What Is Game Theory Trying to Accomplish?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nash-Type Bargaining with Coherent Acceptability Measures
Splitting a Random Pie: Nash-Type Bargaining with Coherent Acceptability Measures Walter J. Gutjahr University of Vienna, Vienna, Austria, [email protected] Raimund M. Kovacevic Vienna University of Technology, Vienna, Austria, [email protected] David Wozabal Technische Universit¨atM¨unchen, Munich, Germany, [email protected] We propose an axiomatic solution for cooperative stochastic games where risk averse players bargain for the allocation of profits from a joint project that depends on management decisions by the agents. We model risk preferences by coherent acceptability functionals and show that in this setting the axioms of Pareto optimality, symmetry, and strategy proofness fully characterize a bargaining solution, which can be efficiently computed by solving a stochastic optimization problem. Furthermore, we demonstrate that there is no conflict of interest between players about management decisions and characterize special cases where random payoffs of players are simple functions of overall project profit. In particular, we show that for players with distortion risk functionals, the optimal bargaining solution can be represented by an exchange of standard options contracts with the project profit as the underlying. We illustrate the concepts in the paper by a detailed example of risk averse households that jointly invest into a solar plant. Key words : Stochastic bargaining games; coherent risk measures; stochastic programming; photovoltaics History : 1. Introduction If a project is undertaken jointly by several agents and there is no efficient market for individual contributions, the question of how to distribute the project's profits arises. The case when profits are deterministic is well studied in the field of cooperative game theory. -
Game Theory Lecture Notes
Game Theory: Penn State Math 486 Lecture Notes Version 2.1.1 Christopher Griffin « 2010-2021 Licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License With Major Contributions By: James Fan George Kesidis and Other Contributions By: Arlan Stutler Sarthak Shah Contents List of Figuresv Preface xi 1. Using These Notes xi 2. An Overview of Game Theory xi Chapter 1. Probability Theory and Games Against the House1 1. Probability1 2. Random Variables and Expected Values6 3. Conditional Probability8 4. The Monty Hall Problem 11 Chapter 2. Game Trees and Extensive Form 15 1. Graphs and Trees 15 2. Game Trees with Complete Information and No Chance 18 3. Game Trees with Incomplete Information 22 4. Games of Chance 24 5. Pay-off Functions and Equilibria 26 Chapter 3. Normal and Strategic Form Games and Matrices 37 1. Normal and Strategic Form 37 2. Strategic Form Games 38 3. Review of Basic Matrix Properties 40 4. Special Matrices and Vectors 42 5. Strategy Vectors and Matrix Games 43 Chapter 4. Saddle Points, Mixed Strategies and the Minimax Theorem 45 1. Saddle Points 45 2. Zero-Sum Games without Saddle Points 48 3. Mixed Strategies 50 4. Mixed Strategies in Matrix Games 53 5. Dominated Strategies and Nash Equilibria 54 6. The Minimax Theorem 59 7. Finding Nash Equilibria in Simple Games 64 8. A Note on Nash Equilibria in General 66 Chapter 5. An Introduction to Optimization and the Karush-Kuhn-Tucker Conditions 69 1. A General Maximization Formulation 70 2. Some Geometry for Optimization 72 3. -
Uniqueness and Symmetry in Bargaining Theories of Justice
Philos Stud DOI 10.1007/s11098-013-0121-y Uniqueness and symmetry in bargaining theories of justice John Thrasher Ó Springer Science+Business Media Dordrecht 2013 Abstract For contractarians, justice is the result of a rational bargain. The goal is to show that the rules of justice are consistent with rationality. The two most important bargaining theories of justice are David Gauthier’s and those that use the Nash’s bargaining solution. I argue that both of these approaches are fatally undermined by their reliance on a symmetry condition. Symmetry is a substantive constraint, not an implication of rationality. I argue that using symmetry to generate uniqueness undermines the goal of bargaining theories of justice. Keywords David Gauthier Á John Nash Á John Harsanyi Á Thomas Schelling Á Bargaining Á Symmetry Throughout the last century and into this one, many philosophers modeled justice as a bargaining problem between rational agents. Even those who did not explicitly use a bargaining problem as their model, most notably Rawls, incorporated many of the concepts and techniques from bargaining theories into their understanding of what a theory of justice should look like. This allowed them to use the powerful tools of game theory to justify their various theories of distributive justice. The debates between partisans of different theories of distributive justice has tended to be over the respective benefits of each particular bargaining solution and whether or not the solution to the bargaining problem matches our pre-theoretical intuitions about justice. There is, however, a more serious problem that has effectively been ignored since economists originally J. -
2.3: Modeling with Differential Equations Some General Comments: a Mathematical Model Is an Equation Or Set of Equations That Mi
2.3: Modeling with Differential Equations Some General Comments: A mathematical model is an equation or set of equations that mimic the behavior of some phenomenon under certain assumptions/approximations. Phenomena that contain rates/change can often be modeled with differential equations. Disclaimer: In forming a mathematical model, we make various assumptions and simplifications. I am never going to claim that these models perfectly fit physical reality. But mathematical modeling is a key component of the following scientific method: 1. We make assumptions (a hypothesis) and form a model. 2. We mathematically analyze the model. (For differential equations, these are the techniques we are learning this quarter). 3. If the model fits the phenomena well, then we have evidence that the assumptions of the model might be valid. If the model fits the phenomena poorly, then we learn that some of our assumptions are invalid (so we still learn something). Concerning this course: I am not expecting you to be an expect in forming mathematical models. For this course and on exams, I expect that: 1. You understand how to do all the homework! If I give you a problem on the exam that is very similar to a homework problem, you must be prepared to show your understanding. 2. Be able to translate a basic statement involving rates and language like in the homework. See my previous posting on applications for practice (and see homework from 1.1, 2.3, 2.5 and throughout the other assignments). 3. If I give an application on an exam that is completely new and involves language unlike homework, then I will give you the differential equation (you won’t have to make up a new model). -
An Introduction to Mathematical Modelling
An Introduction to Mathematical Modelling Glenn Marion, Bioinformatics and Statistics Scotland Given 2008 by Daniel Lawson and Glenn Marion 2008 Contents 1 Introduction 1 1.1 Whatismathematicalmodelling?. .......... 1 1.2 Whatobjectivescanmodellingachieve? . ............ 1 1.3 Classificationsofmodels . ......... 1 1.4 Stagesofmodelling............................... ....... 2 2 Building models 4 2.1 Gettingstarted .................................. ...... 4 2.2 Systemsanalysis ................................. ...... 4 2.2.1 Makingassumptions ............................. .... 4 2.2.2 Flowdiagrams .................................. 6 2.3 Choosingmathematicalequations. ........... 7 2.3.1 Equationsfromtheliterature . ........ 7 2.3.2 Analogiesfromphysics. ...... 8 2.3.3 Dataexploration ............................... .... 8 2.4 Solvingequations................................ ....... 9 2.4.1 Analytically.................................. .... 9 2.4.2 Numerically................................... 10 3 Studying models 12 3.1 Dimensionlessform............................... ....... 12 3.2 Asymptoticbehaviour ............................. ....... 12 3.3 Sensitivityanalysis . ......... 14 3.4 Modellingmodeloutput . ....... 16 4 Testing models 18 4.1 Testingtheassumptions . ........ 18 4.2 Modelstructure.................................. ...... 18 i 4.3 Predictionofpreviouslyunuseddata . ............ 18 4.3.1 Reasonsforpredictionerrors . ........ 20 4.4 Estimatingmodelparameters . ......... 20 4.5 Comparingtwomodelsforthesamesystem . ......... -
Stable Allocations and the Practice of Market Design
15 OCTOBER 2012 Scientific Background on the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2012 STABLE ALLOCATIONS AND THE PRACTICE OF MARKET DESIGN compiled by the Economic Sciences Prize Committee of the Royal Swedish Academy of Sciences THE ROYAL SWEDISH ACADEMY OF SCIENCES has as its aim to promote the sciences and strengthen their influence in society. BOX 50005 (LILLA FRESCATIVÄGEN 4 A), SE-104 05 STOCKHOLM, SWEDEN TEL +46 8 673 95 00, FAX +46 8 15 56 70, [email protected] HTTP://KVA.SE 1 Introduction Economists study how societies allocate resources. Some allocation problems are solved by the price system: high wages attract workers into a particu- lar occupation, and high energy prices induce consumers to conserve energy. In many instances, however, using the price system would encounter legal and ethical objections. Consider, for instance, the allocation of public-school places to children, or the allocation of human organs to patients who need transplants. Furthermore, there are many markets where the price system operates but the traditional assumption of perfect competition is not even approximately satis…ed. In particular, many goods are indivisible and het- erogeneous, whereby the market for each type of good becomes very thin. How these thin markets allocate resources depends on the institutions that govern transactions. This year’s prizewinning work encompasses a theoretical framework for analyzing resource allocation, as well as empirical studies and actual redesign of real-world institutions such as labor-market clearinghouses and school ad- missions procedures. The foundations for the theoretical framework were laid in 1962, when David Gale and Lloyd Shapley published a mathematical inquiry into a certain class of allocation problems. -
Game Theoretic Interaction and Decision: a Quantum Analysis
games Article Game Theoretic Interaction and Decision: A Quantum Analysis Ulrich Faigle 1 and Michel Grabisch 2,* 1 Mathematisches Institut, Universität zu Köln, Weyertal 80, 50931 Köln, Germany; [email protected] 2 Paris School of Economics, University of Paris I, 106-112, Bd. de l’Hôpital, 75013 Paris, France * Correspondence: [email protected]; Tel.: +33-144-07-8744 Received: 12 July 2017; Accepted: 21 October 2017; Published: 6 November 2017 Abstract: An interaction system has a finite set of agents that interact pairwise, depending on the current state of the system. Symmetric decomposition of the matrix of interaction coefficients yields the representation of states by self-adjoint matrices and hence a spectral representation. As a result, cooperation systems, decision systems and quantum systems all become visible as manifestations of special interaction systems. The treatment of the theory is purely mathematical and does not require any special knowledge of physics. It is shown how standard notions in cooperative game theory arise naturally in this context. In particular, states of general interaction systems are seen to arise as linear superpositions of pure quantum states and Fourier transformation to become meaningful. Moreover, quantum games fall into this framework. Finally, a theory of Markov evolution of interaction states is presented that generalizes classical homogeneous Markov chains to the present context. Keywords: cooperative game; decision system; evolution; Fourier transform; interaction system; measurement; quantum game 1. Introduction In an interaction system, economic (or general physical) agents interact pairwise, but do not necessarily cooperate towards a common goal. However, this model arises as a natural generalization of the model of cooperative TU games, for which already Owen [1] introduced the co-value as an assessment of the pairwise interaction of two cooperating players1. -
Lecture Notes1 Mathematical Ecnomics
Lecture Notes1 Mathematical Ecnomics Guoqiang TIAN Department of Economics Texas A&M University College Station, Texas 77843 ([email protected]) This version: August, 2020 1The most materials of this lecture notes are drawn from Chiang’s classic textbook Fundamental Methods of Mathematical Economics, which are used for my teaching and con- venience of my students in class. Please not distribute it to any others. Contents 1 The Nature of Mathematical Economics 1 1.1 Economics and Mathematical Economics . 1 1.2 Advantages of Mathematical Approach . 3 2 Economic Models 5 2.1 Ingredients of a Mathematical Model . 5 2.2 The Real-Number System . 5 2.3 The Concept of Sets . 6 2.4 Relations and Functions . 9 2.5 Types of Function . 11 2.6 Functions of Two or More Independent Variables . 12 2.7 Levels of Generality . 13 3 Equilibrium Analysis in Economics 15 3.1 The Meaning of Equilibrium . 15 3.2 Partial Market Equilibrium - A Linear Model . 16 3.3 Partial Market Equilibrium - A Nonlinear Model . 18 3.4 General Market Equilibrium . 19 3.5 Equilibrium in National-Income Analysis . 23 4 Linear Models and Matrix Algebra 25 4.1 Matrix and Vectors . 26 i ii CONTENTS 4.2 Matrix Operations . 29 4.3 Linear Dependance of Vectors . 32 4.4 Commutative, Associative, and Distributive Laws . 33 4.5 Identity Matrices and Null Matrices . 34 4.6 Transposes and Inverses . 36 5 Linear Models and Matrix Algebra (Continued) 41 5.1 Conditions for Nonsingularity of a Matrix . 41 5.2 Test of Nonsingularity by Use of Determinant . -
Fairness in Bankruptcy Situations: an Experimental Study
Fairness in bankruptcy situations: an experimental study Alexander W. Cappelen Roland I. Luttens Erik Ø. Sørensen Bertil Tungodden∗ August 11, 2015 Abstract The pari passu principle is the most prominent principle in the law of in- solvency. We report from a lab experiment designed to study whether people find this principle a fair solution to the bankruptcy problem. The experi- mental design generates situations where participants work and accumulate claims in firms, some of which subsequently go bankrupt. Third-party arbi- trators are randomly assigned to determine how the liquidation value of the bankrupt firms should be distributed between claimants. Our main finding is that there is a striking support for the pari passu principle of awarding claimants proportionally to their pre-insolvency claims. We estimate a ran- dom utility model that allows for the arbitrators to differ in what they consider a fair solution to the bankruptcy problem and find that about 85 percent of the participants endorse the proportional rule. We also find that a non-negligible fraction of the arbitrators follow the constrained equal losses rule, while there is almost no support in our experiment for the constrained equal awards rule or other fairness rules suggested in the normative literature. Finally, we show that the estimated random utility model nicely captures the observed arbi- trator behavior, in terms of both the overall distribution of awards and the relationship between awards and claims. 1 Introduction Bankruptcy law is concerned with situations where a debtor is unable to pay its debts and it constitutes an essential element in any well-functioning market econ- omy (Hotchkiss, John, Moordadian, and Thorburn, 2008). -
Limitations on the Use of Mathematical Models in Transportation Policy Analysis
Limitations on the Use of Mathematical Models in Transportation Policy Analysis ABSTRACT: Government agencies are using many kinds of mathematical models to forecast the effects of proposed government policies. Some models are useful; others are not; all have limitations. While modeling can contribute to effective policyma king, it can con tribute to poor decision-ma king if policymakers cannot assess the quality of a given application. This paper describes models designed for use in policy analyses relating to the automotive transportation system, discusses limitations of these models, and poses questions policymakers should ask about a model to be sure its use is appropriate. Introduction Mathematical modeling of real-world use in analyzing the medium and long-range ef- systems has increased significantly in the past fects of federal policy decisions. A few of them two decades. Computerized simulations of have been applied in federal deliberations con- physical and socioeconomic systems have cerning policies relating to energy conserva- proliferated as federal agencies have funded tion, environmental pollution, automotive the development and use of such models. A safety, and other complex issues. The use of National Science Foundation study established mathematical models in policy analyses re- that between 1966 and 1973 federal agencies quires that policymakers obtain sufficient infor- other than the Department of Defense sup- mation on the models (e-g., their structure, ported or used more than 650 models limitations, relative reliability of output) to make developed at a cost estimated at $100 million informed judgments concerning the value of (Fromm, Hamilton, and Hamilton 1974). Many the forecasts the models produce. -
PIER Working Paper 11-035
Penn Institute for Economic Research Department of Economics University of Pennsylvania 3718 Locust Walk Philadelphia, PA 19104-6297 [email protected] http://economics.sas.upenn.edu/pier PIER Working Paper 11-035 “Identification and Estimation of Stochastic Bargaining Models Fourth Version” by Antonio Merlo and Xun Tang http://ssrn.com/abstract=1946367 Identification and Estimation of Stochastic Bargaining Models∗ Antonio Merlo† Xun Tang‡ Revised, October 2011 Abstract Stochastic sequential bargaining models (Merlo and Wilson (1995, 1998)) have found wide applications in different fields including political economy and macroeconomics due to their flexibility in explaining delays in reaching an agreement. This paper presents new results in nonparametric identification and estimation of such models under different data scenarios. Key words: Nonparametric identification and estimation, non-cooperative bargaining, stochastic sequential bargaining, rationalizable counterfactual outcomes. JEL codes: C14, C35, C73, C78. ∗We thank co-editor Jean-Marc Robin and three anonymous referees for their helpful suggestions. Steven Berry, Herman Bierens, Hanming Fang, Philip Haile, Isabelle Perrigne, Katja Seim, Elie Tamer, Petra Todd, Quang Vuong, Ken Wolpin and seminar and conference participants at several institutions provided useful comments. We thank Hulya Eraslan for sharing her data with us and Chamna Yoon for providing excellent research assistance. The usual disclaimer applies. †Department of Economics, University of Pennsylvania, CEPR, CESifo and NBER, [email protected]. ‡Department of Economics, University of Pennsylvania, [email protected]. 1 1 Introduction Starting with the seminal contributions of Stahl (1972) and Rubinstein (1982), noncooper- ative (or strategic) bargaining theory has flourished in the past thirty years. The original model of bilateral bargaining with alternating offers and complete information has been extended in a number of directions allowing for more general extensive forms, information structure and more than two players (e.g. -
Introduction to Game Theory
Economic game theory: a learner centred introduction Author: Dr Peter Kührt Introduction to game theory Game theory is now an integral part of business and politics, showing how decisively it has shaped modern notions of strategy. Consultants use it for projects; managers swot up on it to make smarter decisions. The crucial aim of mathematical game theory is to characterise and establish rational deci- sions for conflict and cooperation situations. The problem with it is that none of the actors know the plans of the other “players” or how they will make the appropriate decisions. This makes it unclear for each player to know how their own specific decisions will impact on the plan of action (strategy). However, you can think about the situation from the perspective of the other players to build an expectation of what they are going to do. Game theory therefore makes it possible to illustrate social conflict situations, which are called “games” in game theory, and solve them mathematically on the basis of probabilities. It is assumed that all participants behave “rationally”. Then you can assign a value and a probability to each decision option, which ultimately allows a computational solution in terms of “benefit or profit optimisation”. However, people are not always strictly rational because seemingly “irrational” results also play a big role for them, e.g. gain in prestige, loss of face, traditions, preference for certain colours, etc. However, these “irrational" goals can also be measured with useful values so that “restricted rational behaviour” can result in computational results, even with these kinds of models.