Off-Grid Solar: Market Trends Report 2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Renewable Energy How Can We Keep the Lights On?
Commonwealth Class Renewable Energy How can we keep the lights on? In collaboration with Commonwealth Class Introduction Commonwealth values: Sustainable development, protecting the environment, valuing the importance and contributions of young people Curriculum links: Science, English and drama, design and technology, geography, citizenship, ICT, personal social and health education Core skills: Communication and collaboration, critical thinking and problem solving, digital literacy, global citizenship and civic responsibility Fossil fuels (coal, oil and natural Carbon capture and storage is gas) are non-renewable energy developing technology that resources, which means their separates carbon dioxide from supply is limited and they will the waste gases produced when eventually run out. Fossil fuels do burning fossil fuels. The carbon not renew themselves, while fuels dioxide is then transported and such as wood can be renewed if stored underground, for example new trees are planted. Coal and oil in old oil fields or gas fields such as release sulphur dioxide gas when those found under the North Sea. they burn, which causes breathing One of the UN’s Sustainable problems for living creatures and Development Goals is to ensure contributes to acid rain. access to affordable, reliable, Fossil fuels release carbon dioxide sustainable and modern energy when they burn, which adds to the for all. greenhouse effect and increases global warming. Of the three fossil fuels, for a given amount of energy released, coal produces the most carbon dioxide and natural gas produces the least. 2 Commonwealth Class Contents Overview: importance and scientific background 3 Activity 1: what keeps your lights on? 7 Activity 2: windmill energy challenge 8 Activity 3: solar heating 9 Cross-curricular activities 10 Appendix 12 3 Commonwealth Class OVERVIEW Why is it important? disturbed the balance of the Fossil fuels are also limited in Greenhouse gases such as carbon carbon cycle – the natural supply. -
1 Decentralised Rural Electrification
DECENTRALISED RURAL ELECTRIFICATION: THE CRITICAL SUCCESS FACTORS [EXPERIENCE OF ITDG1] By Ray Holland, Lahiru Perera, Teodoro Sanchez, Dr Rona Wilkinson Summary Rural areas of poorer countries are often at a disadvantage in terms of access to all types of services – roads, health facilities, markets, information, clean water. The high cost of providing these services in remote areas has led to new approaches being tried, based on self-help and the private sector rather than traditional government-led solutions. Energy services for household, agriculture and production are no exception. In the case of electricity, which has the potential to improve productivity and provide considerable welfare benefits (lighting, entertainment, etc.) traditional grid extension is no longer seen as the only solution. Decentralised supplies, whether at an individual household level or at community level, are now an established, cost-effective alternative for the two billion rural people who are currently without access to mains electricity. In many cases renewables provide the most financially attractive means of providing that energy. Supplies may be of a similar standard to grid supplies (mini-grids supplied by diesel or micro hydro) or they may be low voltage household supplies (PV, battery charging). This review of recent practice draws on ITDG’s twenty years experience of supporting off-grid solutions in Sri Lanka, Nepal, Zimbabwe and Peru in particular, and on work by other organisations in other countries, such as Indonesia, Kenya, Vietnam, South -
32 Practical Tips for Sustainable Off-Grid Business
© Sun-Connect 2014 1 Business Strategies ___________________________________________________________________________________________ No Grid? No Problem! 32 Practical Tips for Sustainable Off-Grid Business Copyright © 2015 by Sun-Connect / Stiftung Solarenergie - Solar Energy Foundation Cover photo: Stiftung Solarenergie - Solar Energy Foundation This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes, without special permission from the copyright holder(s) provided acknowledgement of the source is made. No use of this publication may be made for resale or other commercial purpose, without the written permission of the copyright holder(s). Sun-Connect / Stiftung Solarenergie - Solar Energy Foundation Weberstrasse 10, 79249 Merzhausen, Germany Contact: [email protected] Web: www.sun-Connect-news.org / www.stiftung-solarenergie.org 2 © Sun-Connect 2014 Content Preface ................................................................................................................................... 5 The Market 1. No grid? No problem! .................................................................................................. 8 2. Off-grid electrification: USD 136 billion market potential ........................................ 11 3. Electricity without the grid ........................................................................................ 14 4. What is the strongest driving force for off-grid electrification? ................................ 18 5. Independency from -
1 the Electricity and Gas Supply Chain
UNIT 1 The electricity and gas supply chain ‘There is always someone in the supply chain who wins and someone who loses.’ John Felmy, Chief Economist, American Petroleum Institute In the energy sector, which part is ‘winning’ at the moment and which is ‘losing’? Was it the same 10 years ago? 1.1 Label the photos of stages in the energy supply chain. Use these words. LNG terminal ■ wind turbines ■ central heating boiler ■ trading room ■ utility bill ■ gas fi eld large industrial customer ■ gas meter ■ electricity substation ■ high voltage lines 1 high voltage lines 2 3 4 5 6 7 8 9 10 1.2 Complete the gas and electricity supply chains. Use these words. Energy services ■ Transport and storage ■ Transmission ■ Generation ■ Supply and retail Exploration and production (EP) 3 Trading and wholesale Trading and wholesale 1 4 GAS Distribution Distribution Supply and retail 5 2 ELECTRICITY Energy services PRONUNCIATION 2.1 Listen and underline the stress in these words. What is the general rule for: CD TRACK 2 generation retail industrial transmission a words that end -ion? industry production storage customer b words of three or more syllables? turbine utility exploration meter c nouns with two syllables? distribution service energy terminal 2.2 Listen again and repeat. 10 1965_EnergyEnglish-010-033-TOP.indd 10 28/7/09 14:37:31 Topic Unit 1 GRAMMAR The passive is formed with the verb be + past participle. Further grammar practice The passive page 82 Gas is extracted from underground reservoirs. 3 Complete the sentences about the supply chain. Use the passive form of the verbs. -
ST Teleport – VSAT Provider License in Bangladesh And
Breaking News SOLAR BOOSTS PLATFORM WITH THREE NEW CHANNELS WITH MEASAT Kuala Lumpur, 26 November 2010 – MEASAT Satellite Systems Sdn. Bhd. (“MEASAT”) announced today that Solar Entertainment Corporation (“Solar”) has expanded its platform with three new channels; NBA Premium HD, DIVA Universal and NBC Universal. The new channels are distributed through the MCPC network in the Philippines via the MEASAT-3 and MEASAT-3a satellites. Solar is a Philippine-based media company with cable channels, Free-TV Channels (Solar TV/RPN, ETC/SBN and 2nd Avenue/RJTV) and also in the film distribution business. The film distribution unit is the local affiliate for United International Pictures. “A customer since 2004, we are proud to have been able to support Solar’s expansion over the last 6 years,” said Yau Chyong Lim, Senior Director, Sales and Marketing, MEASAT. NBA Premium HD is a television specialty channel in High Definition that is dedicated to showcasing the sport of basketball in the United States. Both DIVA and NBC Universal are owned by NBC Universal Global Networks. DIVA and NBC are television channels specializing in movies and television series in the thriller, drama, comedy, crime and investigation genre. “We look forward to continuing our support of Solar as they expand their services,” added Yau. About MEASAT MEASAT is a premium supplier of satellite communication services to Asia’s leading broadcasters, DTH platforms and telecom operators. Operating four communications satellites, the MEASAT fleet is able to provide satellite capacity to over 145 countries representing 80% of the world’s population across Asia Pacific, Middle East, Africa, Europe and Australia. -
Science Form 3 Chapter 8 Generation of Electricity
SCIENCE FORM 3 CHAPTER 8 GENERATION OF ELECTRICITY • Electrical energy for home and commercial use is produced by machines called generators. • Generators convert mechanical energy to electrical energy. • A generator consists of copper coils surrounded by magnet • Turbines are usually connected to the copper coil of the generator by a shaft. • When the turbines are turned, the spinning shaft will cause the copper coil to spin and electrical energy is produced. Types of generators [ depends on sources of energy available on Earth] I. Thermal a. Sources: Fossil Fuel II. Hydroelectric a. Sources: Water III. Gas turbine a. Sources : Petroleum and natural gas IV. Diesel a. Sources : oil V. Nuclear a. Sources: Uranium Types of power station Thermal power station • coal, oil or gas is burnt in the furnace. Heat energy released is used to heat water in the boiler. • The water changes to high-pressure steam • The high pressure steam is used to turn the turbines which are attached to the generator • Electricity is produced in a generator by spinning an electromagnet inside fixed coils of wire • The condenser changes the steam back to water. Water is pumped back to the boiler • Vast amount of water are needed for the condenser and this can be obtained from a nearby river or lake 1 The Classroom Learning Academy Hydroelectric power • Water is held in a large reservoir station • Running water falls from the dam through a tunnel to spin the turbine • the turbine is attached to generators to produce electricity • no fuel is needed to supply energy to -
Residential Power Never Lack Power !
Residential Power Never lack power ! The generating sets in the new Residential Power range are of professional quality but are compact and sound insulated for home use. SDMO® generating sets are simple and practical and can be installed permanently outdoors. They start up automatically if there is a power cut, ensuring that life in the home can continue as normal – refrigerators and freezers will keep running, that heating and alarms systems will continue to operate and those working from home will not be disturbed. Residential Power run off LPG or natural gas. They are quiet and environmentally friendly with low emissions. Practical, automatic, simple: an alternative source of electricity that is always available ! Operating principle: Mains supply OK While the mains power supply is OK, The automatic transfer switch detects the the ATS* connects the mains to the distribution board. presence of the mains and selects the power source. If there is a power cut, the automatic transfer switch starts the generating set and switches the power source to restore the electrical supply within a few seconds. When the mains electricity supply returns to normal, the automatic transfer switch switches back to the mains, turns off the genset and continues to monitor the mains supply. * ATS : Automatic Transfer Switch Power cut When there is a power cut, the automatic transfer switch detects that there is no mains electricity and starts the generating set. The distribution board is then supplied from the genset which provides electricity to the home. SDMO Industries - 12 bis, rue de la Villeneuve - CS 92848 - 29228 BREST Cedex 2 - France Tél. -
Philippines in View Philippines Tv Industry-In-View
PHILIPPINES IN VIEW PHILIPPINES TV INDUSTRY-IN-VIEW Table of Contents PREFACE ................................................................................................................................................................ 5 1. EXECUTIVE SUMMARY ................................................................................................................................... 6 1.1. MARKET OVERVIEW .......................................................................................................................................... 6 1.2. PAY-TV MARKET ESTIMATES ............................................................................................................................... 6 1.3. PAY-TV OPERATORS .......................................................................................................................................... 6 1.4. PAY-TV AVERAGE REVENUE PER USER (ARPU) ...................................................................................................... 7 1.5. PAY-TV CONTENT AND PROGRAMMING ................................................................................................................ 7 1.6. ADOPTION OF DTT, OTT AND VIDEO-ON-DEMAND PLATFORMS ............................................................................... 7 1.7. PIRACY AND UNAUTHORIZED DISTRIBUTION ........................................................................................................... 8 1.8. REGULATORY ENVIRONMENT .............................................................................................................................. -
Energy and Change
NATURAL SCIENCES AND TECHNOLOGY TERM 3 GRADE 6 ENERGY AND CHANGE GM 2018 1 TEACHING PLAN Introduction Natural Science: The scientific method format Technology : The design process format UNIT 1 – Electric Circuits A system for Transferring Energy: Activity 1 – Electrical Pathways UNIT 2 – Circuit Diagrams Circuit Diagrams Circuit Symbols: Activity 2 – Symbols of electrical components UNIT 3 – Conductors Materials conducting electricity Copper as Conductor UNIT 4 – Insulators Non-metals as Insulators Plastic as Insulator: Activity 4 – Topic revision UNIT 5 – Using Electrical Circuits Electrical Circuits UNIT 6 – Fossil Fuels Formation of Fossil Fuels Coal in South Africa: Activity 6 – Explain how fossil fuels are made UNIT 7 – Cost of Electricity Cost of coal mines Cost of Transport Power Stations Saving Energy: Activity 7 – Appliances UNIT 8 – Illegal Connections Dangers of Illegal Connections: Activity 8 – Case Studies UNIT 9 – Renewable ways to Generate Electricity Non-renewable Energy Sources Renewable Energy Sources Wind Energy Solar Panels Hydro-Electric Power: Activity 9 –Energy Sources GM 2018 2 Contents NATURAL SCIENCES AND TECHNOLOGY ........................................................................................................ 0 TERM 3 ........................................................................................................................................................... 0 GRADE 6 ........................................................................................................................................................ -
Pioneering Energy Storage System Successfully Supports District Isolated from Mains Electricity for a Record 5 Hours
Press release Pioneering energy storage system successfully supports district isolated from mains electricity for a record 5 hours Benfeld, 16 December 2015 Following a test period over several months on “Concept Grid” - EDF R&D’s1 experimental platform in Seine-et-Marne - teams from French distribution system operator ERDF2 and power conversion specialists, SOCOMEC, have successfully validated the islanding of an entire district for periods up to a record 5 hours. This operation is part of the smart solar district pilot site -Nice Grid in the south of France - an ambitious smart electricity network project that generates and stores large amounts of solar energy. The global targets to reduce harmful emissions associated with the production of electrical power require a massive integration of renewable energy into our electricity networks. In order to support this significant integration – whilst also maintaining the quality of the networks – intelligent, decentralised systems are required to intermittently store the energy produced and to regulate distribution according to demand. ERDF, which is spearheading the project, targeted a district comprising 8 industrial clients and 3 large photovoltaic installations, generating a total of 430 kWp. An energy storage solution has been installed with a control system specifically designed to manage the disconnection and reconnection of the district to the mains supply. In disconnected or “islanded” mode, industrial clients continue to be supplied via Socomec’s PCS²’s energy storage system and photovoltaic production. Giovanny Diquerreau, Energy Storage Projects Director at Socomec, explains; “The Nice Grid project demonstrates that the local management of variable energy flow is achievable via efficient energy storage solutions. -
Rural Energy Access Through Solar Home Systems: Use Patterns and Opportunities for Improvement
Energy for Sustainable Development 37 (2017) 33–50 Contents lists available at ScienceDirect Energy for Sustainable Development Rural energy access through solar home systems: Use patterns and opportunities for improvement Ognen Stojanovski a,⁎,MarkThurbera, Frank Wolak a,b a Program on Energy and Sustainable Development (PESD), Stanford University, United States b Department of Economics and PESD, Stanford University, United States article info abstract Article history: Solar photovoltaic (PV) products are touted as a leading solution to long-term electrification and development Received 24 November 2016 problems in rural parts of Sub-Saharan Africa. Yet there is little available data on the interactions between Accepted 28 November 2016 solar products and other household energy sources (which solar PVs are often assumed to simply displace) or Available online xxxx the extent to which actual use patterns match up with the uses presumed by manufacturers and development agencies. This paper probes those questions through a survey that tracked approximately 500 early adopters of solar home systems in two off-grid markets in Africa. We find that these products were associated with large reductions in the use of kerosene and the charging of mobile phones outside the home. To a lesser extent, the use of small disposable batteries also decreased. However, solar home systems were, for the most part, not used to power radios, TVs, or flashlights. We also did not observe adopter households using these solar products to support income-generating activities. © 2016 International Energy Initiative. Published by Elsevier Inc. All rights reserved. Background and motivation estimated to represent less than 5% of the off-grid solar market by number of products sold as of June 2016 (GOGLA and Lighting Global, 2016). -
Pricing Electric Power in the Czech Republic and in Selected Countries
ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS Volume 64 114 Number 3, 2016 http://dx.doi.org/10.11118/actaun201664031001 PRICING ELECTRIC POWER IN THE CZECH REPUBLIC AND IN SELECTED COUNTRIES Eva Mazegue Pavelková1, Iva Živělová2 1 PPG Industries Czech Republic, s. r. o., Holandská 6/8, 639 00 Brno, Czech Republic 2 Department of Regional and Business Economics, Faculty of Regional Development and International Studies, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic Abstract MAZEGUE PAVELKOVÁ EVA, ŽIVĚLOVÁ IVA. 2016. Pricing Electric Power in the Czech Republic and in Selected Countries. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 64(3): 1001–1011. This paper focuses on state intervention in the pricing of electricity from renewable power sources in the Czech Republic when compared with the pricing in the Slovak Republic, Germany, France and Italy. In these countries the state intervention is implemented in diff erent forms, but the critical part of the price is regulated everywhere by the state. The price of electricity is determined by its production costs, which depend on the source from which electricity is produced. The highest cost of electricity is required to generate renewable energy, particularly solar power, while the lowest costs of power are associated with its production by coal-fi red and natural gas-fi red thermal power plants. However, hydroelectric power plants attain clearly the lowest cost for generating electricity. State intervention includes