Smart Inverter Modeling Report

Total Page:16

File Type:pdf, Size:1020Kb

Smart Inverter Modeling Report Pacific Gas and Electric Company EPIC Final Report: Attachment Program Electric Program Investment Charge (EPIC) EPIC 2.03A: Test Smart Inverter Enhanced Capabilities Project – Photovoltaics (PV): Smart Inverter Modeling Report Reference Name EPIC 2.03A: Customer Cited Smart Inverters EPIC 2.03A: Smart Inverters Department Grid Integration & Innovation Executive Sponsor Roy Kuga Project Sponsor Mark Esguerra Business Lead (Modeling Fedor Petrenko Subproject) Technical Lead Mike McCarty (Modeling Subproject) Contact Info [email protected] Date February 8, 2019 Version Type Final EPIC 2.03A: Smart Inverters: Modeling Report EPIC 2.03A Project December 2018 ELECTRIC POWER RESEARCH INSTITUTE 3420 Hillview Avenue, Palo Alto, California 94304-1338 . PO Box 10412, Palo Alto, California 94303-0813 . USA 800.313.3774 . 650.855.2121 . [email protected] . www.epri.com EPIC 2.03A: Smart Inverters: Modeling Report DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM: (A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL PROPERTY, OR (III) THAT THIS DOCUMENT IS SUITABLE TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR (B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT. REFERENCE HEREIN TO ANY SPECIFIC COMMERCIAL PRODUCT, PROCESS, OR SERVICE BY ITS TRADE NAME, TRADEMARK, MANUFACTURER, OR OTHERWISE, DOES NOT NECESSARILY CONSTITUTE OR IMPLY ITS ENDORSEMENT, RECOMMENDATION, OR FAVORING BY EPRI. THE FOLLOWING ORGANIZATION(S), UNDER CONTRACT TO EPRI, PREPARED THIS REPORT: THE ELECTRIC POWER RESEARCH INSTITUTE (EPRI) PREPARED THIS REPORT. This is an EPRI Technical Update report. A Technical Update report is intended as an informal report of continuing research, a meeting, or a topical study. It is not a final EPRI technical report. NOTE For further information about EPRI, call the EPRI Customer Assistance Center at 800.313.3774 or e-mail [email protected]. Electric Power Research Institute, EPRI, and TOGETHER SHAPING THE FUTURE OF ELECTRICITY are registered service marks of the Electric Power Research Institute, Inc. Copyright © 2018 Electric Power Research Institute, Inc. All rights reserved. EPIC 2.03A: Smart Inverters: Modeling Report ACKNOWLEDGMENTS The Electric Power Research Institute (EPRI) prepared this report for Pacific Gas and Electric Company (PG&E). EPRI Principal Investigators: Miguel Hernandez Jouni Peppanen Tanguy Hubert Jeremiah Deboever PG&E Principal Investigators: Mike McCarty, Fedor Petrenko, Olivia Trinko The authors would also like to recognize the contributions of Matthew Deakin from the University of Oxford, who supported part of the modeling and analysis presented in this report during an internship with EPRI. iii EPIC 2.03A: Smart Inverters: Modeling Report EXECUTIVE SUMMARY This modeling effort explored the technical impacts and economic value of several of the smart inverter (SI) functions defined in California Electric Rule 21 (“CA Rule 21”) and Hawaiian Electric Rule 14 (“HI Rule 14”). The modeling effort objectives were twofold: (1) inform PG&E on the successful utilization and configuration of residential SI to mitigate PV-driven impacts and expenditures; and (2) provide an understanding of the economic impact of SIs from various perspectives: PV customers activating SI functions, ratepayers, utility, and society. As part of this modeling effort, six representative PG&E feeders were modeled and validated. In particular, while planning modeling methodologies usually focus exclusively on modeling the primary system (i.e., medium voltage), this modeling effort modeled low-voltage (LV) secondary circuits in great detail. Quasi-static time-series (QSTS) simulations explored 15,183 different scenarios parametrized by multiple technology penetration levels (PV and storage), load conditions, and PV generation profiles. Conclusions from this modeling effort assume a highly distributed PV penetration across each circuit since simulation models were focused on residential installations. While these six distribution feeders were carefully selected to inform on the possible benefits of activating SI functions, they only represent 0.2% of PG&E feeders. For each of the six feeders, the PV-driven impacts and expenditures on the distribution grid operation were first analyzed, focusing on residential PV systems. Two strategies aiming to accommodate higher PV penetration levels were then evaluated and compared: one strategy relying on conventional distribution upgrades, the other on SI Volt-VAR and Volt-Watt functions. The scope of this modeling effort was limited to analyzing the effectiveness of Volt-VAR and Volt-Watt functions to specifically address PV-driven voltage violations. Traditional upgrades were triggered by decision rules reflecting potential thermal overloads and voltage rise issues, closely following PG&E’s design and engineering practices. A critical evaluation of these practices suggested that, while thermal violations were always properly addressed, voltage issues could sometimes be left undetected as they can occur before the aggregate inverter nameplate exceeds the service transformer’s kilovolt-ampere (kVA) nameplate. The strategy leveraging SI Volt-VAR and Volt-Watt functions was shown to reduce, but not entirely suppress overvoltage conditions. Still, the reduction observed was generally comparable, and sometimes superior to the level of performance obtained with conventional upgrades. Active power curtailment, resulting from the activation of SI functions, appeared extremely limited: across all combinations of feeders, functions, inverter densities, and PV and load conditions considered, only 45 of the 8,414 PV installations modeled experienced active power curtailment greater than 1% across any of the analyzed 24-hour periods. The increase in inverter utilization appeared negligible. The economic impact of activating SI functions was evaluated across four cost categories: (1) the increased electricity cost at feeder heads; (2) the bill increases to participants; (3) the avoided secondary voltage rise upgrades; and (4) the avoided secondary voltage rise studies, all resulting from activating SI functions. These cost categories were mapped to four standard cost tests, reflecting various stakeholder perspectives: PV customers activating SI functions, ratepayers, utility, and society. Time- differentiated annual energy usage profiles were constructed for each individual PV customer, and an algorithm emulating PG&E’s billing system for three relevant retail electricity tariffs provided detailed v EPIC 2.03A: Smart Inverters: Modeling Report estimates on potential bill increases. Several other key sensitivities influencing the results were explored. The economic impacts were first evaluated for the six feeders selected. The approach was comparative in nature: differences impacting the cost categories according to which strategy was considered, conventional upgrades or SI functions, were analyzed; equipment upgrades required under both strategies were excluded from this comparative analysis, since they could not lead to any cost differences between the two strategies. The activation of SI functions generally yielded a net positive economic impact across the six feeders considered when compared to the traditional upgrades. Yet, this benefit appeared to be relatively small: Total Resource Cost (TRC) values, assuming a linear PV penetration increase over time, ranged from a total Net Present Value (NPV) of -$4/customer (net cost) to $57/customer1 (net benefit) over 10 years (in $2018). The benefits of activating SI functions generally increased at higher PV penetration levels, reflecting a larger number of transformer upgrades and secondary voltage rise studies avoided. The savings resulting from these avoided costs are expected to benefit electric ratepayers, interconnecting customers, and PV developers. For each of the six feeders studied, an analysis of the “customer outliers” experiencing bill increases higher than the average PV customer was also conducted. Among 354,096 customer cases involving an annual bill increase higher than $3 (out of 474,633 customer cases), only 0.748% of the customer cases returned an annual bill increase higher than 3%. A possible two-step approach was identified to drastically limit the (already very small) number of customer outliers in practice: first, detect circuit locations prone to overvoltage conditions early; second, proactively implement distribution upgrades at these locations to ensure that nearby PV customers do not experience excessive active power curtailment, when compared to the average PV customer. As a part of this modeling effort, an extensive literature review of relevant
Recommended publications
  • Commercialization and Deployment at NREL: Advancing Renewable
    Commercialization and Deployment at NREL Advancing Renewable Energy and Energy Efficiency at Speed and Scale Prepared for the State Energy Advisory Board NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Management Report NREL/MP-6A42-51947 May 2011 Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:[email protected] Available for sale to the public, in paper, from: U.S.
    [Show full text]
  • Photovoltaic Power Generation
    Photovoltaic Power Generation * by Tom Penick and Bill Louk *Photo is from “Industry-Photovoltaic Power Stations1,” http://www.nedo.go.jp/nedo-info/solarDB/photo2/1994- e/4/4.6/01.html, December 1, 1998. PHOTOVOLTAIC POWER GENERATION Submitted to Gale Greenleaf, Instructor EE 333T Prepared by Thomas Penick and Bill Louk December 4, 1998 ABSTRACT This report is an overview of photovoltaic power generation. The purpose of the report is to provide the reader with a general understanding of photovoltaic power generation and how PV technology can be practically applied. There is a brief discussion of early research and a description of how photovoltaic cells convert sunlight to electricity. The report covers concentrating collectors, flat-plate collectors, thin-film technology, and building-integrated systems. The discussion of photovoltaic cell types includes single-crystal, poly-crystalline, and thin-film materials. The report covers progress in improving cell efficiencies, reducing manufacturing cost, and finding economic applications of photovoltaic technology. Lists of major manufacturers and organizations are included, along with a discussion of market trends and projections. The conclusion is that photovoltaic power generation is still more costly than conventional systems in general. However, large variations in cost of conventional electrical power, and other factors, such as cost of distribution, create situations in which the use of PV power is economically sound. PV power is used in remote applications such as communications, homes and villages in developing countries, water pumping, camping, and boating. Grid- connected applications such as electric utility generating facilities and residential rooftop installations make up a smaller but more rapidly expanding segment of PV use.
    [Show full text]
  • Best Practice Guide – Photovoltaics (PV)
    Best Practice Guide Photovoltaics (PV) Best Practice Guide – Photovoltaics (PV) Acknowledgements: This guide was adapted from Photovoltaics in Buildings A Design Guide (DTI), Guide to the installation of PV systems 2nd Edition the Department for Enterprise DTI/Pub URN 06/1972. Note to readers: One intention of this publication is to provide an overview for those involved in building and building services design and for students of these disciplines. It is not intended to be exhaustive or definitive and it will be necessary for users of the Guide to exercise their own professional judgement when deciding whether or not to abide by it. It cannot be guaranteed that any of the material in the book is appropriate to a particular use. Readers are advised to consult all current Building Regulations, EN Standards or other applicable guidelines, Health and Safety codes, as well as up-to-date information on all materials and products. 2 Best Practice Guide – Photovoltaics (PV) Index 1 Introduction .................................................................................. 4 2 What are photovoltaics? ............................................................... 8 2.1 Introduction ......................................................................................................... 8 2.2 PVs ............................................................................................................................ 9 2.3 How much energy do PV systems produce? ............................................ 15 2.3.1 Location, tilt, orientation
    [Show full text]
  • Solar PV Technology Development Report 2020
    EUR 30504 EN This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and quality underlying the data used in this publication for which the source is neither Eurostat nor other Commission services, users should contact the referenced source. The designations employed and the presentation of material on the maps do not imply the expression of any opinion whatsoever on the part of the European Union concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Contact information Name: Nigel TAYLOR Address: European Commission, Joint Research Centre, Ispra, Italy Email: [email protected] Name: Maria GETSIOU Address: European Commission DG Research and Innovation, Brussels, Belgium Email: [email protected] EU Science Hub https://ec.europa.eu/jrc JRC123157 EUR 30504 EN ISSN 2600-0466 PDF ISBN 978-92-76-27274-8 doi:10.2760/827685 ISSN 1831-9424 (online collection) ISSN 2600-0458 Print ISBN 978-92-76-27275-5 doi:10.2760/215293 ISSN 1018-5593 (print collection) Luxembourg: Publications Office of the European Union, 2020 © European Union, 2020 The reuse policy of the European Commission is implemented by the Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p.
    [Show full text]
  • Senior Project Report PV Hybrid Inverter & BESS
    Electrical Engineering Department California Polytechnic State University Senior Project Report PV Hybrid Inverter & BESS June 14th, 2019 William Dresser Owen McKenzie Derek Seaman Jacob Sussex Jonathan Wharton Professor William Ahlgren & Professor Ali Dehghan Banadaki Table of Contents Table of Contents 1 List of Tables 2 List of Figures 2 Abstract 3 1. General Introduction and Background: 4 2. Overview of Customer Need: 6 3. Project Description: 6 4. Market Research: 7 5. Customer Archetype: 8 6. Market Description: 9 7. Business Model Canvas Graphic: 12 8. Marketing Requirements: 13 9. Block Diagram: 16 ​ 10. Requirements: 16 ​ 11. Cost Analysis: 17 ​ 12. Team Coordination: 18 ​ 13. Design Iterations and SolidWorks 18 ​ 14.Assembly Iteration and Challenges 26 15. Project Significance and Applications 28 ​ 16. Peripherals 29 17. Project Continuation 31 18. Department Future 33 19. References: 34 1 Appendix A: Senior Project Analysis 36 Appendix B: Preliminary Design Analysis 45 List of Tables Table 1 Customer Archetype Table 2 Number of Panels in Configuration and Relevant Metrics Table 3 Requirements Table 4 Bill of Materials Table 5 Budget for Unistrut Cart Design Table 6 Budget for 8020 Cart Design Table 7 Budget for Electrical Components List of Figures Figure 1 Photovoltaic Cell in a Solar Panel Figure 2 Cost Trend of Solar Power Figure 3 Diagram of Tabuchi EIBS16GU2 Energy Flow Figure 4 Business Model Canvas Figure 5 Graphical Representation of the Number of Panels in PV Array vs Charge Time Figure 6 Block Diagram of How the Tabuchi System will be Implemented Figure 7 First Iteration of 8020 Cart in SolidWorks Figure 8 2D CAD View of First 8020 Cart Design Figure 9 2nd Iteration of Cart with Unistrut 2 Figure 10 Final Cart Design Figure 11 Phase Converter to be Purchased in Future Abstract The storage of energy from renewable sources such as photovoltaic based systems is a growing market, with 36 MWh of storage installed in Q1 of 2018.
    [Show full text]
  • The History of Solar
    Solar technology isn’t new. Its history spans from the 7th Century B.C. to today. We started out concentrating the sun’s heat with glass and mirrors to light fires. Today, we have everything from solar-powered buildings to solar- powered vehicles. Here you can learn more about the milestones in the Byron Stafford, historical development of solar technology, century by NREL / PIX10730 Byron Stafford, century, and year by year. You can also glimpse the future. NREL / PIX05370 This timeline lists the milestones in the historical development of solar technology from the 7th Century B.C. to the 1200s A.D. 7th Century B.C. Magnifying glass used to concentrate sun’s rays to make fire and to burn ants. 3rd Century B.C. Courtesy of Greeks and Romans use burning mirrors to light torches for religious purposes. New Vision Technologies, Inc./ Images ©2000 NVTech.com 2nd Century B.C. As early as 212 BC, the Greek scientist, Archimedes, used the reflective properties of bronze shields to focus sunlight and to set fire to wooden ships from the Roman Empire which were besieging Syracuse. (Although no proof of such a feat exists, the Greek navy recreated the experiment in 1973 and successfully set fire to a wooden boat at a distance of 50 meters.) 20 A.D. Chinese document use of burning mirrors to light torches for religious purposes. 1st to 4th Century A.D. The famous Roman bathhouses in the first to fourth centuries A.D. had large south facing windows to let in the sun’s warmth.
    [Show full text]
  • Basic Photovoltaic Principles and Methods Page Chapter 5
    c Notice This publication was prepared under a contract to the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Printed in the United States of America Available in print from: Superintendent of Documents U.S. Government Printing Office Washington, DC 20402 Available in microfiche from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Stock Number: SERIISP-290-1448 Information in this publication is current as of September 1981 Basic Photovoltaic Principles and Me1hods SER I/SP-290-1448 Solar Information Module 6213 Published February 1982 This book presents a nonmathematical explanation of the theory and design of PV solar cells and systems. It is written to address several audiences: engineers and scientists who desire an introduction to the field of photovoltaics, students interested in PV science and technology, and end users who require a greater understanding of theory to supplement their applications. The book is effectively sectioned into two main blocks: Chapters 2-5 cover the basic elements of photovoltaics-the individual electricity-producing cell. The reader is told why PV cells work, and how they are made. There is also a chapter on advanced types of silicon cells. Chapters 6-8 cover the designs of systems constructed from individual cells-including possible constructions for putting cells together and the equipment needed for a practioal producer of electrical energy.
    [Show full text]
  • Solar Photovoltaic Electricity Generation: a Lifeline † for the European Coal Regions in Transition
    sustainability Article Solar Photovoltaic Electricity Generation: A Lifeline y for the European Coal Regions in Transition Katalin Bódis, Ioannis Kougias , Nigel Taylor and Arnulf Jäger-Waldau * European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, I-21027 Ispra (VA), Italy * Correspondence: [email protected] The scientific output expressed is based on the current information available to the authors, and does not y imply a policy position of the European Commission. Received: 21 May 2019; Accepted: 2 July 2019; Published: 5 July 2019 Abstract: The use of coal for electricity generation is the main emitter of Greenhous Gas Emissions worldwide. According to the International Energy Agency, these emissions have to be reduced by more than 70% by 2040 to stay on track for the 1.5–2 ◦C scenario suggested by the Paris Agreement. To ensure a socially fair transition towards the phase-out of coal, the European Commission introduced the Coal Regions in Transition initiative in late 2017. The present paper analyses to what extent the use of photovoltaic electricity generation systems can help with this transition in the coal regions of the European Union (EU). A spatially explicit methodology was developed to assess the solar photovoltaic (PV) potential in selected regions where open-cast coal mines are planned to cease operation in the near future. Different types of solar PV systems were considered including ground-mounted systems developed either on mining land or its surroundings. Furthermore, the installation of rooftop solar PV systems on the existing building stock was also analysed. The obtained results show that the available area in those regions is abundant and that solar PV systems could fully substitute the current electricity generation of coal-fired power plants in the analysed regions.
    [Show full text]
  • Ultraefficient Thermophotovoltaic Power Conversion by Band-Edge Spectral Filtering
    Lawrence Berkeley National Laboratory Recent Work Title Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering. Permalink https://escholarship.org/uc/item/2kh465km Journal Proceedings of the National Academy of Sciences of the United States of America, 116(31) ISSN 0027-8424 Authors Omair, Zunaid Scranton, Gregg Pazos-Outón, Luis M et al. Publication Date 2019-07-16 DOI 10.1073/pnas.1903001116 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering Zunaid Omaira,b,1, Gregg Scrantona,b,1, Luis M. Pazos-Outóna,2, T. Patrick Xiaoa,b, Myles A. Steinerc, Vidya Ganapatid, Per F. Petersone, John Holzrichterf, Harry Atwaterg, and Eli Yablonovitcha,b,2 aDepartment of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720; bMaterial Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; cNational Renewable Energy Laboratory, Golden, CO 80401; dDepartment of Engineering, Swarthmore College, Swarthmore, PA 19081; eDepartment of Nuclear Engineering, University of California, Berkeley, CA 94720; fPhysical Insights Associates, Berkeley, CA 94705; and gApplied Physics, California Institute of Technology, Pasadena, CA 91125 Contributed by Eli Yablonovitch, June 10, 2019 (sent for review February 27, 2019; reviewed by James Harris and Richard R. King) Thermophotovoltaic power conversion utilizes thermal radiation Here, we present experimental results on a thermophotovoltaic from a local heat source to generate electricity in a photovoltaic cell. cell with 29.1 ± 0.4% power conversion efficiency at an emitter It was shown in recent years that the addition of a highly reflective temperatureof1,207°C.Thisisarecordforthermophotovoltaic rear mirror to a solar cell maximizes the extraction of luminescence.
    [Show full text]
  • Ankara University Department of Energy Engineering Solar Energy
    ANKARA UNIVERSITY DEPARTMENT OF ENERGY ENGINEERING SOLAR ENERGY INSTRUCTOR DR. ÖZGÜR SELİMOĞLU CONTENTS Solar Energy a. Photovoltaics b. Space applications c. Energy distribution/transmission – electricity & smart technologies: d. Electric car 2 PHOTOVOLTAIC Photovoltaic generation of power is caused by electromagnetic radiation separating positive and negative charge carriers in absorbing material. If an electric field is present, these charges can produce a current for use in an external circuit. A solar cell is nothing but a PN junction diode under light illumination. Sun light can be converted into electricity due to photovoltaic effect. Sun light composed of photons (packets of energy). These photons contain various amount of energy corresponding to different wave lengths of light. When photons strike a solar cell they may be reflected or absorbed or pass through the cell. 3 How Do Silicon Solar Cells Work? The most common PV cells are made of single-crystal silicon. An atom of silicon in the crystal lattice absorbs a photon of the incident solar radiation, and if the energy of the photon is high enough, an electron from the outer shell of the atom is freed. This process thus results in the formation of a hole–electron pair, a hole where there is a lack of an electron and an electron out in the crystal structure. 4 Incident solar radiation can be considered as discrete ‘‘energy units’’ called photons. The energy of a photon is a function of the frequency of the radiation (and thus also of the wavelength) and is given in terms of Planck’s constant h by The most energetic photons are those of high frequency and short wavelength.
    [Show full text]
  • Introduction to Photovoltaic Systems
    Introduction to Photovoltaic Systems SECO FACT SHEET NO. 11 HIGHLIGHTS N The energy needs of a typical home in Texas could be met by covering only half of its roof with solar electric panels. N Photovoltaic (PV) cells convert sunlight directly into electricity without creating any air or water pollution. City of Austin Electric Utility City of Austin INTRODUCTION Retrofitted residential PV system The solar panels on the roof produce electricity that travels through wires to the distribution panel on the side of the home. Photovoltaics offer consumers the ability to generate electricity in a clean, quiet and reliable way. PV systems are being installed by can in many cases offer the least Photovoltaic systems are comprised Texans who already have grid-sup- expensive, most viable option. of photovoltaic cells, devices that plied electricity but want to begin to convert light energy directly into live more independently or who are In use today on street lights, gate electricity. Because the source of concerned about the environment. openers and other low power tasks, light is usually the sun, they are For some applications where small photovoltaics are gaining popularity often called solar cells. The word amounts of electricity are required, in Texas and around the world as photovoltaic comes from “photo,” like emergency call boxes, PV sys- their price declines and efficiency meaning light, and “voltaic,” which tems are often cost justified even increases. refers to producing electricity. when grid electricity is not very far Therefore, the photovoltaic process away. When applications require HOW IT WORKS is “producing electricity directly larger amounts of electricity and PV cells convert sunlight directly from sunlight.” Photovoltaics are are located away from existing into electricity without creating any often referred to as PV.
    [Show full text]
  • Today's Need & Importance Role of Solar Based Automobile System
    IJIRST –International Journal for Innovative Research in Science & Technology| Volume 5 | Issue 5 | October 2018 ISSN (online): 2349-6010 Today's Need & Importance Role of Solar based Automobile System Arjun Kumar Gupta Shamasher Sharma Student Student Department of Mechanical Engineering Department of Mechanical Engineering Rajarshi Rananjay Sinh Institute of Management & Rajarshi Rananjay Sinh Institute of Management & Technology, Amethi 227405, Utter Pradesh, India Technology, Amethi 227405, Utter Pradesh, India Santosh Yadav Abhinav Student Student Department of Mechanical Engineering Department of Mechanical Engineering Rajarshi Rananjay Sinh Institute of Management & Rajarshi Rananjay Sinh Institute of Management & Technology, Amethi 227405, Utter Pradesh, India Technology, Amethi 227405, Utter Pradesh, India Mohd Saharyar Student Department of Mechanical Engineering Rajarshi Rananjay Sinh Institute of Management & Technology, Amethi 227405, Utter Pradesh, India Abstract As the world population increases, so does the demand for transportation. Automobiles, being the most common means of transportation, are one of the main sources of pollution. Therefore, in order to meet the needs of the society and to protect the environment, scientists began looking for a new solution to this problem. Before they suggested any answers, the scientists first looked at all aspects surrounding the issue. Solar energy is produced when sunlight strikes the photovoltaic cell. This energizes any electrical or battery found along the way. Developing solar cells to produce electricity has several big challenges, especially in solar cars. The first obstacle that has remained all intrusive in this quest is predicting the sun's availability. The second obstacle is to find an effective method of capturing, converting, and storing the sun energy when it is available.
    [Show full text]