeffrey Shneidman, David C. Parkes Division of Engineering and Applied Sciences, Harvard University, 33 Oxford Street, Cambridge MA 02138 {jeffsh, parkes}@eecs.harvard.edu ABSTRACT drive up their “contributed computation” credit [15]. There It is useful to prove that an implementation correctly follows is interesting work documenting the “free rider” problem [1] a specification. But even with a provably correct implemen- and the “tragedy of the commons” [12] in a data centric peer tation, given a choice, would a node choose to follow it? This to peer setting. paper explores how to create distributed system specifica- This behavior can be classified as a type of failure, which tions that will be faithfully implemented in networks with should stand independently from other types of failures in rational nodes, so that no node will choose to deviate. Given distributed systems and is indicative of an underlying in- a strategyproof centralized mechanism, and given a network centive problem in a system’s design when run on a network of nodes modeled as having rational-manipulation faults, with rational nodes. Whereas traditional failure models are we provide a proof technique to establish the incentive-, overcome by relying on redundancy, rational manipulation communication-, and algorithm-compatibility properties that can also be overcome with design techniques such as prob- guarantee that participating nodes are faithful to a sug- lem partitioning, catch-and-punish, and incentives. In such gested specification. As a case study, we apply our methods a network one can state a strong claim about the faithfulness to extend the strategyproof interdomain routing mechanism of each node’s implementation.
    [Show full text]
  • Approximate Strategyproofness
    Approximate Strategyproofness The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Benjamin Lubin and David C. Parkes. 2012. Approximate strategyproofness. Current Science 103, no. 9: 1021-1032. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11879945 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Approximate Strategyproofness Benjamin Lubin David C. Parkes School of Management School of Engineering and Applied Sciences Boston University Harvard University [email protected] [email protected] July 24, 2012 Abstract The standard approach of mechanism design theory insists on equilibrium behavior by par- ticipants. This assumption is captured by imposing incentive constraints on the design space. But in bridging from theory to practice, it often becomes necessary to relax incentive constraints in order to allow tradeo↵s with other desirable properties. This paper surveys a number of dif- ferent options that can be adopted in relaxing incentive constraints, providing a current view of the state-of-the-art. 1 Introduction Mechanism design theory formally characterizes institutions for the purpose of establishing rules that engender desirable outcomes in settings with multiple, self-interested agents each with private information about their preferences. In the context of mechanism design, an institution is formalized as a framework wherein messages are received from agents and outcomes selected on the basis of these messages.
    [Show full text]
  • Gibbard-Satterthwaite Success Stories and Obvious Strategyproofness
    Gibbard-Satterthwaite Success Stories and Obvious Strategyproofness Sophie Bade Yannai A. Gonczarowski ∗ March 18, 2017 Abstract The Gibbard-Satterthwaite Impossibility Theorem (Gibbard, 1973; Satterthwaite, 1975) holds that dictatorship is the only Pareto optimal and strategyproof social choice function on the full domain of preferences. Much of the work in mechanism design aims at getting around this impossibility theorem. Three grand success stories stand out. On the domains of single peaked preferences, of house matching, and of quasilinear pref- erences, there are appealing Pareto optimal and strategyproof social choice functions. We investigate whether these success stories are robust to strengthening strategyproof- ness to obvious strategyproofness, recently introduced by Li(2015). A social choice function is obviously strategyproof (OSP) implementable if even cognitively limited agents can recognize their strategies as weakly dominant. For single peaked preferences, we characterize the class of OSP-implementable and unanimous social choice functions as dictatorships with safeguards against extremism | mechanisms (which turn out to also be Pareto optimal) in which the dictator can choose the outcome, but other agents may prevent the dictator from choosing an outcome that is too extreme. Median voting is consequently not OSP-implementable. Indeed, the only OSP-implementable quantile rules choose either the minimal or the maximal ideal point. For house matching, we characterize the class of OSP-implementable and Pareto optimal matching rules as sequential barter with lurkers | a significant generalization over bossy variants of bipolar serially dictatorial rules. While Li(2015) shows that second-price auctions are OSP-implementable when only one good is sold, we show that this positive result does not extend to the case of multiple goods.
    [Show full text]
  • Approximation Algorithms and Mechanism Design for Minimax Approval Voting
    Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10) Approximation Algorithms and Mechanism Design for Minimax Approval Voting Ioannis Caragiannis Dimitris Kalaitzis Evangelos Markakis RACTI & Department of Computer RACTI & Department of Computer Department of Informatics Engineering and Informatics Engineering and Informatics Athens University of Economics University of Patras, Greece University of Patras, Greece & Business, Greece [email protected] [email protected] [email protected] Abstract fined size k. Then the minisum solution consists of the k candidates with the highest number of approvals. We consider approval voting elections in which each voter votes for a (possibly empty) set of candidates and the out- This solution however may ignore some voters’ prefer- come consists of a set of k candidates for some parameter ences in certain instances and does not take fairness issues k, e.g., committee elections. We are interested in the min- into account. We demonstrate this with the following exam- imax approval voting rule in which the outcome represents ple with four voters, five candidates, and k = 2. Each row a compromise among the voters, in the sense that the max- represents the preference of the corresponding voter. The imum distance between the preference of any voter and the minisum solution contains the candidates {a, b}. The dis- outcome is as small as possible. This voting rule has two tances of the voters from this outcome are 1, 0, 2, and 5 for main drawbacks. First, computing an outcome that minimizes voters 1, 2, 3, and 4, respectively (counting the number of the maximum distance is computationally hard.
    [Show full text]
  • 13Th Annual Conference
    The Association for Public Economic Theory 13th Annual Conference Conference in Celebration of the 50th Anniversary of the Institute of Economics, Academia Sinica June 12-14, 2012 Academia Sinica, Taipei, Taiwan The Association for Public Economic Theory 13 th Annual Conference PET 12 The Association for Public Economic Theory 13th Annual Conference Conference in Celebration of the 50th Anniversary of the Institute of Economics, Academia Sinica June 12-14, 2012 Academia Sinica, Taipei, Taiwan Organizer: Association for Public Economic Theory (APET) Host: Institute of Economics, Academia Sinica Local Organizers: Institute of Economics, Academia Sinica Department of Economics, National Taiwan University Sponsors: National Science Council Foundation For The Advancement of Outstanding Scholarship Taiwan Economic Association i ii The Association for Public Economic Theory 13 th Annual Conference Table of Contents Sponsors ……………………………………………………………………………………………………..i Organizing and Program Committees ……………………….……………………………...2 Welcome Message …………………………………………………………………..…………………3 General Conference Information …………………………………………………………….4-5 Schedule at a Glance ………….……………………………………………………..….………..6-7 Keynote Speakers ………………………………………………………………..……...…………8-10 PET12 Conference Program …………………………………………………….…………..11-54 Author Index ………..…………………………………………………………………….……….55-65 Building for Humanities and Social Sciences (BHSS Map) …………..……..66-77 Campus of Academia Sinica …………………………………………….……………………..78 Charter Bus Schedule ……..………………………………………………………..……………79 Taipei
    [Show full text]
  • Economics and Computation: Ad Auctions and Other Stories
    Economics and Computation: Ad Auctions and Other Stories Christopher Wilkens Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2013-66 http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-66.html May 15, 2013 Copyright © 2013, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Acknowledgement I want to thank those who have helped me reach this point --- my adviser Christos Papadimitriou for his incomparable wisdom and guidance; Kamal Jain and Aranyak Mehta for fantastic internships and advice; and many others at Berkeley, Microsoft, Google, ebay, MIT, and Sanford who have educated me. I also want to thank Darrell Hoy and Balasubramanian Sivan without whom many works in this thesis would have been shadows of their current forms. Last but not least, I want to thank my family and friends for setting a high standard, for making the educational process enjoyable, and for encouraging me to follow my passions even when my work was ``too simple'' or when ``nobody would hire me.'' Both proved false, but only through the many named and unnamed people who made this dissertation possible. Economics and Computation: Ad Auctions and Other Stories by Christopher A.
    [Show full text]
  • Arrow's Theorem and the Gibbard-Satterthwaite Theorem: A
    Arrow’s Theorem and the Gibbard-Satterthwaite Theorem: A Uni…ed Approach¤ Philip J. Reny Department of Economics University of Chicago First Version: December 1999 This Version: June 2000 Abstract The connection between Arrow’s theorem and the Gibbard-Satterthwaite theorem is further strengthened by providing a single proof that yields both results. Keywords: Arrow’s Theorem, Gibbard-Satterthwaite Theorem. JEL Classi…cation Number D71. 1. A Shared Proof Let A denote a …nite set of alternatives and let denote the set of strict linear L orders, or (strict) rankings, on A: Let ¤ denote the set of weak linear orders, or (weak) rankings, on A: Fix a positive integerL N: A function f : N A will be called N L ! a social choice function, while a function F : ¤ will be called a social welfare function. A member of N is called a pro…leL of!L rankings (or simply a pro…le) and L its ith component is called individual i’s ranking. A member of ¤ is called a social order, or society’s ranking. L We say that a social choice function f : N A is: L ! Pareto E¢cient if whenever alternative a is at the top of every individual i’s ranking, Li; then f(L1; :::; LN )=a. Monotonic if whenever f(L1; :::; LN )=a and for every individual i and every alter- native b the ranking Li0 ranks a above b if Li does, then f(L10 ; :::; LN0 )=a. ¤I wish to thank Vijay Krishna and Motty Perry for motivating the present note through a stimulating discussion of a short proof of Arrow’s Theorem due to John Geanakoplos.
    [Show full text]