Population Biology and Landscape Ecology of Digenetic

Total Page:16

File Type:pdf, Size:1020Kb

Population Biology and Landscape Ecology of Digenetic POPULATION BIOLOGY AND LANDSCAPE ECOLOGY OF DIGENETIC TREMATODE PARASITES IN THEIR GASTROPOD HOSTS, WITH SPECIAL EMPHASIS ON ECHINOSTOMA SPP. BY MICHAEL R. ZIMMERMANN A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCE in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Biology May 2014 Winston-Salem, North Carolina Approved By: Gerald W. Esch, Ph.D., Advisor Michael V. K. Sukhdeo, Ph.D., Chair Herman E. Eure, Ph.D. Erik C. Johnson, Ph.D. Miles Silman, Ph.D. Clifford W. Zeyl, Ph.D. ACKNOWLEDGEMENTS This dissertation could not have been completed without the help of a number of people along the way. First and foremost, this body of work would not have been the same without the collaboration and mentorship of Dr. Esch. His knowledge of parasitology, ecology, and sheer excitement for biology and discovering the unknown after nearly 50 years of mentorship were truly inspiring and helped shape me into the biologist, researcher, and person I am today. I will forever be grateful for his influence. I also would like to thank my committee members, Drs Eure, Johnson, Silman, Sukhdeo, and Zeyl for providing feedback, lab space , and endless banter that have greatly improved this dissertation. Additionally, I am also grateful to have spent my time at Wake Forest during both my Master’s degree and Ph.D. with fellow lab mate Kyle Luth. His input into data interpretation, statistical analyses, and writing has greatly improved my skills as a scientist. If you are going to spend 10 weeks in a van collecting snails, fishing, and camping with somebody, you better get along with them, and Kyle and I have become great friends as a result. I must also thank several of my other fellow graduate students. Daniel Griffith was integral in helping to formulate and design statistical analyses and the members of the Johnson lab helped keep my sanity while failing at molecular work through discussing moral conundrums such as the ethics of stealing bitcoins and seemingly daily debates of whether viruses are ‘alive’. Additionally, I would like to thank Mike Rizzo, who despite his efforts to contribute to research in the Each Lab, has never successfully hunted an animal or caught a fish in spite of 25+ years of effort. Despite this, he has remained a good friend and sport about being the butt of many jokes. ii There are also a few people to thank for inspiring my journey into biology and parasitology. First, I would like to thank my grandfather Joe Spenoso for influencing my foray into fishing and interest in aquatic life. Although I was unaware at the time, his guidance peaked my interest in all living things associated with aquatic environments and I would have not have taken the path I am on now without his influence. I also want to acknowledge my 7 th grade biology teacher, Marlene Osborn. It was after taking her class that I knew I wanted to pursue a career in biology. Her enthusiasm and initiative in creating a stimulating learning environment peaked my interest, a sentiment that never wavered. I would also like to thank my undergraduate mentor, Dr. Danny Ingold. His bolstered enthusiasm for teaching and life motivated me to pursue a graduate degree, which ultimately led to the completion of this dissertation. My family was also extremely supportive during my past 6 years at Wake Forest. My parents, sisters, and mother-in-law Liz have been extremely supportive in the pursuit of my graduate degrees. Pretending to be interested in my research (although not so much toward the end when they knew degree completion was imminent) and encouraging me along the way was much appreciated. Even though my Dad ‘would have been fired 3 and a half ye ars ago for taking this long to write a report’, the support from him and my Mom never faltered. Although I am the last of the Zimmermann children to earn their doctorate, I know my parents are proud and thank them for their encouragement and support. I would also like to thank my wife Abby, because without her this degree would not have been possible. She moved down to Winston-Salem when I started this degree, after spending two years apart when we were both completing our Master’s degree, iii probably the longest two years of my life. Her support and urging (although it was probably more like shoving at times) allowed me to complete this degree. Additionally, her taking care of the duties at home despite working a full-time job were much appreciated, even though I will probably have to wash the dishes for the next year. Thank you again Abby for your love and support. Finally, I would like to dedicate this dissertation to Grandma Esther. Although she passed away in the early stages of this degree, just prior to her 97 th birthday, nobody would have been more excited to see me complete this dissertation. Despite her having to overcome the fact that I am a Republican, she let me be her cribbage partner and always treated me as if I was her own grandchild. Her joy and zest for life, in the face of dealing with bouts of macular degeneration, were truly an inspiration and have made me a better person. I promise that someday she will finally get her rematch with my parents in that game of euchre. iv TABLE OF CONTENTS Page ACKNOWLEDGEMENTS……………………………………………………………… ii LIST OF TABLES.. …………………………………………………………………… ....ix LIST OF FIGURES.. ……………………………………………………………………. .xi ABSTRACT…………………………………………………………………………… .xvi CHAPTER I Introduction and study sites BACKGROUND.. ………………………………………………………...1 STUDY SITES MALL ARD LAKE……………………………………………......9 COON LAKE…………………………………………………….12 OTHER U. S. SAMPLE SITES………………………………… ..14 LITERAT URE CITED…………………………………………………..15 CHAPTER II Digenetic trematode life cycles shape their infection patterns in their pulmonate snail hosts ABST RACT……………………………………………………………..47 INTR ODUCTION……………………………………………………….48 MATERIALS AND METHODS………………………………………...51 RESULTS………………………………………………………………..54 DIS CUSSION……………………………………………………………58 LITERATU RE CITED………………………………………………….. 69 v CHAPTER III Infection pattern differences of digenetic trematode parasites across the North American waterfowl flyways ABSTRACT ……………………………………………………………..99 INTRODUCTION ……………………………………………………...100 MATERIALS AND METHODS ……………………………………….103 RESULTS ………………………………………………………………104 DISCUSSION …………………………………………………………..105 LITERATURE CITED ………………………………………………… 110 CHAPTER IV Habitat disturbance affects the distribution of trematode parasites among a pulmonate snail community ABST RACT…………………………………………………………….134 INTR ODUCTION………………………………………………...……135 MATERIALS AND METHODS……………………………………….137 RESUL TS……………………………………………………………....1 39 DISCUS SION…………………………………………………………..141 LITERATURE CITED………………………………………………… 145 Submitted to the Journal of Limnology (In Review) CHAPTER V Differences in microhabitat affect parasite transmission in Helisoma anceps ABS TRACT…………………………………………………………….156 INTROD UCTION……………………………………………………...157 vi MATERIAL S AND METHODS……………………………………….160 RE SULTS………………………………………………………………163 DISCUSSION…………………………………………………………..165 LITERA TURE CITED…………………………………………………169 Submitted to Freshwater Science (In Review) CHAPTER VI Transmission pattern differences of miracidia and cerceriae larval stages of digenetic trematodes in relation to snail size and density ABS TRACT…………………………………………………………….178 INTROD UCTION……………………………………………………...179 MATERIAL S AND METHODS……………………………………….182 RE SULTS………………………………………………………………184 DISCU SSION…………………………………………………………..186 LITERA TURE CITED…………………………………………………1 91 Submitted to the Comparative Parasitology (In Review) CHAPTER VII Auto-infection by Echinostoma spp. in nature ABSTRACT ………………………………………………………….....204 INTROD UCTION……………………………………………………...205 MATERIAL S AND METHODS……………………………………….208 RE SULTS………………………………………………………………210 DISCUSSION…………………………………………………………..213 LITERA TURE CITED…………………………………………………218 vii CHAPTER VIII Differential infection patterns of Echinostoma spp. in snails belonging to three different families ABS TRACT…………………………………………………………….230 INTROD UCTION……………………………………………………...231 MATERIALS AND METHODS………………………………………. 235 RESUL TS……………………………………………………………....237 DISCUSSION………………………………………………………… ..240 LITERATURE CITED………………………………………………… 246 Submitted to Acta Parasitologica (In Press) CHAPTER IX The dilution effect in Echinostoma spp.: Examples from field collected data ABS TRACT…………………………………………………………….257 INTROD UCTION……………………………………………………...2 58 MATERIALS AND METHODS……………………………………….262 RE SULTS………………………………………………………………264 DISCUSSION…………………………………………………………..266 LITERA TURE CITED…………………………………………………273 CHAPTER X Summary ………………………………………………………………………..290 APPENDIX …………………………………………………………………………… ..298 CURRICULUM VITAE……………………………………………………………….. 341 viii LIST OF TABLES Table I-1. Fish, amphibian, and reptile species observed in Mallard Lake ……………..22 Table I-2. Bird species observed visiti ng Mallard Lake………………………………...23 Table I-3. Parasite species, the hosts from which they were recovered, and the parasitic stage recovered from Mallard Lake ……………………………..……...24 Table I-4. Vertebrate species observed in Coon Lake in the summer of 2013 ………….25 Table I-5. Parasite species, the hosts from which they were recovered, and the parasitic stage recovered from Coon Lake ………………………………………………...26 Table I-6. Snail species and the number collected from sample sites across t he U.S.….27 Table II-1. Trematode parasite species found in Mallard Lake…..……………………..77 Table II-2. Trematode parasites infecting H. anceps in Charlie’s Pond………………...78 Table II-3. Trematode
Recommended publications
  • A Global Assessment of Parasite Diversity in Galaxiid Fishes
    diversity Article A Global Assessment of Parasite Diversity in Galaxiid Fishes Rachel A. Paterson 1,*, Gustavo P. Viozzi 2, Carlos A. Rauque 2, Verónica R. Flores 2 and Robert Poulin 3 1 The Norwegian Institute for Nature Research, P.O. Box 5685, Torgarden, 7485 Trondheim, Norway 2 Laboratorio de Parasitología, INIBIOMA, CONICET—Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche 8400, Argentina; [email protected] (G.P.V.); [email protected] (C.A.R.); veronicaroxanafl[email protected] (V.R.F.) 3 Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +47-481-37-867 Abstract: Free-living species often receive greater conservation attention than the parasites they support, with parasite conservation often being hindered by a lack of parasite biodiversity knowl- edge. This study aimed to determine the current state of knowledge regarding parasites of the Southern Hemisphere freshwater fish family Galaxiidae, in order to identify knowledge gaps to focus future research attention. Specifically, we assessed how galaxiid–parasite knowledge differs among geographic regions in relation to research effort (i.e., number of studies or fish individuals examined, extent of tissue examination, taxonomic resolution), in addition to ecological traits known to influ- ence parasite richness. To date, ~50% of galaxiid species have been examined for parasites, though the majority of studies have focused on single parasite taxa rather than assessing the full diversity of macro- and microparasites. The highest number of parasites were observed from Argentinean galaxiids, and studies in all geographic regions were biased towards the highly abundant and most widely distributed galaxiid species, Galaxias maculatus.
    [Show full text]
  • Diversity of Echinostomes (Digenea: Echinostomatidae) in Their Snail Hosts at High Latitudes
    Parasite 28, 59 (2021) Ó C. Pantoja et al., published by EDP Sciences, 2021 https://doi.org/10.1051/parasite/2021054 urn:lsid:zoobank.org:pub:9816A6C3-D479-4E1D-9880-2A7E1DBD2097 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Diversity of echinostomes (Digenea: Echinostomatidae) in their snail hosts at high latitudes Camila Pantoja1,2, Anna Faltýnková1,* , Katie O’Dwyer3, Damien Jouet4, Karl Skírnisson5, and Olena Kudlai1,2 1 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic 2 Institute of Ecology, Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania 3 Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, H91 T8NW, Galway, Ireland 4 BioSpecT EA7506, Faculty of Pharmacy, University of Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France 5 Laboratory of Parasitology, Institute for Experimental Pathology, Keldur, University of Iceland, IS-112 Reykjavík, Iceland Received 26 April 2021, Accepted 24 June 2021, Published online 28 July 2021 Abstract – The biodiversity of freshwater ecosystems globally still leaves much to be discovered, not least in the trematode parasite fauna they support. Echinostome trematode parasites have complex, multiple-host life-cycles, often involving migratory bird definitive hosts, thus leading to widespread distributions. Here, we examined the echinostome diversity in freshwater ecosystems at high latitude locations in Iceland, Finland, Ireland and Alaska (USA). We report 14 echinostome species identified morphologically and molecularly from analyses of nad1 and 28S rDNA sequence data. We found echinostomes parasitising snails of 11 species from the families Lymnaeidae, Planorbidae, Physidae and Valvatidae.
    [Show full text]
  • RUNNING HEAD: Farrow-Aspects of the Life Cycle of Apharyngostrigea Pipientis
    RUNNING HEAD: Farrow-Aspects of the life cycle of Apharyngostrigea pipientis Aspects of the life cycle of Apharyngostrigea pipientis in Central Florida wetlands Abigail Farrow Florida Southern College RUNNING HEAD: Farrow-Aspects of the life cycle of Apharyngostrigea pipientis Abstract Apharyngostrigea pipientis (Trematoda: Strigeidae) is known to form metacercariae around the pericardium of anuran tadpoles in Michigan and other northern locations. Definitive hosts are thought to be wading birds, while the intermediate host is a freshwater snail. Apharyngostrigea pipientis is not commonly reported from Florida, yet we have found several populations of snails (Biopholaria havaensis) and tadpoles, primarily the Cuban treefrog (Osteopilus septentrionalis), to host this trematode. We used experimental infections to elucidate the transmission dynamics and development of A. pipientis inside the tadpole host. Surprisingly, we found two types (species?) of cercariae being shed from B. havaensis that enter Cuban treefrog tadpoles to form seemingly identical metacercariae. Further, both of these develop into metaceracariae inside the tadpoles over 5-7 days after wondering inside the host's body cavity as mesocercariae, and metacercariae are commonly concentrated around the pericardium cavity. However, they differ in entry mode, with one being ingested, whereas the other penetrates the skin. This project is ongoing. 1. Introduction The study of parasitology plays a vital role in understanding the foundation of communities in different ecosystems. Parasites have the ability to exploit their hosts, directly affecting the health of the organism and the environment. By having these abilities, it could mean a change in the way the organism contributes to and balances the overall ecosystem (Poulin, 1999).
    [Show full text]
  • Reinvestigation of the Sperm Ultrastructure of Hypoderaeum
    Manuscript Click here to download Manuscript Hypoderaeum conoideum Ms ParasitolRes REV.docx Click here to view linked References 1 Reinvestigation of the sperm ultrastructure of Hypoderaeum conoideum (Digenea: 1 2 2 Echinostomatidae) 3 4 5 3 6 7 4 Jordi Miquel1,2,*, Magalie René Martellet3, Lucrecia Acosta4, Rafael Toledo5, Anne- 8 9 6 10 5 Françoise Pétavy 11 12 6 13 14 7 1 Secció de Parasitologia, Departament de Biologia, Sanitat i Medi ambient, Facultat de 15 16 17 8 Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII, sn, 08028 18 19 9 Barcelona, Spain 20 21 2 22 10 Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal, 645, 23 24 11 08028 Barcelona, Spain 25 26 3 27 12 Université Clermont Auvergne, INRA, VetAgro Sup, UMR EPIA Epidémiologie des 28 29 13 maladies animales et zoonotiques, 63122 Saint-Genès-Champanelle, France 30 31 14 4 Área de Parasitología del Departamento de Agroquímica y Medioambiente, Universidad 32 33 34 15 Miguel Hernández de Elche, Alicante, Spain 35 36 16 5 Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, 37 38 39 17 Universitat de València, 46100 Burjassot, València, Spain 40 41 18 6 Laboratoire de Parasitologie et Mycologie Médicale, Faculté de Pharmacie, Université Claude 42 43 44 19 Bernard-Lyon 1, 8 Av. Rockefeller, 69373 Lyon Cedex 08, France 45 46 20 47 48 49 21 *Corresponding author: 50 51 22 Jordi Miquel 52 53 23 Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de 54 55 56 24 Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av.
    [Show full text]
  • Molecular Detection of Human Parasitic Pathogens
    MOLECULAR DETECTION OF HUMAN PARASITIC PATHOGENS MOLECULAR DETECTION OF HUMAN PARASITIC PATHOGENS EDITED BY DONGYOU LIU Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20120608 International Standard Book Number-13: 978-1-4398-1243-3 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
    [Show full text]
  • Genetic Variation and Phylogenetic Relationship of Hypoderaeum
    Asian Pacific Journal of Tropical Medicine 2020; 13(11): 515-520 515 Original Article Asian Pacific Journal of Tropical Medicine journal homepage: www.apjtm.org Impact Factor: 1.77 doi: 10.4103/1995-7645.295362 Genetic variation and phylogenetic relationship of Hypoderaeum conoideum (Bloch, 1782) Dietz, 1909 (Trematoda: Echinostomatidae) inferred from nuclear and mitochondrial DNA sequences Chairat Tantrawatpan1, Weerachai Saijuntha2 1Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Rangsit Campus, Pathumthani 12120, Thailand 2Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham 44150, Thailand ABSTRACT 1. Introduction Objective: To explore genetic variations of Hypoderaeum conoideum Hypoderaeum (H.) conoideum (Bloch, 1782) Dietz, 1909 is a species collected from domestic ducks from 12 different localities in of digenetic trematode in the family Echinostomatidae, which Thailand and Lao PDR, as well as their phylogenetic relationship is the causative agent of human and animal echinostomiasis . [1,2] with American and European isolates. The life cycle of H. conoideum has been extensively studied Methods: The nucleotide sequences of their nuclear ribosomal experimentally . A wide variety of freshwater snails, especially [3,4] DNA (ITS), mitochondrial cytochrome c oxidase subunit 1 (CO1), the lymnaeid species, are the first intermediate hosts and shed and NADH dehydrogenase subunit 1 (ND1) were used to analyze cercariae . Aquatic animals, such as bivalves, fishes, and tadpoles, [5] genetic diversity indices. often act as second intermediate hosts. Eating these raw or partially- Results: We found relatively high levels of nucleotide cooked aquatic animals has been identified as the primary mode of polymorphism in ND1 (4.02%), whereas moderate and low levels transmission .
    [Show full text]
  • 12-15 Eylül 2017 Tarihleri Arasında Üniversitemiz Ahmet Muhip Dıranas Uygulama Oteli’Nde Gerçekleştirilen “19
    s u s e m p 2 0 1 7 . s i n o 19. ULUSAL SU ÜRÜNLERİ SEMPOZYUMU p . e d u . t r BİLDİRİ ÖZET KİTABI 19. ULUSAL SU ÜRÜNLERİ SEMPOZYUMU BİLDİRİ ÖZET KİTABI 19. Ulusal Su Ürünleri Sempozyumu Bildiri Özet Kitabı'nda yayınlanan bildiri özetlerinin bilimsel içeriğine ilişkin her türlü hukuki sorumluluk ve imla hatalarının sorumluluğu yazarlara aittir. SUNUŞ Üniversitemiz her geçen gün gelişen ve büyüyen yapısıyla öğrencilerine kaliteli bir eğitim sunarken diğer yandan bölgesinin bilimsel ve sektörel gelişimi için de önemli faaliyetler yürütmektedir. Sinop Üniversitesi olarak; her yıl iki sempozyum, iki çalıştay ve iki bilimsel toplantı yapmayı hedeflemekte; düzenlenen her bilimsel organizasyon ile şehrimize ve bölgemize değer katmayı amaçlamaktayız. Bu kapsamda 12-15 Eylül 2017 tarihleri arasında Üniversitemiz Ahmet Muhip Dıranas Uygulama Oteli’nde gerçekleştirilen “19. Ulusal Su Ürünleri Sempozyumu” akademisyenleri ve sektör temsilcilerini Karadeniz’in incisi Sinop’ta bir araya getirmiştir. Sempozyuma su ürünlerinin çok çeşitli alanlarında yapılan araştırmaları ile katılan değerli bilim insanları, sektör temsilcileri ve tüm katılımcıları Sinop Üniversitesi bünyesinde ve Sinop’ta ağırlamaktan mutluluk duyduğumu belirtmek isterim. Ayrıca, sempozyumun düzenlenmesinde emeği geçen tüm çalışma arkadaşlarıma, kurumlara ve sektör mensuplarına üniversitem ve şahsım adına teşekkür ediyorum. Sempozyumda sunulan bildiri özetlerinden oluşan, 19. Ulusal Su Ürünleri Sempozyumu Bildiri Kitabı’nın, su ürünleri alanında yapılacak yeni çalışmalara ve sektöre
    [Show full text]
  • The Complete Mitochondrial Genome of Echinostoma Miyagawai
    Infection, Genetics and Evolution 75 (2019) 103961 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Research paper The complete mitochondrial genome of Echinostoma miyagawai: Comparisons with closely related species and phylogenetic implications T Ye Lia, Yang-Yuan Qiua, Min-Hao Zenga, Pei-Wen Diaoa, Qiao-Cheng Changa, Yuan Gaoa, ⁎ Yan Zhanga, Chun-Ren Wanga,b, a College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China b College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China ARTICLE INFO ABSTRACT Keywords: Echinostoma miyagawai (Trematoda: Echinostomatidae) is a common parasite of poultry that also infects humans. Echinostoma miyagawai Es. miyagawai belongs to the “37 collar-spined” or “revolutum” group, which is very difficult to identify and Echinostomatidae classify based only on morphological characters. Molecular techniques can resolve this problem. The present Mitochondrial genome study, for the first time, determined, and presented the complete Es. miyagawai mitochondrial genome. A Comparative analysis comparative analysis of closely related species, and a reconstruction of Echinostomatidae phylogeny among the Phylogenetic analysis trematodes, is also presented. The Es. miyagawai mitochondrial genome is 14,416 bp in size, and contains 12 protein-coding genes (cox1–3, nad1–6, nad4L, cytb, and atp6), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and one non-coding region (NCR). All Es. miyagawai genes are transcribed in the same direction, and gene arrangement in Es. miyagawai is identical to six other Echinostomatidae and Echinochasmidae species. The complete Es. miyagawai mitochondrial genome A + T content is 65.3%, and full- length, pair-wise nucleotide sequence identity between the six species within the two families range from 64.2–84.6%.
    [Show full text]
  • Larval Trematode Communities in Radix Auricularia and Lymnaea Stagnalis in a Reservoir System of the Ruhr River Para- Sites & Vectors 2010, 3:56
    Soldánová et al. Parasites & Vectors 2010, 3:56 http://www.parasitesandvectors.com/content/3/1/56 RESEARCH Open Access LarvalResearch trematode communities in Radix auricularia and Lymnaea stagnalis in a reservoir system of the Ruhr River Miroslava Soldánová†1, Christian Selbach†2, Bernd Sures*2, Aneta Kostadinova1 and Ana Pérez-del-Olmo2 Abstract Background: Analysis of the data available from traditional faunistic approaches to mollusc-trematode systems covering large spatial and/or temporal scales in Europe convinced us that a parasite community approach in well- defined aquatic ecosystems is essential for the substantial advancement of our understanding of the parasite response to anthropogenic pressures in urbanised areas which are typical on a European scale. Here we describe communities of larval trematodes in two lymnaeid species, Radix auricularia and Lymnaea stagnalis in four man-made interconnected reservoirs of the Ruhr River (Germany) focusing on among- and within-reservoir variations in parasite prevalence and component community composition and structure. Results: The mature reservoir system on the Ruhr River provides an excellent environment for the development of species-rich and abundant trematode communities in Radix auricularia (12 species) and Lymnaea stagnalis (6 species). The lake-adapted R. auricularia dominated numerically over L. stagnalis and played a major role in the trematode transmission in the reservoir system. Both host-parasite systems were dominated by bird parasites (13 out of 15 species) characteristic for eutrophic water bodies. In addition to snail size, two environmental variables, the oxygen content and pH of the water, were identified as important determinants of the probability of infection. Between- reservoir comparisons indicated an advanced eutrophication at Baldeneysee and Hengsteysee and the small-scale within-reservoir variations of component communities provided evidence that larval trematodes may have reflected spatial bird aggregations (infection 'hot spots').
    [Show full text]
  • A Cryptic Complex of Species Related to Transversotrema Licinum Manter, 1970 from Fishes of the Indo-West Pacific, Including
    Zootaxa 3176: 1–44 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) A cryptic complex of species related to Transversotrema licinum Manter, 1970 from fishes of the Indo-West Pacific, including descriptions of ten new species of Transversotrema Witenberg, 1944 (Digenea: Transversotrematidae) JANET A. HUNTER1 & THOMAS H. CRIBB2 School of Biological Sciences. The University of Queensland, Brisbane, Queensland, 4072, Australia. E-mail: [email protected]; [email protected]. Table of contents Abstract . 2 Introduction . 2 Material and methods . 3 Results . 6 Molecular analyses . 11 Host and geographical distribution . 15 Intensities. 15 Morphology . 17 Family Transversotrematidae Witenberg, 1944. 17 Genus Transversotrema Witenberg, 1944 . 17 Transversotrema licinum Manter, 1970. 17 Transversotrema atkinsoni n. sp. 20 Transversotrema borboleta n. sp. 21 Transversotrema cardinalis n. sp. 24 Transversotrema carmenae n. sp. 26 Transversotrema damsella n. sp . 27 Transversotrema espanola n. sp . 29 Transversotrema fusilieri n. sp . 30 Transversotrema manteri n. sp . 31 Transversotrema nova n. sp. 33 Transversotrema witenbergi n. sp. 34 Unnamed species . 36 Transversotrema sp. A . 36 Transversotrema sp. B . 36 Transversotrema sp. C . 36 Transversotrema sp. D . 36 Discussion . 37 Acknowledgments . 42 References . 42 Accepted by N. Dronen: 15 Nov. 2011; published: 27 Jan. 2012 1 Abstract Transversotrema licinum Manter, 1970 was described from two species of fishes from Moreton Bay, Queensland, and sub- sequently reported from 13 further species from six families in the Indo–West Pacific region. This study records specimens morphologically similar to T. licinum from 48 fish species from 11 families.
    [Show full text]
  • (Trematoda; Cestoda; Nematoda) Geographic Records from Three Species of Owls (Strigiformes) in Southeastern Oklahoma Chris T
    92 New Ectoparasite (Diptera; Phthiraptera) and Helminth (Trematoda; Cestoda; Nematoda) Geographic Records from Three Species of Owls (Strigiformes) in Southeastern Oklahoma Chris T. McAllister Science and Mathematics Division, Eastern Oklahoma State College, Idabel, OK 74745 John M. Kinsella HelmWest Laboratory, 2108 Hilda Avenue, Missoula, MT 59801 Lance A. Durden Department of Biology, Georgia Southern University, Statesboro, GA 30458 Will K. Reeves Colorado State University, C. P. Gillette Museum of Arthropod Diversity, Fort Collins, CO 80521 Abstract: We are just now beginning to learn about the ectoparasites and helminth parasites of some owls of Oklahoma. Some recent contributions from our lab have attempted to help fill a previous void in that information. Here, we report, four taxa of ectoparasites and five helminth parasites from three species of owls in Oklahoma. They include two species of chewing lice (Strigiphilus syrnii and Kurodeia magna), two species of hippoboscid flies (Icosta americana and Ornithoica vicina), a trematode (Strigea elegans) and a cestode (Paruterina candelabraria) from barred owls (Strix varia), and three nematodes, Porrocaecum depressum from an eastern screech owl (Megascops asio), Capillaria sp. eggs from S. varia, and Capillaria tenuissima from a great horned owl (Bubo virginianus). With the exception of Capillaria sp. eggs and I. americana, all represent new state records for Oklahoma and extend our knowledge of the parasitic biota of owls of the state. to opportunistically examine raptors from the Introduction state and document new geographic records for their parasites in Oklahoma. Over 455 species of birds have been reported Methods from Oklahoma and several are species of raptors or birds of prey that make up an important Between January 2018 and September 2019, portion of the avian fauna of the state (Sutton three owls were found dead on the road in 1967; Baumgartner and Baumgartner 1992).
    [Show full text]
  • Fadel, A. EVMPSJ 2021; 17:20-34
    Fadel, A. EVMPSJ 2021; 17:20-34 Original Article Digenean Transversotrema haasi (Witenberg, 1944) infection in cultured Dicentrarchus labrax, and in vitro anthelmintic assays Amr Fadel* Abstract Laboratory of Fish A little knowledge still available for fish digenean, although Diseases, Aquaculture some of them have pathogenic and economic importance. Fish Division, National Institute morbidity and mortalities were reported in two fish farms culturing D. of Oceanography and labrax fingerling with the primarily isolated parasites belonged to fish Fisheries, Egypt. digenean trematodes. Therefore, this study was directed mainly to investigate the main causative digenean parasites. Additionally, the ecological water parameters were reported, and the anthelmintic *Corresponding author efficacy using levamisole was evaluated. The prevalent digenean Amr Fadel parasite was identified Digenean, Transversotrema haasi, an extra- Laboratory of Fish Diseases, intestinal digenean that was mainly isolated from gill and skin. The National Institute of infected D. labrax exhibited abnormal external, and internal lesions Oceanography and Fisheries, indicative of deteriorating health status. The recorded infection rates Alexandria, were 48.67 and 38.67%, parasitic intensities, 6.14 and 2.4 and Egypt.ElAnfoshy, Qyiet Bay mortalities rates 28 and 19.33% in Manzala, and Wadi-mariot Castle, Alexandria, Egypt. respectively. The recoded ecological parameters were ranged from NIOF, Zipcode: 21556 14.22 - 29.7 oC temperature, 7.49 - 8.36 pH, and 13.54 - 34.36 ppt for Telephone NIOF: +203 salinity. Besides, the in vitro therapeutic baths with levamisole were 4807138 & 4807140 dose-dependent, with the highest anthelmintic efficacy at higher doses Mobile no: 202-01008580037 effective against digenean T. hassi. Higher anthelmintic efficacy was [email protected] obtained/ at 70 µg/l levamisole concentration, the lowest mean viability [email protected] 0.33, the highest parasitic mortality rate 81.81% occurred at the lowest exposure time.
    [Show full text]