<<

Patrick Talou Group, Theoretical Division, Los Alamos National Laboratory, USA

Second International Workshop on “Perspectives for Nuclear Data for the Next Decade” Oct. 14-17, 2014, Bruyères-le-Châtel, France

LA-UR-14-27975 Fission Cross Sections (n,f), (p,f), (g,f), (t,pf), etc Fission Cross Sections (n,f), (p,f), (g,f), (t,pf), etc Fission Fragment Yields Y(A,Z,KE) Fission Cross Sections Prompt Fission (n,f), (p,f), (g,f), (t,pf), etc and Gamma Rays (multiplicity, spectrum, correlations) Fission Fragment Yields Y(A,Z,KE) Fission Cross Sections Prompt Fission Neutrons (n,f), (p,f), (g,f), (t,pf), etc and Gamma Rays (multiplicity, spectrum, correlations) Fission Fragment Yields Y(A,Z,KE)

 Others?

b-delayed neutrons and gammas, fission fragment angular distributions, pre-scission neutrons and photons, prompt X-rays, etc.

 Stemming from both experiments and models  Stemming from both experiments and models  Some examples: . Experiments: ▪ Fission fragment yields ▪ Prompt fission neutrons . Theory: ▪ Uncertainties in modeling fission cross sections and “empirical fission barriers” ▪ Modeling the prompt fission spectrum

 Fission Fragment Yields . Typical resolutions: ▪ 3-5 amu for Y(A) ▪ 1-2% in Kinetic ▪ DZ~1 . from fragments ▪ Products, not fragments, are measured! . Very little data on E* dependence  Fission Fragment Yields  Prompt Fission Neutrons . Typical resolutions: . Multiplicity measurements (n) ▪ 3-5 amu for Y(A) ▪ Large Gd-loaded tanks ▪ 1-2% in ▪ No energy resolution ▪ DZ~1 . Spectrum (c) . Neutron emission from fragments ▪ Low-energy (<500 keV) very sensitive to ▪ Products, not fragments, are measured! multiple scattering . Very little data on E* dependence ▪ High-energy (>5 MeV) poor statistics

 Fission Cross Sections . Fission barrier . Double- or triple-humped . Deviations from simplified parabolas . Inertia tensor . Transition states, level densities at saddle points . Class-I,II states coupling  Fission Cross Sections  Prompt Fission Neutrons . Fission barrier . Simple models . Double- or triple-humped ▪ Madland-Nix, Watt, Maxwellian . Deviations from simplified parabolas ▪ Few model parameters, easy to adjust but . Inertia tensor strong correlations . Transition states, level densities at . More sophisticated saddle points ▪ Monte Carlo Weisskopf & Hauser- . Class-I,II states coupling Feshbach ▪ Many parameters, more difficult to adjust but (possibly) more faithful ▪ Various data calculated

(differential) Experimental Data Chi-Nu (differential) Experimental Data Chi-Nu

Theory/Modeling (differential) Experimental Data Chi-Nu

Theory/Modeling

Model Input Parameters

ENSDF RIPL-3 … (differential) Experimental Data Chi-Nu Comparisons

Theory/Modeling

Model Input Parameters

ENSDF RIPL-3 … (differential) Experimental Data Chi-Nu “Least-Square Comparisons Fits”

Theory/Modeling

Model Input Parameters

ENSDF RIPL-3 … (differential) Experimental Data Chi-Nu “Least-Square Comparisons Fits”

Theory/Modeling

Model Input Parameters

ENSDF RIPL-3 … (differential) Experimental Data Chi-Nu “Least-Square Comparisons Fits”

Uncertainty Quantification Theory/Modeling

Model Input Parameters

ENSDF RIPL-3 … (differential) Experimental Data Chi-Nu “Least-Square Comparisons Comparisons with integral Fits” benchmarks

Uncertainty Quantification Theory/Modeling

Model Input Parameters

ENSDF Feedback RIPL-3 …

Slide 23 (differential) Experimental Data Chi-Nu “Least-Square Comparisons Comparisons with integral Fits” benchmarks

Uncertainty Quantification Theory/Modeling

Model Input Parameters

ENSDF Feedback RIPL-3 … For fission… limited use of correlated data to constrain

evaluations  PFNS, sf(E*), FFAD, … Slide 24 Time-Projection Chamber Chi-Nu setup for fission cross-section (22 6Li glass detectors) to measure measurements prompt fission neutron spectra

DANCE w/ NEUANCE SPIDER 2E-2v for correlated measurements on for fission fragment yield prompt fission neutrons and g measurements rays with fission fragments Many other facilities and detector setups in construction worldwide:

. EAR2 at CERN . NFS @ SPIRAL2 @ GANIL . IGISOL-JYFLTRAP Time-Projection Chamber Chi-Nu setup . SOFIA: Studies On Fission with Aladin for fission cross-section (22 6Li glass detectors) to measure (reverse kinematics) at GSI measurements prompt fission neutron spectra . STEFF . …

. cf. Talk by X.Ledoux

DANCE w/ NEUANCE SPIDER 2E-2v for correlated measurements on for fission fragment yield prompt fission neutrons and g measurements rays with fission fragments Many other facilities and detector setups in construction worldwide:

. EAR2 at CERN . NFS @ SPIRAL2 @ GANIL . IGISOL-JYFLTRAP Time-Projection Chamber Chi-Nu setup . SOFIA: Studies On Fission with Aladin for fission cross-section (22 6Li glass detectors) to measure (reverse kinematics) at GSI measurements prompt fission neutron spectra . STEFF . …

. cf. Talk by X.Ledoux

. New data to fill obvious gaps in our experimental database . Better accuracy DANCE w/ NEUANCE SPIDER 2E-2v . Innovative measurements for correlated measurements on for fission fragment yield . Correlated data prompt fission neutrons and g measurements rays with fission fragments . … EAR2 @ n_TOF @ CERN SOFIA: Studies on Fission with Aladin @ GSI Fission x/s measurements of with half-lives ~years reverse kinematics, GSI: DA~0.6-0.8, DZ~0.4

FALSTAFF @ NFS Four Arm cLover for the STudy of Fission Fragments

NFS @ SPIRAL2 @ GANIL

N.Dubray, FIESTA workshop, From ascr-discovery.science.doe.gov W.Younes, FIESTA school, Sep. 10-12, 2014, Santa Fe Credit: A. Staszczak et al., ORNL Sep. 8-9, 2014, Santa Fe N.Dubray, FIESTA workshop, From ascr-discovery.science.doe.gov W.Younes, FIESTA school, Sep. 10-12, 2014, Santa Fe Credit: A. Staszczak et al., ORNL Sep. 8-9, 2014, Santa Fe

Uncertainties & Errors…

. Fundamental n-n force . Constrained calculations; parameter space? . Class-3 PES (N.Dubray) . Correlations s.p. and collectivity (H.Goutte) . Need for very large scale computations N.Dubray, FIESTA workshop, From ascr-discovery.science.doe.gov W.Younes, FIESTA school, Sep. 10-12, 2014, Santa Fe Credit: A. Staszczak et al., ORNL Sep. 8-9, 2014, Santa Fe

Uncertainties & Errors…

. Fundamental n-n force . Constrained calculations; parameter space? . Class-3 PES (N.Dubray) . Correlations s.p. and collectivity (H.Goutte) N.Schunck, . Need for very large scale computations CW2014 workshop, April 28- May 1, 2014, Santa Fe

25

224 * 225 *

) 20 Ac135 E = 11.00 (MeV) Ac136 E = 11.00 (MeV)

%

(

)

f Z

( 15

Y

d

l

e

i Y

10

e

g

r

a h

C 5

0

226 * 217 *

) 20 Ac137 E = 11.00 (MeV) Th127 E = 13.02 (MeV)

%

(

)

f Z

( 15

Y

d

l

e

i Y

10

e

g

r

a h

C 5

0

218 * 219 *

) 20 Th128 E = 11.99 (MeV) Th129 E = 11.17 (MeV)

%

(

)

f Z

( 15

Y

d

l

e

i Y

10

e

g

r

a h

C 5

0

220 * 221 *

) 20 Th130 E = 11.00 (MeV) Th131 E = 11.00 (MeV)

%

(

)

f Z

( 15

Y

d

l

e

i Y

10

e

g

r

a h

C 5

0

222 * 223 *

) 20 Th132 E = 11.00 (MeV) Th133 E = 11.00 (MeV)

%

(

)

f Z

( 15

Y

d

l

e

i Y

10

e

g

r

a h

C 5

0 20 30 40 50 60 20 30 40 50 60 70

Fragment Charge Number Zf Fragment Charge Number Zf J. Randrup & P. Möller, Phys. Rev. C 88, 064606 (2013) Data from K.H.Schmidt et al., Nucl. Phys. A 665, 221 (2000) 25

224 * 225 *

) 20 Ac135 E = 11.00 (MeV) Ac136 E = 11.00 (MeV)

%

(

)

f Z

( 15

Y

d

l

e

i Y

10

e

g

r

a h

C 5

0

226 * 217 *

) 20 Ac137 E = 11.00 (MeV) Th127 E = 13.02 (MeV)

%

(

)

f Z

( 15

Y

d

l

e

i Y

10

e

g

r

a h

C 5

0

218 * 219 *

) 20 Th128 E = 11.99 (MeV) Th129 E = 11.17 (MeV)

%

(

)

f Z

( 15

Y

d

l

e

i Y

10

e

g

r

a h

C 5

0

220 * 221 *

) 20 Th130 E = 11.00 (MeV) Th131 E = 11.00 (MeV)

%

(

)

f Z

( 15 A.J.Sierk, FIESTA workshop,

Y

d

l

e

i Y

10 Sep. 10-12, 2014, Santa Fe

e

g

r

a h

C 5

0

222 * 223 *

) 20 Th132 E = 11.00 (MeV) Th133 E = 11.00 (MeV)

%

(

)

f Z

( 15

Y

d

l

e

i Y

10

e

g

r

a h

C 5

0 20 30 40 50 60 20 30 40 50 60 70

Fragment Charge Number Zf Fragment Charge Number Zf J. Randrup & P. Möller, Phys. Rev. C 88, 064606 (2013) Data from K.H.Schmidt et al., Nucl. Phys. A 665, 221 (2000) 25

224 * 225 *

) 20 Ac135 E = 11.00 (MeV) Ac136 E = 11.00 (MeV)

%

(

)

f Z

( 15

Y

d

l

e

i Y

10

e

g

r

a h

C 5

0

226 * 217 *

) 20 Ac137 E = 11.00 (MeV) Th127 E = 13.02 (MeV)

%

(

)

f Z

( 15

Y

d

l

e

i Y

10

e

g

r

a h

C 5

0

218 * 219 *

) 20 Th128 E = 11.99 (MeV) Th129 E = 11.17 (MeV)

%

(

)

f Z

( 15

Y

d

l

e

i Y

10

e

g

r

a h

C 5

0

220 * 221 *

) 20 Th130 E = 11.00 (MeV) Th131 E = 11.00 (MeV)

%

(

)

f Z

( 15 A.J.Sierk, FIESTA workshop,

Y

d

l

e

i Y

10 Sep. 10-12, 2014, Santa Fe

e

g

r

a h

C 5

0

222 * 223 *

) Th E = 11.00 (MeV) Th E = 11.00 (MeV) Uncertainties & Errors…

20 132 133

%

(

)

f Z

( 15

Y

d

l

e

i Y

10

e . Macro-micro fundamental assumptions

g

r

a h C 5 . Inertia tensor 0 20 30 40 50 60 20 30 40 50 60 70 Fragment Charge Number Zf Fragment Charge Number Zf . Temperature J. Randrup & P. Möller, Phys. Rev. C 88, 064606 (2013) . Sub-barrier fission Data from K.H.Schmidt et al., Nucl. Phys. A 665, 221 (2000) . …

Monte Carlo codes to follow the de-excitation of fission fragments: CGM/F, FREYA, FIFRELIN, GEF, …

4.5 a E >.5 MeV th 4 E > 1 MeV th E > 1.5 MeV 3.5 th

3

2.5

2

1.5 (n-n) coincidences (n-n) units) (arb. 1

0.5 0 20 40 60 80 100 120 140 160 180 Angle  (degrees) nn

. data Uncertainties & Errors… . OMP for neutron-rich nuclei . Excitation sorting mechanisms at scission . …

. Modern Theory of Fission Cross Section

. Numerical integration of V(fission path) . Inertia tensor along the path . Coupling between Class-I and Class-II states . Class-III states . Fission transition states . Level densities . Different fission paths/modes? . Microscopic input?

Goriely, Hilaire, Koning, Sin, Capote Bouland, Lynn, Talou PRC 79, 024612 (2009) PRC 88, 054612 (2013)

Romain, Morillon . Modern Theory of Fission Cross Section

. Numerical integration of V(fission path) . Inertia tensor along the path . Coupling between Class-I and Class-II states . Class-III states . Fission transition states . Level densities . Different fission paths/modes? . Microscopic input?

Goriely, Hilaire, Koning, Sin, Capote Bouland, Lynn, Talou PRC 79, 024612 (2009) PRC 88, 054612 (2013) Uncertainties & Errors…

. Many adjustable parameters . Can be reduced but not eliminated . Need for correlated data Romain, Morillon

• Fission cross sections & Fission fragment angular distributions • Fission cross sections & Fission fragment angular distributions • Fission cross sections & Fission fragment angular distributions

. Simultaneous measurements of sf(En) and dYFF/dW . at LANSCE w/ TPC and CERN n_TOF tot • Fission cross sections & Fission • and fluctuations in fragment angular distributions resonance region

. Simultaneous measurements of sf(En) and dYFF/dW . Work at LANSCE w/ TPC and CERN n_TOF tot • Fission cross sections & Fission • and fluctuations in fragment angular distributions resonance region

) 5.6 3 V

e ENDF/ B-VI I.1

P

M (

r

DANCE o y 2.9 m g 5.4

p

r e

t n

N E

e

u y 2.8

t a

r

r 5.2 -

o

n

γ l

Y

a t

i

e

o 2.7

l

d

T 5

n

a e

M 2.6 10 20 50 100 200 Neutron Kinetic Energy (eV)

. Simultaneous measurements of sf(En) and dYFF/dW . Work at LANSCE w/ TPC and CERN n_TOF tot • Fission cross sections & Fission • and fluctuations in fragment angular distributions resonance region

) 5.6 3 V

e ENDF/ B-VI I.1

P

M (

r

DANCE o y 2.9 m g 5.4

p

r e

t n

N E

e

u y 2.8

t a

r

r 5.2 -

o

n

γ l

Y

a t

i

e

o 2.7

l

d

T 5

n

a e

M 2.6 10 20 50 100 200 Neutron Kinetic Energy (eV)

tot . New DANCE measurement of (En) . Theoretical interpretation based on the (n,gf) process

. New (En) measurements would be welcome!

. Simultaneous measurements of sf(En) and dYFF/dW . Work at LANSCE w/ TPC and CERN n_TOF

• Predictions for related data: • Fission cross sections across and incident channels, fission fragment angular distributions, fission modes, etc. • Prompt fission neutrons: multiplicity, spectrum, n-n correlations in energy and angle, etc., as a function of fragment (A,Z,KE) • Same for prompt fission gamma rays (cf. Oberstedt, Jandel)

• Use of , , , as function of (A,Z,KE) to constrain PFNS • Predictions for related data: • Fission cross sections across isotopes and incident channels, fission fragment angular distributions, fission modes, etc. • Prompt fission neutrons: multiplicity, spectrum, n-n correlations in energy and angle, etc., as a function of fragment (A,Z,KE) • Same for prompt fission gamma rays (cf. Oberstedt, Jandel)

• Use of , , , as function of (A,Z,KE) to constrain PFNS • One consistent fission model for related data sets • Predictions for related data: • Fission cross sections across isotopes and incident channels, fission fragment angular distributions, fission modes, etc. • Prompt fission neutrons: multiplicity, spectrum, n-n correlations in energy and angle, etc., as a function of fragment (A,Z,KE) • Same for prompt fission gamma rays (cf. Oberstedt, Jandel)

• Use of , , , as function of (A,Z,KE) to constrain PFNS • One consistent fission model for related data sets • Renewed need for original, exclusive, and accurate fission data – beware of old measurements & systematic biases (Haight) • Predictions for related data: • Fission cross sections across isotopes and incident channels, fission fragment angular distributions, fission modes, etc. • Prompt fission neutrons: multiplicity, spectrum, n-n correlations in energy and angle, etc., as a function of fragment (A,Z,KE) • Same for prompt fission gamma rays (cf. Oberstedt, Jandel)

• Use of , , , as function of (A,Z,KE) to constrain PFNS • One consistent fission model for related data sets • Renewed need for original, exclusive, and accurate fission data – beware of old measurements & systematic biases (Haight) • Proper propagation of uncertainties from both experiments and models (de Saint-Jean, Rochman) • Predictions for related data: • Fission cross sections across isotopes and incident channels, fission fragment angular distributions, fission modes, etc. • Prompt fission neutrons: multiplicity, spectrum, n-n correlations in energy and angle, etc., as a function of fragment (A,Z,KE) • Same for prompt fission gamma rays (cf. Oberstedt, Jandel)

• Use of , , , as function of (A,Z,KE) to constrain PFNS • One consistent fission model for related data sets • Renewed need for original, exclusive, and accurate fission data – beware of old measurements & systematic biases (Haight) • Proper propagation of uncertainties from both experiments and models (de Saint-Jean, Rochman) • Evaluated uncertainties can be kept small when nearby data are available – adjusted libraries – beware of extrapolations!

• After 75+ years… fission data are still limited in scope (isotopes, ) • After 75+ years… fission data are still limited in scope (isotopes, energies) • Fantastic opportunities in both experimental and theoretical studies of the fission process • After 75+ years… fission data are still limited in scope (isotopes, energies) • Fantastic opportunities in both experimental and theoretical studies of the fission process • Will continue to rely on phenomenology to fulfill the needs of applications • After 75+ years… fission data are still limited in scope (isotopes, energies) • Fantastic opportunities in both experimental and theoretical studies of the fission process • Will continue to rely on phenomenology to fulfill the needs of applications • Huge rewards from close collaboration between fundamental fission physics research and application needs • After 75+ years… fission data are still limited in scope (isotopes, energies) • Fantastic opportunities in both experimental and theoretical studies of the fission process • Will continue to rely on phenomenology to fulfill the needs of applications • Huge rewards from close collaboration between fundamental fission physics research and application needs

“Uncertainties in Data,” P.Talou, T.Kawano, M.B.Chadwick, D.Neudecker, and M.E.Rising

to appear in a Special Issue of J. Phys. G: Nuclear and Particle Physics on

"Enhancing the interaction between nuclear experiment and theory through information and statistics”