Energetics of Ulf/Elf Plasma Waves in the Solar Wind and Outer Earth's Maghetosphere

Total Page:16

File Type:pdf, Size:1020Kb

Energetics of Ulf/Elf Plasma Waves in the Solar Wind and Outer Earth's Maghetosphere 95 ENERGETICS OF ULF/ELF PLASMA WAVES IN THE SOLAR WIND AND OUTER EARTH'S MAGHETOSPHERE S.I.Klimov Space Research Institute, Russian Academy of Sciences, Moscow deployed at special booms which excludes the possible shadowing and reduces the influence of the spacecraft body on sensors. All these factors ABSTRACT provide the low level of the backround High apogee orbits of Prognoz-8 (1980) and electromagnetic noise of electric and magnetic field Prognoz-10 (1985) satellites and low noise level of experiments. electric field, magnetic field and plasma flux The wave experiment flown on the Prognoz-8,-10 satellites were able to measure fluctuations of the fluctuations instruments have provided an plasma flow (P), current density (J), eleotric(E) opportunity of ULF/ELF waves (0.1-100 Hz) study in and magnetic(B) fields (Refs. 1, 3). In particular, both quiet and disturbed magnetospheric conditions. these instruments were designed to perform detailed Conducted for the first time direct measurements in measurements in the low frequency range. the Solar Wind in the ULF/ELF range of fluctuation Figure 1 demonstrates the sequence of data from one spectra of electric field E and ion component of orbit (96 hours) gathered with the wave instrument plasma flow P have shown that hourly averaged E and .. on Prognoz-8. The data presented in this Figure are F apectra are in quiet conditiqns for E (10 averaged over 5 rain. It is seen that the low -lOlV/mHz (2-105 Hz) and for F UO^lOjcounts percm frequency oscillations of the electric field and s Hz (2-70 Hz). In the disturbed conditions (on plasma flow are prominent features of the shock the sector boundaries and discontinuities) hourly transition region and various boundaries encountered averaged values of power spectral density are 2:3 in the Earth's magnetosphere. The low frequency times higher than in quiet regions. It was shown, measurements, in particular those of the plasma flow that most of solar wind energy dissipation in the (P), can be use to detect the shock encounters. Bow Shock front is provided by the oscillations in The project "INTERSHOCK" was primarily dedicated to the doppler shifted lower hybrid frequency range studies of the fine structure of the Earth's bow (5-30 Hz) - 10" erg/cm' rather than by iono-sound shock. However, the Prognoz-8 and Prognoz-10 oscillations - 10"'" erg/cm"*. spacecraft also provided the wave measurements in the different regions of the Earth's magnetosphere. The project "INTERSHOCK" (Réf. 1) was dedicated to l.BOW SHOCK the investigation of the interaction between the solar wind (SW) and the Earth's magnetosphere. Whistlers and ion acoustic waves were first wave Particular attention was draw to plasma and wave modes identified at the Earth's bow shock measurements in the magnetosheath,at the Earth's bow (Refs. 4, 5). However, these discoveries did not shock and magnetopause. This project was carried out clarify all problems related to the energy with two spacecraft: Prognoz-8 launched on 25 dissipation on the collisionless bow shock. In December 1980 and Prognoz-10 launched on 26 April particular, the mechanisms of ion and electron 1985. The scientific instruments flown onboard heatings remained unknown (Refs. 6, 7). spacecraft were built in the cooperation between Wave measurement:; performed by the Prognoz-8 and -10 research groups from USSR, Poland ( Prognoz-8 ) and spacecraft showed that all these problems cannot be Chechoslovakia. solved by use of data gathered by prior expérimenta. The Prognoz-type spacecraft was enjected onto the It was mainly due to the lack of detailed orbit with apogee of about 200000 km. The outbound measurements in the range of low hybrid frequency and inbound raagnetosphere encounters were expected which was not sufficiently covered with the wave at high and low !attitudes respectively. The instruments flown onboard satellites launched before Prognoz-type satellite (Réf. 2) waa rotating around Prognoz-8 and -10. Two peaks at frequencies of the axis pointed to the Sun with accuracy of a few 2-8 Hz and 20-40 Hz, are the permanent features of degrees. The spin period was typically of about 2 wave observations near the shock front (Réf. 8). min. The solar panels were located in the rotation Figure 2 showa the integral level of power of plane. Their relatively constant orientation with magnetic (Da) and electric (De ) field fluctuations respect to the Sun light and slow rotation of the in the frequency range from 0.1 to 25 Hz. This spacecraft injure the low level of the frequency range covers the range of low hybrid electromagnetic background noiae caused by the frequency which is estimated to be of about ficw Hz. rebuilding of the photoelecton sheet of the The rump of the bow shock is crossed between spacecraft and the extracurrent structures of the 07:09:10 and 07:09:30 UT. It is seen that both solar panels. The electric and magnetic sensors were paraneters De and 0% reach their naxiaa just Proceedmgs of the 26th ESLAB Symposium - Study of the Solar-Terrestrial System, held in Killarney. Ireland. 16-19 June 7992 (ESA SP-346 September 1992) Ut- Ut" 96 PROGNOZ-8.1981 ?igure 1. The Prognoz-B monitoring data from one orbit. mV2 m"2 100 Bf.nT/Hz'71 10 1 , 10'1 - 706 710 05 I 2 5 10 20Hz 05 1 5 IO 20 Hz Figure 2. The Prognoz-10 bow shock crossing on 8.10. Figure 3. E and B plasma wave spectra measured on 85. Bx magnetic field, mean squares of fluctuation Prognoz-10 in: 1- the foot, 1- near the ramp. 3- amplitudes of the magnetic field Db and electric behind the ramp. field De in the frequency region from 0.1 Hz to 25 Hz. before the shock ramp. Figure 3 demonstrates the incoming ions leads to the excitation of whistler dynamics of electric and magnetic fields wavo,3 at shocks with Mach numbers greater then 10 fluctuations through the shock transition region. (Réf. 12). Three succesive spectra of both electic and magnetic The instabilities related with the ion beam generate signals are shown being measured in the shock foot the magnetosonic waves in the range of the low (1), ramp (2) and downstream region (3). Maximum hybrid frequency. Another wave mode identified as a level of fluctuations is observed at frequencies whistler, is driven by the nonlinear evolution of between 4-6 Hz in the shock foot and at frequency of the shock front (Refs. 13, 14). about 0.7 Hz in tha shock ramp and downstream The problem which embrasses the interpretation of region. wave data is that of the distinction between spatial It is well established (Refs. 9-11) that the and temporal variations. The wave properties in the significant portion of the kinetic energy of the plasma rest frame (i.e. polarization, frequency and incoming solar wind flow is transfered to the that phase velocity) remain ambiguious whilst this of the reflected ions at the quaaiperpendicular problem is unsolved. A method based on simultaneous I; shock. The opposite flows of the reflecting and observations of magnetic field and current 97 100 «0 so- 40: \ 20- 20.00 40.00 «0.00 MOO 7.09.28 Time(sec) 7.10.48 Figure 4. Waveforms of the Bx and By magnetic field. Figure 5. Wavelength on the bow shock front crossing Jy electric current, density and Ez electric field by Prognoz-10 at 8.10.85. 1- frequency <1 Hz; 2- recorded during the Prognoz-10 bow shock crossing on frequency range 2-5 Hz; 07.16:40 is beginning of the 8.18.85. foot; 07.17:20 is magnetosheath. fluctuations can help to overcome this difficulty The maximum value of the wavelength is comparable (Refs. 3, 15). Indeed, the Maxwellian equations with the gyroradius of solar wind protons. Indeed, 7"B=J and 7-8=0 (1) the ion gyroradius (jv) is estimated to be of 130 allow to derive the folowing expresion and 80 km for two crossings presented in Figure 5. K(«,)=J(w)/BM (2) The solar wind velocity Vsw equals 480 km/a, where K(U,) is the wave vector, JM and B(CU) are the magnetic field strength B0 is of 20 nT at the ramp Fourier components of the current density and for both encounters. The angle between Bc and Ve is magnetic field respectively. Thus, simultaneous 57 deg. and 71 deg. respectevely. Thus, the maximum measurements of both current and magnetic field wavelength of emissions observed upstream of the fluctuations performed by a single spacecraft make ramp does not exceed the gyroradius of protons it possible to find out the dispersion relations of reflected from the bow shock. waves. The following figures illustrates an Figure 6 shows a typical dispersion curve in the application of this method. spacecraft reference system. Wave data gathered near Figure 4 presents, from top to bottom, two magnetic the upstream edge of the shock foot have been used field components B» and Ey, current density Jx and in its derivation. The circular polarization of the one electric field component Ez. All parameters are waves which has been established in this section sampled with a rate of 50 Hz. Distinct Have packages allows to substitute the absolute values of J(w) and are observed in the foot region. Levels and shapes B(IJ) with their projections on coordinate axis. The of signals sharply change at the ramp. A high levels projection of the solar wind velocity Vo on the of correlation are evident between various average wave vector (i.e.
Recommended publications
  • Pushing the Limits of the Coronagraphic Occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph
    Pushing the limits of the coronagraphic occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph John H. Debes Bin Ren Glenn Schneider John H. Debes, Bin Ren, Glenn Schneider, “Pushing the limits of the coronagraphic occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph,” J. Astron. Telesc. Instrum. Syst. 5(3), 035003 (2019), doi: 10.1117/1.JATIS.5.3.035003. Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 02 Jul 2019 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Journal of Astronomical Telescopes, Instruments, and Systems 5(3), 035003 (Jul–Sep 2019) Pushing the limits of the coronagraphic occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph John H. Debes,a,* Bin Ren,b,c and Glenn Schneiderd aSpace Telescope Science Institute, AURA for ESA, Baltimore, Maryland, United States bJohns Hopkins University, Department of Physics and Astronomy, Baltimore, Maryland, United States cJohns Hopkins University, Department of Applied Mathematics and Statistics, Baltimore, Maryland, United States dUniversity of Arizona, Steward Observatory and the Department of Astronomy, Tucson Arizona, United States Abstract. The Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) contains the only currently operating coronagraph in space that is not trained on the Sun. In an era of extreme-adaptive- optics-fed coronagraphs, and with the possibility of future space-based coronagraphs, we re-evaluate the con- trast performance of the STIS CCD camera. The 50CORON aperture consists of a series of occulting wedges and bars, including the recently commissioned BAR5 occulter. We discuss the latest procedures in obtaining high-contrast imaging of circumstellar disks and faint point sources with STIS.
    [Show full text]
  • Detection of Large-Scale X-Ray Bubbles in the Milky Way Halo
    Detection of large-scale X-ray bubbles in the Milky Way halo P. Predehl1†, R. A. Sunyaev2,3†, W. Becker1,4, H. Brunner1, R. Burenin2, A. Bykov5, A. Cherepashchuk6, N. Chugai7, E. Churazov2,3†, V. Doroshenko8, N. Eismont2, M. Freyberg1, M. Gilfanov2,3†, F. Haberl1, I. Khabibullin2,3, R. Krivonos2, C. Maitra1, P. Medvedev2, A. Merloni1†, K. Nandra1†, V. Nazarov2, M. Pavlinsky2, G. Ponti1,9, J. S. Sanders1, M. Sasaki10, S. Sazonov2, A. W. Strong1 & J. Wilms10 1Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany. 2Space Research Institute of the Russian Academy of Sciences, Moscow, Russia. 3Max-Planck-Institut für Astrophysik, Garching, Germany. 4Max-Planck-Institut für Radioastronomie, Bonn, Germany. 5Ioffe Institute, St Petersburg, Russia. 6M. V. Lomonosov Moscow State University, P. K. Sternberg Astronomical Institute, Moscow, Russia. 7Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia. 8Institut für Astronomie und Astrophysik, Tübingen, Germany. 9INAF-Osservatorio Astronomico di Brera, Merate, Italy. 10Dr. Karl-Remeis-Sternwarte Bamberg and ECAP, Universität Erlangen-Nürnberg, Bamberg, Germany. †e-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected] The halo of the Milky Way provides a laboratory to study the properties of the shocked hot gas that is predicted by models of galaxy formation. There is observational evidence of energy injection into the halo from past activity in the nucleus of the Milky Way1–4; however, the origin of this energy (star formation or supermassive-black-hole activity) is uncertain, and the causal connection between nuclear structures and large-scale features has not been established unequivocally.
    [Show full text]
  • Observations of Comet IRAS-Araki-Alcock (1983D) at La Silla T
    - 12 the visual by 1.3 mag). Like for the other SOor variables we M explain this particular finding by the very high mass loss (M = Bol 5 6.10- M0 yr-') during outburst. The variations in the visual are caused by bolometric flux redistribution in the envelope whilst -10 the bolometric luminosity remains practically constant. The location of R127 in the Hertzsprung-Russell diagram together with the other two known SOor variables of the LMC -B are shown in fig. 8. We note that Walborn classified R127 as an Of or alterna­ tively as a late WN-type star. This indicates that the star is a late Of star evolving right now towards a WN star. Since we have -6 detected an SOor-type outburst of this star we conclude that this transition is not a smooth one but is instead accompanied '.8 '.6 4.0 3.6 by the occasional ejection of dense envelopes. Fig. 8: Location of the newly discovered S Dar variable R 127 in the References Hertzsprung-Russell diagram in comparison with the other two estab­ lished SOor variables of the LMG. Also included in the figure is the Conti, P. S.: 1976, Mem. Soc. Roy. Sei. Liege 9,193. upper envelope of known stellar absolute bolometric magnitudes as Dunean, J. C.: 1922, Publ. Astron. Soc. Pacific 34, 290. derived byHumphreys andDavidson (1979). The approximateposition Hubble, E., Sandage, A.: 1953, Astrophys. J. 118, 353. o( the late WN-type stars is also given. Humphreys, R. M., Davidson, K.: 1979, Astrophys. J. 232,409. Lamers, H.
    [Show full text]
  • Fast Solar Wind Monitor (BMSW): Description and First Results
    Space Sci Rev (2013) 175:165–182 DOI 10.1007/s11214-013-9979-4 Fast Solar Wind Monitor (BMSW): Description and First Results Jana Šafránková · Zdenekˇ Nemeˇ cekˇ · Lubomír Prechˇ · Georgy Zastenker · Ivo Cermákˇ · Lev Chesalin · Arnošt Komárek · Jakub Vaverka · Martin Beránek · Jiríˇ Pavl˚u · Elena Gavrilova · Boris Karimov · Arkadii Leibov Received: 4 September 2012 / Accepted: 19 March 2013 / Published online: 6 April 2013 © Springer Science+Business Media Dordrecht 2013 Abstract Monitoring of solar wind parameters is a key problem of the Space Weather pro- gram. The paper presents a description of a novel fast solar wind monitor (Bright Monitor of the Solar Wind, BMSW) and the first results of its measurements of plasma moments with a time resolution ranging from seconds to 31 ms. The method of the fast monitoring is based on simultaneous measurements of the total ion flux and ion integral energy spectrum by six nearly identical Faraday cups (FCs). Three of them are dedicated to determination of the ion flow direction, whereas other three equipped with control grids supplied by a re- tarding potential are used for a determination of the density, temperature, and speed of the plasma flow. The paper introduces not only the measuring methods, the FCs design, and modes of operation, but brings the examples of time series of measurements and their com- parison with the observations of other spacecraft as well as the first results of an analysis of frequency spectra of solar wind fluctuations within the ion kinetic scale, examples of rapid measurements at the ramp of an interplanetary shock and investigations of fast variations of alpha particle content.
    [Show full text]
  • World Space Observatory %Uf02d Ultraviolet Remains Very Relevant
    WORLD SPACE OBSERVATORY-ULTRAVIOLET Boris Shustov, Ana Inés Gómez de Castro, Mikhail Sachkov UV observatories aperture pointing mode , Å OAO-2 1968.12 - 1973.01 20 sp is 1000-4250 TD-1A 1972.03 - 1974.05 28 s is 1350-2800+ OAO-3 1972.08 - 1981.02 80 p s 900-3150 ANS 1974.08 - 1977.06 22 p s 1500-3300+ IUE 1978.01 - 1996.09 45 p s 1150-3200 ASTRON 1983.03 - 1989.06 80 p s 1100-3500+ EXOSAT 1983.05 - 1986. 2x30 p is 250+ ROSAT 1990.06 - 1999.02 84 sp i 60- 200+ HST 1990.04 - 240 p isp 1150-10000 EUVE 1992.06 - 2001.01 12 sp is 70- 760 ALEXIS 1993.04 - 2005.04 35 s i 130- 186 MSX 1996.04 - 2003 50 s i 1100-9000+ FUSE 1999.06 - 2007.07 39х35 (4) p s 905-1195 XMM 1999.12 - 30 p is 1700-5500 GALEX 2003.04 - 2013.06 50 sp is 1350-2800 SWIFT 2004.11 - 30 p i 1700-6500 2 ASTROSAT/UVIT UVIT - UltraViolet Imaging Telescopes (on the ISRO Astrosat observatory, launch 2015); Two 40cm telescopes: FUV and NUV, FOV 0.5 degrees, resolution ~1” Next talk by John Hutchings! 3 4 ASTRON (1983 – 1989) ASTRON is an UV space observatory with 80 cm aperture telescope equipped with a scanning spectrometer:(λλ 110-350 nm, λ ~ 2 nm) onboard. Some significant results: detection of OH (H2O) in Halley comet, UV spectroscopy of SN1987a, Pb lines in stellar spectra etc. (Photo of flight model at Lavochkin Museum).5 “Spektr” (Спектр) missions Federal Space Program (2016-2025) includes as major astrophysical projects: Spektr-R (Radioastron) – launched in 2011.
    [Show full text]
  • Annexe: Summary of Soviet and Russian Space Science Missions
    Contents Introduction by the authors ..................................... ix Acknowledgments ............................................ xi Glossary .................................................. xiii Terminological and translation notes ..............................xv Reference notes .............................................xvii List of tables ............................................... xix List of illustrations ......................................... xxiii List of figures .............................................xxvii 1 Early space science ........................................... 1 Space science by balloon....................................... 3 Scientific flights into the atmosphere: the Akademik series..............14 Scientific test flights with animals ................................20 The idea of a scientific Earth satellite .............................23 Scientific objectives of the first Earth satellites . ....................25 Key people .................................................25 Instead, Prosteishy Sputnik .....................................27 PS2......................................................29 Object D: the first large scientific satellite in orbit....................33 Early space science: what was learned? ............................37 References .................................................39 2 Deepening our understanding ....................................43 Following Sputnik: the MS series ................................43 Cosmos 5 and Starfish: introducing Yuri Galperin
    [Show full text]
  • Yakutia) “…The Republic of Sakha (Yakutia) Is the Largest Region in the Russian Federation and One of the Richest in Natural Resources
    Investor's Guide to the Republic of Sakha (Yakutia) “…The Republic of Sakha (Yakutia) is the largest region in the Russian Federation and one of the richest in natural resources. Needless to say, the stable and dynamic development of Yakutia is of key importance to both the Far Eastern Federal District and all of Russia…” President of the Russian Federation Vladimir Putin “One of the fundamental priorities of the Government of the Republic of Sakha (Yakutia) is to develop comfortable conditions for business and investment activities to ensure dynamic economic growth” Head of the Republic of Sakha (Yakutia) Egor Borisov 2 Contents Welcome from Egor Borisov, Head of the Republic of Sakha (Yakutia) 5 Overview of the Republic of Sakha (Yakutia) 6 Interesting facts about the Republic of Sakha (Yakutia) 7 Strategic priorities of the Republic of Sakha (Yakutia) investment policy 8 Seven reasons to start a business in the Republic of Sakha (Yakutia) 10 1. Rich reserves of natural resources 10 2. Significant business development potential for the extraction and processing of mineral and fossil resources 12 3. Unique geographical location 15 4. Stable credit rating 16 5. Convenient conditions for investment activity 18 6. Developed infrastructure for the support of small and medium-sized enterprises 19 7. High level of social and economic development 20 Investment infrastructure 22 Interaction with large businesses 24 Interaction with small and medium-sized enterprises 25 Other organisations and institutions 26 Practical information on doing business in the Republic of Sakha (Yakutia) 27 Public-Private Partnership 29 Information for small and medium-sized enterprises 31 Appendix 1.
    [Show full text]
  • Beam Tracking Strategies for Fast Acquisition of Solar Wind Velocity Distribution Functions with High Energy and Angular Resolutions
    Ann. Geophys., 36, 1285–1302, 2018 https://doi.org/10.5194/angeo-36-1285-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Beam tracking strategies for fast acquisition of solar wind velocity distribution functions with high energy and angular resolutions Johan De Keyser1, Benoit Lavraud2, Lubomir Prechˇ 3, Eddy Neefs1, Sophie Berkenbosch1, Bram Beeckman1, Andrei Fedorov2, Maria Federica Marcucci4, Rossana De Marco4, and Daniele Brienza4 1Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Brussels, Belgium 2Institut de Recherche en Astrophysique et Planétologie (IRAP), Univ. Toulouse, CNRS, UPS, CNES, Toulouse, France 3Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic 4Istituto di Astrofisica e Planetologia Spaziali (INAF/IAPS), Rome, Italy Correspondence: Johan De Keyser ([email protected]) Received: 6 June 2018 – Discussion started: 20 June 2018 Revised: 9 August 2018 – Accepted: 17 September 2018 – Published: 2 October 2018 Abstract. Space plasma spectrometers have often relied on 1 Introduction spacecraft spin to collect three-dimensional particle velocity distributions, which simplifies the instrument design and re- The plasma in the outer layers of the solar atmosphere is so duces its resource budgets but limits the velocity distribution hot that even the Sun’s gravity cannot restrain it. The Sun acquisition rate. This limitation can in part be overcome by therefore produces a persistent stream of plasma that flows the use
    [Show full text]
  • Eyes for Gamma Rays” Though the Major Peaks Suggest a Periodic- Whether These Are Truly Gamma-Ray Bursts for a Description of This System)
    sion of regularity and slow evolution in the They suggested that examination of the Vela exe-atmospheric nuclear detonation. Surpris- universe persisted into the 1960s. data might disclose evidence of bursts of ingly, however, the survey soon revealed that The feeling that transient cosmic events gamma rays at times close to the appearance the gamma-ray instruments on widely sepa- were rare was certainly prevalent in 1959 of supernovae. Such searches were con- rated satellites had sometimes responded when summit meetings were being held be- ducted; however, no distinctive signals were almost identically. Some of these events were tween England, the United States, and found. attributable to solar flare activity. However, Russia to discuss a nuclear test-ban treaty. On the other hand, there was evidence of one particularly distinctive event was dis- One key issue was the ability to detect treaty variability that had been ignored. For exam- covered for which a solar origin seemed violations unambiguously. A leading ple, the earliest x-ray data from small rocket inconsistent. Fortunately, the characteristics proposal for the detection of exo-at- probes and from satellites were often found of this event did not at all resemble those of a mospheric nuclear explosions was the use of to disagree significantly. The quality of the nuclear detonation, and thus the event did satellites with instruments that included de- data, rather than actual variations in the not create concern of a possible test-ban tectors sensitive to the gamma rays emitted sources, was suspected as the reason for treaty violation. by the explosion as well as those emitted these discrepancies.
    [Show full text]
  • The World Space Observatory: Ultraviolet Mission: Science Program and Status Report
    PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie The World Space Observatory: ultraviolet mission: science program and status report Sachkov, M., Gómez de Castro, A. I., Shustov, B. M. Sachkov, A. I. Gómez de Castro, B. Shustov, "The World Space Observatory: ultraviolet mission: science program and status report," Proc. SPIE 11444, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, 1144473 (13 December 2020); doi: 10.1117/12.2562929 Event: SPIE Astronomical Telescopes + Instrumentation, 2020, Online Only Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Jan 2021 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use The World Space Observatory - Ultraviolet mission: science program and status report M. Sachkov*a , A.I. Gómez de Castrob, B. Shustova aInstitute of Astronomy of Russian Academy of Sciences, Pyatnitskaya str., 48, Moscow, 119017, Russia; bAEGORA Research Group, Fac. CC. Matematicas, Universidad Complutense, Plaza de Ciencias 3, 28040, Madrid, Spain ABSTRACT A general description of the international space mission "Spectr-UF" (World Space Observatory-Ultraviolet) is given. The project is aimed to create a large space telescope to work in the UV wavelength domain (115 - 310 nm). In the Federal Space Program of Russia for 2016-2025 the launch of the project is scheduled for 2025. We implement several important improvements: updated scientific program of the project; a new design of the Field Camera Unit instrument; corrected orbit; developed a system of collecting applications etc. This paper briefly describes the current status of the mission. Keywords: ultraviolet, spectroscopy, imaging, exoplanet, UV space telescope, WSO-UV 1. INTRODUCTION The Earth's atmosphere blocks observations of celestial objects in the ultraviolet (UV) part of the electromagnetic spectrum.
    [Show full text]
  • The Status of the Hubble Space Telescope
    al insights into the atmospheric struc- ture of hot stars. It is essential, although time consum- ing, to disentangle effects due to binari- ty from effects reflecting the kinematics of the stellar group (11). Especially the lack of recognition of wider binaries with an RV amplitude of the order of 10 kmls might significantly influence the conclu- sions. Hence, repetition of RV observa- tions is necessary and will in turn in- crease our knowledge on binarity in the selected young stellar groups. The spectra will in addition allow a study of stellar rotation in these star groups (12). In many respects, this project forms an extension towards the earliest spec- tral types of the key programmes of Mayor et al. and Gerbaldi et al. (de- scribed in the Messenger 56), even when the primary scientific motivation is somewhat different. In addition to the common interest in radial velocities, the stars in Sco-Cen are also observed by the Hipparcos satellite, providing space motions when combined with the RVs. Using these, we hope to reconstruct the initial minimal volumes in which the star formation occurred which gave rise to the presently expanding Sco-Cen sub- 4180 4200 4220 4240 4260 4280 groups, and to discuss the possibility of wavelength (angstrom) sequential star formation (13). Part of the CASPEC spectrum of NGC 2244-201, a 10th magnitude B 1 V star. The strongest lines are 011 4185, 011 4 190, NII 4242, 011 4254, CII 4267, a complex of 011 lines around First Results 4277A, 011 4283, Slll4285 and 011 4286. Strictly within the frame of the key programme, the first spectra have been obtained on 3 nights in May 1990.
    [Show full text]
  • The UV Perspective of Low-Mass Star Formation
    galaxies Review The UV Perspective of Low-Mass Star Formation P. Christian Schneider 1,* , H. Moritz Günther 2 and Kevin France 3 1 Hamburger Sternwarte, University of Hamburg, 21029 Hamburg, Germany 2 Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research; Cambridge, MA 02109, USA; [email protected] 3 Department of Astrophysical and Planetary Sciences Laboratory for Atmospheric and Space Physics, University of Colorado, Denver, CO 80203, USA; [email protected] * Correspondence: [email protected] Received: 16 January 2020; Accepted: 29 February 2020; Published: 21 March 2020 Abstract: The formation of low-mass (M? . 2 M ) stars in molecular clouds involves accretion disks and jets, which are of broad astrophysical interest. Accreting stars represent the closest examples of these phenomena. Star and planet formation are also intimately connected, setting the starting point for planetary systems like our own. The ultraviolet (UV) spectral range is particularly suited for studying star formation, because virtually all relevant processes radiate at temperatures associated with UV emission processes or have strong observational signatures in the UV range. In this review, we describe how UV observations provide unique diagnostics for the accretion process, the physical properties of the protoplanetary disk, and jets and outflows. Keywords: star formation; ultraviolet; low-mass stars 1. Introduction Stars form in molecular clouds. When these clouds fragment, localized cloud regions collapse into groups of protostars. Stars with final masses between 0.08 M and 2 M , broadly the progenitors of Sun-like stars, start as cores deeply embedded in a dusty envelope, where they can be seen only in the sub-mm and far-IR spectral windows (so-called class 0 sources).
    [Show full text]