Solution Concepts in Cooperative Game Theory

Total Page:16

File Type:pdf, Size:1020Kb

Solution Concepts in Cooperative Game Theory 1 A. Stolwijk Solution Concepts in Cooperative Game Theory Master’s Thesis, defended on October 12, 2010 Thesis Advisor: dr. F.M. Spieksma Mathematisch Instituut, Universiteit Leiden 2 Contents 1 Introduction 7 1.1 BackgroundandAims ................................. 7 1.2 Outline .......................................... 8 2 The Model: Some Basic Concepts 9 2.1 CharacteristicFunction .............................. ... 9 2.2 Solution Space: Transferable and Non-Transferable Utilities . .......... 11 2.3 EquivalencebetweenGames. ... 12 2.4 PropertiesofSolutions............................... ... 14 3 Comparing Imputations 15 3.1 StrongDomination................................... 15 3.1.1 Properties of Strong Domination . 17 3.2 WeakDomination .................................... 19 3.2.1 Properties of Weak Domination . 20 3.3 DualDomination..................................... 22 3.3.1 Properties of Dual Domination . 23 4 The Core 25 4.1 TheCore ......................................... 25 4.2 TheDualCore ...................................... 27 4.2.1 ComparingtheCorewiththeDualCore. 29 4.2.2 Strong ǫ-Core................................... 30 5 Nash Equilibria 33 5.1 Strict Nash Equilibria . 33 5.2 Weak Nash Equilibria . 36 3 4 CONTENTS 6 Stable Sets 39 6.1 DefinitionofStableSets ............................... .. 39 6.2 Stability in A′ ....................................... 40 6.3 ConstructionofStronglyStableSets . ...... 41 6.3.1 Explanation of the Strongly Stable Set: The Standard of Behavior in the 3-personzero-sumgame ............................. 45 6.4 TheUnionofStableSets ............................... 49 6.5 ConclusionofChapter6 ............................... .. 49 7 Variants on Strongly Stable Set 51 7.1 InterpretingStronglyStableSets . ...... 51 7.2 Partially Stable Sets . 53 7.2.1 The Existence Proof of Partially Stable Sets . ... 54 7.3 StrictlyStableSets.................................. .. 56 7.4 WeaklyStableSets................................... 59 7.4.1 Differences with Strongly Stable Sets . .. 60 7.4.2 Questions on Weakly Stable Sets . 61 8 The Nucleolus 63 8.1 DefiningtheNucleolus................................. 63 8.2 ComputingtheNucleolus ............................... 65 8.3 ExamplesofNucleoli.................................. 66 8.4 InterpretationoftheNucleolus . ..... 67 9 Variants on the Nucleolus 69 9.1 TheWeightedNucleolus ................................ 69 9.2 Interpretation of the Weighted Nucleolus . ....... 70 9.3 DefiningtheDualNucleolus............................. .. 70 10 The Shapley Value 73 10.1 Definition of the Shapley Value . ... 73 10.2 Nash Equilibrium vs. Shapley Value . .. 76 11 Special Classes of Games 77 11.1CompositeGames ................................... 77 11.2ConvexGames ..................................... 82 CONTENTS 5 12 Three Questions 87 12.1 Game with a Unique Non-Convex Strongly Stable Set . ...... 87 12.2 GameWithnoStronglyStableSet . ... 89 12.3 The Game with No Strongly Stable Set and an Empty Core . ...... 93 12.4 AFinalRemarkonSpecialGames . ... 98 13 Concluding Remarks 99 6 CONTENTS Chapter 1 Introduction 1.1 Background and Aims In Game Theory situations are studied in which multiple people each strive to achieve his or her goal. Thereby it is assumed that all participants behave rationally. An important characteristic of games is that the actions of one person have influence on the outcomes of other people in the game and vice versa. Because of these interdependencies, Robert Aumann, who received a Noble award for his contributions to Game Theory in 2005, suggested that Interactive Decision Theory would be a better name for the discipline called ’Game Theory’. From its definition it follows that game theory can be applied to all situations where peoples’ actions are both utility maximizing and interdependent. The major applications of game theory are to economics, political science, tactical and strategic military problems, evolutionary biology and computer science. According to Aumann (1987) there are also important connections with accounting, statistics, the foundations of mathematics, social psychology and branches of philosophy. In this thesis I will investigate a particular set of game theoretic problems: namely those in which people who participate in the game, can cooperate with each other to compel a certain solution. In politics they can form coalitions, in the economy they can form cartels. This branch of game theory is called Cooperative Game Theory. In Cooperative Game Theory we are interested in what players can achieve by cooperation. We look at all feasible outcomes where players can make binding commitments. We assume that there is some mechanism which enforces these commitments. The method of game theory consists of the construction of models or methodologies that can in principle be applied to a wide variety of abstract interactive situations. In theory most situations of interactive decision making have many outcomes, often infinitely many. For example if, say, three persons have to share a cake or to accomplish a certain task, a great variety of outcomes can be defined. Or, if political parties try to form a majority coalition, the number of potential outcomes, in the form of the set of compromises, is sheer unlimited. However, not all outcomes are rational or equally plausible. By defining so called solution concepts, cooperative game theory tries to characterize the set of outcomes that are, seen from a viewpoint of rationality, interesting. In this thesis I will describe and discuss the main solution concepts that have, in the course of time, been proposed by different game theorists. In the discussion I will also point at the relations between the different concepts and their limitations. 7 8 CHAPTER 1. INTRODUCTION 1.2 Outline After this introductory chapter, Chapter 2 starts with a general description of the model of a cooperative game. The discussion is mainly limited to the basic concepts, e.g the characteristic function and the solution space, and some general properties of a cooperative game. The solution space of a model usually consists of more points or payoffs. These are also called imputations. Chapter 3 investigates the relation between different imputations. Starting point is the preference relation as defined by Van Neumann and Morgenstern. This preference relation makes it possible to compare outcomes in a logical way. I also define two other variants on the Von Neumann Morgenstern preference relation. In Chapter 4, I look into more detail in the most general solution concept of a cooperative game namely the Core. Imputations in the Core have the attractive property that they are not domi- nated. With the weaker forms of the preference relation, I define a new kind of Core, the Dual Core. The Core and the Dual Core and their relations are also discussed here. Chapter 5 is devoted to the Nash equilibrium. Although the Nash equilibrium is basically a solution concept of a non-cooperative game, I define a variant to cooperative games. Stable Sets are the subject of Chapters 6 and 7. Stable Sets were introduced by Von Neumann and Morgenstern. It appears that solutions in a Stable Set have some nice properties. Chapter 6 starts with a general introduction of the concept. Contrary to the (Dual) Core and Nash Equilibria, Stable Sets are difficult to find. For a three person zero sum game it will be shown how they can be constructed. Chapter 7 is an extension of chapter 6. Successively properties of Partially Stable Sets, Strictly Stable Sets and Weakly Stable Sets will be investigated. The Chapter ends with a conjecture. Unfortunately, I have not succeeded in proving the conjecture. The Core, the Nash equilibrium and Stable Sets are solution concepts which have, from a rational point of view, the property to be stable in some sense. The Nucleolus and the Shapley Value, which I discuss in Chapters 8, 9 and 10, are mainly motivated by some sense of fairness. The idea behind the Nucleolus, the subject of Chapter 8, is to make the least happy coalition of players of a game as happy as possible. In Chapter 9 I slightly adjust the Nucleolus by assuming that coalitions are already given (decided). Chapter 10 is devoted to the Shapley Value. The basic idea behind the Shapley Value is to share the payoff of a game according to the relative importance of the individual players of the game. Chapter 11 discusses some special classes of games, respectively: composite games and convex games. The discussion add to a better understanding of the various concepts introduced in the earlier chapters. The thesis ends with Chapters 12 and 13. In Chapter 12 three existence questions with respect to Stable Sets are discussed and Chapter 13 contains some concluding remarks. Chapter 2 The Model: Some Basic Concepts In this thesis we will look at a certain type of games: games in which a mechanism is available that can enforce agreements between players. These games are called cooperative games. A problem is how to characterize these games. If we look for example at the following weighted majority game1 [5; 2, 3, 4], we see that this game is in a sense the same game as the weighted majority game [2; 1, 1, 1]. In both games, any two parties can always have a majority. So the utility of the votes of every player is in both games the same. In this chapter we define a function which gives the utility or the payoff of a coalition. Every cooperative game can be described by such a function. 2.1 Characteristic Function To characterize a cooperative game with n-players,
Recommended publications
  • Game Theory 2: Extensive-Form Games and Subgame Perfection
    Game Theory 2: Extensive-Form Games and Subgame Perfection 1 / 26 Dynamics in Games How should we think of strategic interactions that occur in sequence? Who moves when? And what can they do at different points in time? How do people react to different histories? 2 / 26 Modeling Games with Dynamics Players Player function I Who moves when Terminal histories I Possible paths through the game Preferences over terminal histories 3 / 26 Strategies A strategy is a complete contingent plan Player i's strategy specifies her action choice at each point at which she could be called on to make a choice 4 / 26 An Example: International Crises Two countries (A and B) are competing over a piece of land that B occupies Country A decides whether to make a demand If Country A makes a demand, B can either acquiesce or fight a war If A does not make a demand, B keeps land (game ends) A's best outcome is Demand followed by Acquiesce, worst outcome is Demand and War B's best outcome is No Demand and worst outcome is Demand and War 5 / 26 An Example: International Crises A can choose: Demand (D) or No Demand (ND) B can choose: Fight a war (W ) or Acquiesce (A) Preferences uA(D; A) = 3 > uA(ND; A) = uA(ND; W ) = 2 > uA(D; W ) = 1 uB(ND; A) = uB(ND; W ) = 3 > uB(D; A) = 2 > uB(D; W ) = 1 How can we represent this scenario as a game (in strategic form)? 6 / 26 International Crisis Game: NE Country B WA D 1; 1 3X; 2X Country A ND 2X; 3X 2; 3X I Is there something funny here? I Is there something funny here? I Specifically, (ND; W )? I Is there something funny here?
    [Show full text]
  • Game Theory Lecture Notes
    Game Theory: Penn State Math 486 Lecture Notes Version 2.1.1 Christopher Griffin « 2010-2021 Licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License With Major Contributions By: James Fan George Kesidis and Other Contributions By: Arlan Stutler Sarthak Shah Contents List of Figuresv Preface xi 1. Using These Notes xi 2. An Overview of Game Theory xi Chapter 1. Probability Theory and Games Against the House1 1. Probability1 2. Random Variables and Expected Values6 3. Conditional Probability8 4. The Monty Hall Problem 11 Chapter 2. Game Trees and Extensive Form 15 1. Graphs and Trees 15 2. Game Trees with Complete Information and No Chance 18 3. Game Trees with Incomplete Information 22 4. Games of Chance 24 5. Pay-off Functions and Equilibria 26 Chapter 3. Normal and Strategic Form Games and Matrices 37 1. Normal and Strategic Form 37 2. Strategic Form Games 38 3. Review of Basic Matrix Properties 40 4. Special Matrices and Vectors 42 5. Strategy Vectors and Matrix Games 43 Chapter 4. Saddle Points, Mixed Strategies and the Minimax Theorem 45 1. Saddle Points 45 2. Zero-Sum Games without Saddle Points 48 3. Mixed Strategies 50 4. Mixed Strategies in Matrix Games 53 5. Dominated Strategies and Nash Equilibria 54 6. The Minimax Theorem 59 7. Finding Nash Equilibria in Simple Games 64 8. A Note on Nash Equilibria in General 66 Chapter 5. An Introduction to Optimization and the Karush-Kuhn-Tucker Conditions 69 1. A General Maximization Formulation 70 2. Some Geometry for Optimization 72 3.
    [Show full text]
  • Evolutionary Game Theory: ESS, Convergence Stability, and NIS
    Evolutionary Ecology Research, 2009, 11: 489–515 Evolutionary game theory: ESS, convergence stability, and NIS Joseph Apaloo1, Joel S. Brown2 and Thomas L. Vincent3 1Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, Nova Scotia, Canada, 2Department of Biological Sciences, University of Illinois, Chicago, Illinois, USA and 3Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona, USA ABSTRACT Question: How are the three main stability concepts from evolutionary game theory – evolutionarily stable strategy (ESS), convergence stability, and neighbourhood invader strategy (NIS) – related to each other? Do they form a basis for the many other definitions proposed in the literature? Mathematical methods: Ecological and evolutionary dynamics of population sizes and heritable strategies respectively, and adaptive and NIS landscapes. Results: Only six of the eight combinations of ESS, convergence stability, and NIS are possible. An ESS that is NIS must also be convergence stable; and a non-ESS, non-NIS cannot be convergence stable. A simple example shows how a single model can easily generate solutions with all six combinations of stability properties and explains in part the proliferation of jargon, terminology, and apparent complexity that has appeared in the literature. A tabulation of most of the evolutionary stability acronyms, definitions, and terminologies is provided for comparison. Key conclusions: The tabulated list of definitions related to evolutionary stability are variants or combinations of the three main stability concepts. Keywords: adaptive landscape, convergence stability, Darwinian dynamics, evolutionary game stabilities, evolutionarily stable strategy, neighbourhood invader strategy, strategy dynamics. INTRODUCTION Evolutionary game theory has and continues to make great strides.
    [Show full text]
  • Lecture Notes
    GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies ..................................
    [Show full text]
  • Game Theoretic Interaction and Decision: a Quantum Analysis
    games Article Game Theoretic Interaction and Decision: A Quantum Analysis Ulrich Faigle 1 and Michel Grabisch 2,* 1 Mathematisches Institut, Universität zu Köln, Weyertal 80, 50931 Köln, Germany; [email protected] 2 Paris School of Economics, University of Paris I, 106-112, Bd. de l’Hôpital, 75013 Paris, France * Correspondence: [email protected]; Tel.: +33-144-07-8744 Received: 12 July 2017; Accepted: 21 October 2017; Published: 6 November 2017 Abstract: An interaction system has a finite set of agents that interact pairwise, depending on the current state of the system. Symmetric decomposition of the matrix of interaction coefficients yields the representation of states by self-adjoint matrices and hence a spectral representation. As a result, cooperation systems, decision systems and quantum systems all become visible as manifestations of special interaction systems. The treatment of the theory is purely mathematical and does not require any special knowledge of physics. It is shown how standard notions in cooperative game theory arise naturally in this context. In particular, states of general interaction systems are seen to arise as linear superpositions of pure quantum states and Fourier transformation to become meaningful. Moreover, quantum games fall into this framework. Finally, a theory of Markov evolution of interaction states is presented that generalizes classical homogeneous Markov chains to the present context. Keywords: cooperative game; decision system; evolution; Fourier transform; interaction system; measurement; quantum game 1. Introduction In an interaction system, economic (or general physical) agents interact pairwise, but do not necessarily cooperate towards a common goal. However, this model arises as a natural generalization of the model of cooperative TU games, for which already Owen [1] introduced the co-value as an assessment of the pairwise interaction of two cooperating players1.
    [Show full text]
  • 8. Maxmin and Minmax Strategies
    CMSC 474, Introduction to Game Theory 8. Maxmin and Minmax Strategies Mohammad T. Hajiaghayi University of Maryland Outline Chapter 2 discussed two solution concepts: Pareto optimality and Nash equilibrium Chapter 3 discusses several more: Maxmin and Minmax Dominant strategies Correlated equilibrium Trembling-hand perfect equilibrium e-Nash equilibrium Evolutionarily stable strategies Worst-Case Expected Utility For agent i, the worst-case expected utility of a strategy si is the minimum over all possible Husband Opera Football combinations of strategies for the other agents: Wife min u s ,s Opera 2, 1 0, 0 s-i i ( i -i ) Football 0, 0 1, 2 Example: Battle of the Sexes Wife’s strategy sw = {(p, Opera), (1 – p, Football)} Husband’s strategy sh = {(q, Opera), (1 – q, Football)} uw(p,q) = 2pq + (1 – p)(1 – q) = 3pq – p – q + 1 We can write uw(p,q) For any fixed p, uw(p,q) is linear in q instead of uw(sw , sh ) • e.g., if p = ½, then uw(½,q) = ½ q + ½ 0 ≤ q ≤ 1, so the min must be at q = 0 or q = 1 • e.g., minq (½ q + ½) is at q = 0 minq uw(p,q) = min (uw(p,0), uw(p,1)) = min (1 – p, 2p) Maxmin Strategies Also called maximin A maxmin strategy for agent i A strategy s1 that makes i’s worst-case expected utility as high as possible: argmaxmin ui (si,s-i ) si s-i This isn’t necessarily unique Often it is mixed Agent i’s maxmin value, or security level, is the maxmin strategy’s worst-case expected utility: maxmin ui (si,s-i ) si s-i For 2 players it simplifies to max min u1s1, s2 s1 s2 Example Wife’s and husband’s strategies
    [Show full text]
  • Collusion Constrained Equilibrium
    Theoretical Economics 13 (2018), 307–340 1555-7561/20180307 Collusion constrained equilibrium Rohan Dutta Department of Economics, McGill University David K. Levine Department of Economics, European University Institute and Department of Economics, Washington University in Saint Louis Salvatore Modica Department of Economics, Università di Palermo We study collusion within groups in noncooperative games. The primitives are the preferences of the players, their assignment to nonoverlapping groups, and the goals of the groups. Our notion of collusion is that a group coordinates the play of its members among different incentive compatible plans to best achieve its goals. Unfortunately, equilibria that meet this requirement need not exist. We instead introduce the weaker notion of collusion constrained equilibrium. This al- lows groups to put positive probability on alternatives that are suboptimal for the group in certain razor’s edge cases where the set of incentive compatible plans changes discontinuously. These collusion constrained equilibria exist and are a subset of the correlated equilibria of the underlying game. We examine four per- turbations of the underlying game. In each case,we show that equilibria in which groups choose the best alternative exist and that limits of these equilibria lead to collusion constrained equilibria. We also show that for a sufficiently broad class of perturbations, every collusion constrained equilibrium arises as such a limit. We give an application to a voter participation game that shows how collusion constraints may be socially costly. Keywords. Collusion, organization, group. JEL classification. C72, D70. 1. Introduction As the literature on collective action (for example, Olson 1965) emphasizes, groups often behave collusively while the preferences of individual group members limit the possi- Rohan Dutta: [email protected] David K.
    [Show full text]
  • Stability and Median Rationalizability for Aggregate Matchings
    games Article Stability and Median Rationalizability for Aggregate Matchings Federico Echenique 1, SangMok Lee 2, Matthew Shum 1 and M. Bumin Yenmez 3,* 1 Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA; [email protected] (F.E.); [email protected] (M.S.) 2 Department of Economics, Washington University in St. Louis, St. Louis, MO 63130, USA; [email protected] 3 Department of Economics, Boston College, Chestnut Hill, MA 02467, USA * Correspondence: [email protected] Abstract: We develop the theory of stability for aggregate matchings used in empirical studies and establish fundamental properties of stable matchings including the result that the set of stable matchings is a non-empty, complete, and distributive lattice. Aggregate matchings are relevant as matching data in revealed preference theory. We present a result on rationalizing a matching data as the median stable matching. Keywords: aggregate matching; median stable matching; rationalizability; lattice 1. Introduction Following the seminal work of [1], an extensive literature has developed regarding matching markets with non-transferable utility. This literature assumes that there are agent-specific preferences, and studies the existence of stable matchings in which each Citation: Echenique, F.; Lee, S.; agent prefers her assigned partner to the outside option of being unmatched, and there Shum, M.; Yenmez, M.B. Stability and are no pairs of agents that would like to match with each other rather than keeping their Median Rationalizability for assigned partners. Aggregate Matchings. Games 2021, 12, In this paper, we develop the theory of stability for aggregate matchings, which we 33.
    [Show full text]
  • Rationalizable Implementation of Correspondences∗
    Rationalizable Implementation of Correspondences∗ Takashi Kunimotoyand Roberto Serranoz This Version: May 2016 Abstract We come close to characterizing the class of social choice correspon- dences that are implementable in rationalizable strategies. We identify a new condition, which we call set-monotonicity, and show that it is necessary and almost sufficient for rationalizable implementation. Set-monotonicity is much weaker than Maskin monotonicity, which is the key condition for Nash implementation and which also had been shown to be necessary for rationalizable implementation of social choice functions. Set-monotonicity reduces to Maskin monotonicity in the case of functions. We conclude that the conditions for rationalizable implementation are not only starkly differ- ent from, but also much weaker than those for Nash implementation, when we consider social choice correspondences. JEL Classification: C72, D78, D82. Keywords: Complete information, implementation, Maskin monotonicity, rationalizability, set-monotonicity, social choice correspondence. 1 Introduction The design of institutions to be used by rational agents has been an important research agenda in economic theory. As captured by the notion of Nash equilib- rium, rationality is encapsulated in two aspects: these are (i) the best responses of agents to their beliefs, and (ii) that those beliefs are correct, the so-called rational ∗Financial support from the Japan Society for the Promotion of Science (24330078, 25780128) (Kunimoto) is gratefully acknowledged. All remaining errors are our own. ySchool of Economics, Singapore Management University, 90 Stamford Road, Singapore 178903; [email protected] zDepartment of Economics, Brown University, Providence, RI 02912, U.S.A.; roberto [email protected] 1 expectations assumption. One can drop the latter and retain the former, moving then into the realm of rationalizability.
    [Show full text]
  • 14.12 Game Theory Lecture Notes∗ Lectures 7-9
    14.12 Game Theory Lecture Notes∗ Lectures 7-9 Muhamet Yildiz Intheselecturesweanalyzedynamicgames(withcompleteinformation).Wefirst analyze the perfect information games, where each information set is singleton, and develop the notion of backwards induction. Then, considering more general dynamic games, we will introduce the concept of the subgame perfection. We explain these concepts on economic problems, most of which can be found in Gibbons. 1 Backwards induction The concept of backwards induction corresponds to the assumption that it is common knowledge that each player will act rationally at each node where he moves — even if his rationality would imply that such a node will not be reached.1 Mechanically, it is computed as follows. Consider a finite horizon perfect information game. Consider any node that comes just before terminal nodes, that is, after each move stemming from this node, the game ends. If the player who moves at this node acts rationally, he will choose the best move for himself. Hence, we select one of the moves that give this player the highest payoff. Assigning the payoff vector associated with this move to the node at hand, we delete all the moves stemming from this node so that we have a shorter game, where our node is a terminal node. Repeat this procedure until we reach the origin. ∗These notes do not include all the topics that will be covered in the class. See the slides for a more complete picture. 1 More precisely: at each node i the player is certain that all the players will act rationally at all nodes j that follow node i; and at each node i the player is certain that at each node j that follows node i the player who moves at j will be certain that all the players will act rationally at all nodes k that follow node j,...ad infinitum.
    [Show full text]
  • Nash Equilibrium
    Lecture 3: Nash equilibrium Nash equilibrium: The mathematician John Nash introduced the concept of an equi- librium for a game, and equilibrium is often called a Nash equilibrium. They provide a way to identify reasonable outcomes when an easy argument based on domination (like in the prisoner's dilemma, see lecture 2) is not available. We formulate the concept of an equilibrium for a two player game with respective 0 payoff matrices PR and PC . We write PR(s; s ) for the payoff for player R when R plays 0 s and C plays s, this is simply the (s; s ) entry the matrix PR. Definition 1. A pair of strategies (^sR; s^C ) is an Nash equilbrium for a two player game if no player can improve his payoff by changing his strategy from his equilibrium strategy to another strategy provided his opponent keeps his equilibrium strategy. In terms of the payoffs matrices this means that PR(sR; s^C ) ≤ P (^sR; s^C ) for all sR ; and PC (^sR; sC ) ≤ P (^sR; s^C ) for all sc : The idea at work in the definition of Nash equilibrium deserves a name: Definition 2. A strategy s^R is a best-response to a strategy sc if PR(sR; sC ) ≤ P (^sR; sC ) for all sR ; i.e. s^R is such that max PR(sR; sC ) = P (^sR; sC ) sR We can now reformulate the idea of a Nash equilibrium as The pair (^sR; s^C ) is a Nash equilibrium if and only ifs ^R is a best-response tos ^C and s^C is a best-response tos ^R.
    [Show full text]
  • Lecture Notes
    Chapter 12 Repeated Games In real life, most games are played within a larger context, and actions in a given situation affect not only the present situation but also the future situations that may arise. When a player acts in a given situation, he takes into account not only the implications of his actions for the current situation but also their implications for the future. If the players arepatient andthe current actionshavesignificant implications for the future, then the considerations about the future may take over. This may lead to a rich set of behavior that may seem to be irrational when one considers the current situation alone. Such ideas are captured in the repeated games, in which a "stage game" is played repeatedly. The stage game is repeated regardless of what has been played in the previous games. This chapter explores the basic ideas in the theory of repeated games and applies them in a variety of economic problems. As it turns out, it is important whether the game is repeated finitely or infinitely many times. 12.1 Finitely-repeated games Let = 0 1 be the set of all possible dates. Consider a game in which at each { } players play a "stage game" , knowing what each player has played in the past. ∈ Assume that the payoff of each player in this larger game is the sum of the payoffsthat he obtains in the stage games. Denote the larger game by . Note that a player simply cares about the sum of his payoffs at the stage games. Most importantly, at the beginning of each repetition each player recalls what each player has 199 200 CHAPTER 12.
    [Show full text]