Genetic Syndromes Caused by Mutations in Epigenetic Genes

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Syndromes Caused by Mutations in Epigenetic Genes Hum Genet (2013) 132:359–383 DOI 10.1007/s00439-013-1271-x REVIEW PAPER Genetic syndromes caused by mutations in epigenetic genes Marı´a Berdasco • Manel Esteller Received: 10 December 2012 / Accepted: 18 January 2013 / Published online: 31 January 2013 Ó Springer-Verlag Berlin Heidelberg 2013 Abstract The orchestrated organization of epigenetic epigenetic alterations increases. As recent examples, muta- factors that control chromatin dynamism, including DNA tions of histone demethylases and members of the non- methylation, histone marks, non-coding RNAs (ncRNAs) coding RNA machinery have recently been associated with and chromatin-remodeling proteins, is essential for the Kabuki syndrome, Claes-Jensen X-linked mental retardation proper function of tissue homeostasis, cell identity and syndrome and Goiter syndrome. In this review, we describe development. Indeed, deregulation of epigenetic profiles the variety of germline mutations of epigenetic modifiers that has been described in several human pathologies, including are known to be associated with human disorders, and dis- complex diseases (such as cancer, cardiovascular and cuss the therapeutic potential of epigenetic drugs as pallia- neurological diseases), metabolic pathologies (type 2 dia- tive care strategies in the treatment of such disorders. betes and obesity) and imprinting disorders. Over the last decade it has become increasingly clear that mutations of genes involved in epigenetic mechanism, such as DNA Introduction methyltransferases, methyl-binding domain proteins, his- tone deacetylases, histone methylases and members of the Chromatin dynamism is critical to basic cellular processes SWI/SNF family of chromatin remodelers are linked to such as gene transcription, DNA replication, DNA human disorders, including Immunodeficiency Centro- recombination and DNA repair. DNA accessibility is meric instability Facial syndrome 1, Rett syndrome, modulated by epigenetic mechanisms that ultimately alter Rubinstein–Taybi syndrome, Sotos syndrome or alpha- the structure of the chromatin and provide binding sites thalassemia/mental retardation X-linked syndrome, among for a wide variety of regulatory proteins. The orchestrated others. As new members of the epigenetic machinery are organization of epigenetic factors, including DNA meth- described, the number of human syndromes associated with ylation, histone marks, non-coding RNAs (ncRNAs), and their associated chromatin proteins, is essential for development and cellular differentiation. For instance, M. Berdasco Á M. Esteller (&) extensive chromatin remodeling occurs on a global level Cancer Epigenetics Group, Cancer Epigenetics and Biology during early development. DNA methylation patterns Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Av. Gran undergo genome-wide alterations that occur immediately Via 199-203, 08908 L’Hospitalet de LLobregat Barcelona, after fertilization and during early-preimplantation devel- Catalonia, Spain opment, together with histone modification changes, such e-mail: [email protected] as increased H3K9me with differentiation (Reik 2007). M. Esteller Epigenetic factors also guarantee the activation and Department of Physiological Sciences II, School of Medicine, maintenance of specific differentiation programs in adult University of Barcelona, Barcelona, Catalonia, Spain somatic cells (Berdasco and Esteller 2010). The active role of epigenetic factors in controlling cellular differen- M. Esteller Institucio´ Catalana de Recerca I Estudis Avanc¸ats (ICREA), tiation is supported by spontaneous cell differentiation 08010 Barcelona, Catalonia, Spain after treatment with demethylating agents or histone 123 360 Hum Genet (2013) 132:359–383 deacetylase inhibitors (reviewed in Berdasco and Esteller (deoxycytidine-phosphate-deoxyguanosine) sites located 2011). Treatment with the demethylation agent 5-aza-20- throughout the genome, but there are certain areas, known deoxycytidine promotes differentiation of different types as CpG islands, that are enriched in CpG dinucleotides of adult stem cells into cardiac myogenic or osteogenic (especially in promoter regions). Non-CpG islands of the cells by enhancing the expression of lineage genes. In a human genome are usually methylated and prevent geno- similar manner, histone deacetylase inhibitor trichostatin mic instability phenomena, such as the movement of enhances chondrogenic or neural differentiation of stem transposable elements (Berdasco and Esteller 2010). Nor- cells, reinforcing the epigenetic control of differentiation. mal methylation at these sequences is also necessary for Furthermore, the essential role of these factors is reflected X-chromosome inactivation in females and genomic in the fact that altered profiles of epigenetic marks often imprinting. Conversely, CpG islands are usually unme- lead to defaults in cellular homeostasis and development thylated, being closely related to the expression of house- of human diseases. Genetic alterations could explain the keeping genes. It is estimated that only 6 % of the human causes of several monogenic diseases. However, the CpG islands are methylated and, consequently, silenced, genetic basis underlying the origin of complex and mul- being essential for maintaining tissue-specific patterns tifactorial diseases remains largely unknown and the during development and differentiation. By our current importance of the role of non-genetic mechanisms, understanding, this ‘‘DNA methylation code’’ seems to be including epigenetic mechanisms or posttranslational an oversimplification, since, in recent years, new genomic protein modifications, is increasingly being realized. contexts outside of CpG islands, known as CpG shores, Cancer has been the best characterized complex human have emerged as candidates for regulating gene expression disease associated with epigenetic defects (Berdasco and of tissue-specific genes. The technological advance in Esteller 2010), but the list of complex diseases carrying studying DNA methylation will provide insight into the epigenetic defaults has been increasing rapidly in recent role of 5-methylcytosine patterns with respect to their years. Epigenetic studies have now been made of complex density, location and function, amongst other features. diseases such as obesity, type 2 diabetes mellitus, car- Additionally the recently discovered cytosine modification diovascular diseases and neurological disorders. These 5-hydroxymethyl-20-deoxycytidine (5hmC) needs to be pathogenic mechanisms are particularly interesting further studied to determine its implications for normal and because the epigenetic effects may also be affected by diseased epigenetic regulation. aspects of the environment such as diet and lifestyle, The enzymes responsible for introducing the methyl raising the possibility of ‘‘resetting’’ the altered epigenetic group into a cytosine are DNA methyltransferases marks. Deleterious epigenetic profiles could be a conse- (DNMTs). Three major proteins with DNMT activity have quence of mutations in the ‘‘writers’’, that is to say, been identified in mammals: DNMT1, DNMT3A and dysfunctional enzymes that are responsible for putting in DNMT3B. DNMT1 is a widely expressed maintenance and out the epigenetic marks. Defective epigenetic DNMT that recognizes hemimethylated DNA and is machinery has been observed in cancer initiation and responsible for maintaining the existing methylation pat- progression. Furthermore, germline mutations of epige- terns after DNA replication. By contrast, DNMT3 enzymes netic modifiers contribute to the development of human are de novo DNMTs that introduce methyl groups into diseases including intellectual disability (review in: Fro- previously unmethylated cytosines. These enzymes intro- yen et al. 2006; Kramer and van Bokhoven 2009; duce a methyl group into the genome, but this ‘‘writing’’ Franklin and Mansuy 2011). The aim of the present must be interpreted (read) by the rest of the cellular review is to provide an overview of these disorders machinery (i.e., transcription factors, DNA polymerases, grouped by the type of epigenetic change involved: chromatin-remodeling proteins, epigenetic enzymes, etc.). (i) alterations in DNA methylation players; (ii) mutations Additional members of the DNMT family without meth- in histone modifiers; (iii) disruption of chromatin-remod- yltransferase activity have been reported, such as DNMT2 eling complexes, and (iv) mutations in non-coding RNA or DNMT3L. DNMT3L lacks the amino acid sequence processing machinery. necessary for methyltransferase but it seems to be required for the establishment of maternal genomic imprints (Aapola et al. 2002). Genetic disorders linked to DNA methylation defects Methyl-CpG-binding domain (MBD) proteins are one of the DNA methylation-associated proteins that could be DNA methylation, or the addition of a methyl group to a recruited to methylated DNA and in turn facilitate the cytosine, is a key epigenetic player that has long been recruitment of histone modifiers and chromatin-remodeling considered the genome’s fifth base (Portela and complexes (Portela and Esteller 2010). Evidence is Esteller 2010). In mammals this reaction occurs at CpG mounting of the role of DNA methylation in modulating 123 Hum Genet (2013) 132:359–383 361 cognitive functions of the central nervous system, such as DNMT3 mutations and immunodeficiency centromeric learning and memory, and of how dysregulation of DNMTs instability facial syndrome 1 activities
Recommended publications
  • KAT6A Syndrome: Genotype-Phenotype Correlation in 76 Patients with Pathogenic KAT6A Variants
    KAT6A Syndrome: genotype-phenotype correlation in 76 patients with pathogenic KAT6A variants. Item Type Article Authors Kennedy, Joanna;Goudie, David;Blair, Edward;Chandler, Kate;Joss, Shelagh;McKay, Victoria;Green, Andrew;Armstrong, Ruth;Lees, Melissa;Kamien, Benjamin;Hopper, Bruce;Tan, Tiong Yang;Yap, Patrick;Stark, Zornitza;Okamoto, Nobuhiko;Miyake, Noriko;Matsumoto, Naomichi;Macnamara, Ellen;Murphy, Jennifer L;McCormick, Elizabeth;Hakonarson, Hakon;Falk, Marni J;Li, Dong;Blackburn, Patrick;Klee, Eric;Babovic- Vuksanovic, Dusica;Schelley, Susan;Hudgins, Louanne;Kant, Sarina;Isidor, Bertrand;Cogne, Benjamin;Bradbury, Kimberley;Williams, Mark;Patel, Chirag;Heussler, Helen;Duff- Farrier, Celia;Lakeman, Phillis;Scurr, Ingrid;Kini, Usha;Elting, Mariet;Reijnders, Margot;Schuurs-Hoeijmakers, Janneke;Wafik, Mohamed;Blomhoff, Anne;Ruivenkamp, Claudia A L;Nibbeling, Esther;Dingemans, Alexander J M;Douine, Emilie D;Nelson, Stanley F;Arboleda, Valerie A;Newbury-Ecob, Ruth DOI 10.1038/s41436-018-0259-2 Journal Genetics in medicine : official journal of the American College of Medical Genetics Download date 30/09/2021 21:53:13 Link to Item http://hdl.handle.net/10147/627191 Find this and similar works at - http://www.lenus.ie/hse HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Genet Med Manuscript Author . Author manuscript; Manuscript Author available in PMC 2019 October 01. Published in final edited form as: Genet Med. 2019 April ; 21(4): 850–860. doi:10.1038/s41436-018-0259-2. KAT6A Syndrome: Genotype-phenotype correlation in 76 patients with pathogenic KAT6A variants A full list of authors and affiliations appears at the end of the article. Abstract Purpose: Mutations in KAT6A have recently been identified as a cause of syndromic developmental delay.
    [Show full text]
  • 2018 Etiologies by Frequencies
    2018 Etiologies in Order of Frequency by Category Hereditary Syndromes and Disorders Count CHARGE Syndrome 958 Down syndrome (Trisomy 21 syndrome) 308 Usher I syndrome 252 Stickler syndrome 130 Dandy Walker syndrome 119 Cornelia de Lange 102 Goldenhar syndrome 98 Usher II syndrome 83 Wolf-Hirschhorn syndrome (Trisomy 4p) 68 Trisomy 13 (Trisomy 13-15, Patau syndrome) 60 Pierre-Robin syndrome 57 Moebius syndrome 55 Trisomy 18 (Edwards syndrome) 52 Norrie disease 38 Leber congenital amaurosis 35 Chromosome 18, Ring 18 31 Aicardi syndrome 29 Alstrom syndrome 27 Pfieffer syndrome 27 Treacher Collins syndrome 27 Waardenburg syndrome 27 Marshall syndrome 25 Refsum syndrome 21 Cri du chat syndrome (Chromosome 5p- synd) 16 Bardet-Biedl syndrome (Laurence Moon-Biedl) 15 Hurler syndrome (MPS I-H) 15 Crouzon syndrome (Craniofacial Dysotosis) 13 NF1 - Neurofibromatosis (von Recklinghausen dis) 13 Kniest Dysplasia 12 Turner syndrome 11 Usher III syndrome 10 Cockayne syndrome 9 Apert syndrome/Acrocephalosyndactyly, Type 1 8 Leigh Disease 8 Alport syndrome 6 Monosomy 10p 6 NF2 - Bilateral Acoustic Neurofibromatosis 6 Batten disease 5 Kearns-Sayre syndrome 5 Klippel-Feil sequence 5 Hereditary Syndromes and Disorders Count Prader-Willi 5 Sturge-Weber syndrome 5 Marfan syndrome 3 Hand-Schuller-Christian (Histiocytosis X) 2 Hunter Syndrome (MPS II) 2 Maroteaux-Lamy syndrome (MPS VI) 2 Morquio syndrome (MPS IV-B) 2 Optico-Cochleo-Dentate Degeneration 2 Smith-Lemli-Opitz (SLO) syndrome 2 Wildervanck syndrome 2 Herpes-Zoster (or Hunt) 1 Vogt-Koyanagi-Harada
    [Show full text]
  • CHARGE Syndrome
    orphananesthesia Anaesthesia recommendations for CHARGE syndrome Disease name: CHARGE syndrome ICD 10: Q87.8 Synonyms: CHARGE association; Hall-Hittner syndrome Disease summary: CHARGE syndrome was initially defined as a non-random association of anomalies: - Coloboma - Heart defect - Atresia choanae (choanal atresia) - Retarded growth and development - Genital hypoplasia - Ear anomalies/deafness In 1998, an expert group defined the major (the classical 4C´s: Choanal atresia, Coloboma, Characteristic ear and Cranial nerve anomalies) and minor criteria of CHARGE syndrome [1]. In 2004, mutations in the CHD7 gene were identified as the major cause. The inheritance pattern is autosomal dominant with variable expressivity. Almost all mutations occurs de novo, but parent-to-child transmission has occasionally been reported [2]. Clinical criteria for CHARGE syndrome [1] Major criteria: • Coloboma • Choanal Atresia • Cranial nerve anomalies • Abnormalities of the inner, middle, or external ear Minor criteria: • Cardiaovascular malformations • Genital hypoplasia or delayed pubertal development • Cleft lip and/or palate • Tracheoesophageal defects • Distinctive CHARGE facies • Growth retardation • Developmental delay Occasional: • Renal anomalies: duplex system, vesicoureteric reflux • Spinal anomalies: scoliosis, osteoporosis • Hand anomalies 1 • Neck/shoulder anomalies • Immune system disorders Individuals with all four major characteristics or three major and three minor characteristics are highly likely to have CHARGE syndrome [1]. CHARGE syndrome
    [Show full text]
  • Further Delineation of the Clinical Spectrum of KAT6B Disorders and Allelic Series of Pathogenic Variants
    ARTICLE © American College of Medical Genetics and Genomics Further delineation of the clinical spectrum of KAT6B disorders and allelic series of pathogenic variants Li Xin Zhang1, Gabrielle Lemire, MD2, Claudia Gonzaga-Jauregui, PhD3, Sirinart Molidperee, Gr. Cert1, Carolina Galaz-Montoya, MD3, David S. Liu, MD3, Alain Verloes, MD PhD4, Amelle G. Shillington, DO5, Kosuke Izumi, MD PhD6, Alyssa L. Ritter, MS LCGC7, Beth Keena, MS LCGC6, Elaine Zackai, MD7,8, Dong Li, PhD9, Elizabeth Bhoj, MD PhD7, Jennifer M. Tarpinian, MS CGC10, Emma Bedoukian, MS LCGC10, Mary K. Kukolich, MD11, A. Micheil Innes, MD12, Grace U. Ediae, BSc13, Sarah L. Sawyer, MD PhD14, Karippoth Mohandas Nair, MD15, Para Chottil Soumya, MD15, Kinattinkara R. Subbaraman, MD15, Frank J. Probst, MD PhD3,16, Jennifer A. Bassetti, MD3,16, Reid V. Sutton, MD3,16, Richard A. Gibbs, PhD3, Chester Brown, MD PhD17, Philip M. Boone, MD PhD18, Ingrid A. Holm, MD MPH18, Marco Tartaglia, PhD19, Giovanni Battista Ferrero, MD PhD20, Marcello Niceta, MD PhD19, Maria Lisa Dentici, MD19, Francesca Clementina Radio, MD PhD19, Boris Keren, MD21, Constance F. Wells, MD22, Christine Coubes, MD22, Annie Laquerrière, MD PhD23, Jacqueline Aziza, MD24, Charlotte Dubucs, MD24, Sheela Nampoothiri, MD25, David Mowat, MD26, Millan S. Patel, MD27, Ana Bracho, MD28, Francisco Cammarata-Scalisi, MD29, Alper Gezdirici, MD30, Alberto Fernandez-Jaen, MD31, Natalie Hauser, MD32, Yuri A. Zarate, MD33, Katherine A. Bosanko, MS CGC33, Klaus Dieterich, MD PhD34, John C. Carey, MD MPH35, Jessica X. Chong, PhD36,37, Deborah A. Nickerson, PhD37,38, Michael J. Bamshad, MD36,37, Brendan H. Lee, MD PhD3, Xiang-Jiao Yang, PhD39, James R.
    [Show full text]
  • CHARGE Factsheet 3 Clinical Diagnosis and Features
    The Information Pack CHARGE for Practitioners Factsheet 3 CHARGE syndrome: major and minor medical diagnostic criteria plus later onset features DR JEREMY KIRK, MD, FRCP, FRCPCH, Consultant Paediatric Endocrinologist, Birmingham Children’s Hospital Original diagnostic criteria The initial association of coloboma and choanal atresia with other congenital abnormalities was first described by Hall and separately Hittner et al. in 1979 (Hall, 1979; Hittner et al., 1979). In 1981 there was further description and expansion of the condition (Pagon et al., 1981). It was at this stage that the acronym CHARGE (C–coloboma, H–heart disease, A–atresia choanae, R–retarded growth and retarded development and/or CNS anomalies, G–genital hypoplasia, and E–ear anomalies and/or deafness) was made. In order to make the diagnosis of CHARGE syndrome, historically four out of six of the features of the acronym needed to be fulfilled, although one should be either choanal atresia or a coloboma (Pagon et al., 1981). From association to syndrome been several attempts to refine the diagnostic criteria, Initially CHARGE was described as an association; namely by Blake et al. (1998) and Verloes (2005). Both a nonrandom collection of birth defects, rather than of these use major features which are very specific for a syndrome, which is a more recognisable pattern of CHARGE syndrome, along with other minor features. birth defects (often with a known genetic cause). With the identification of the gene CHD7 in 2004 (Vissers The criteria suggested by Blake et al. consist of four et al., 2004) it has now been renamed a syndrome, major ‘C’s: as CHD7 is mutated in at least 60% of patients with 1.
    [Show full text]
  • Congenital Ocular Anomalies in Newborns: a Practical Atlas
    www.jpnim.com Open Access eISSN: 2281-0692 Journal of Pediatric and Neonatal Individualized Medicine 2020;9(2):e090207 doi: 10.7363/090207 Received: 2019 Jul 19; revised: 2019 Jul 23; accepted: 2019 Jul 24; published online: 2020 Sept 04 Mini Atlas Congenital ocular anomalies in newborns: a practical atlas Federico Mecarini1, Vassilios Fanos1,2, Giangiorgio Crisponi1 1Neonatal Intensive Care Unit, Azienda Ospedaliero-Universitaria Cagliari, University of Cagliari, Cagliari, Italy 2Department of Surgery, University of Cagliari, Cagliari, Italy Abstract All newborns should be examined for ocular structural abnormalities, an essential part of the newborn assessment. Early detection of congenital ocular disorders is important to begin appropriate medical or surgical therapy and to prevent visual problems and blindness, which could deeply affect a child’s life. The present review aims to describe the main congenital ocular anomalies in newborns and provide images in order to help the physician in current clinical practice. Keywords Congenital ocular anomalies, newborn, anophthalmia, microphthalmia, aniridia, iris coloboma, glaucoma, blepharoptosis, epibulbar dermoids, eyelid haemangioma, hypertelorism, hypotelorism, ankyloblepharon filiforme adnatum, dacryocystitis, dacryostenosis, blepharophimosis, chemosis, blue sclera, corneal opacity. Corresponding author Federico Mecarini, MD, Neonatal Intensive Care Unit, Azienda Ospedaliero-Universitaria Cagliari, University of Cagliari, Cagliari, Italy; tel.: (+39) 3298343193; e-mail: [email protected].
    [Show full text]
  • Abstracts Books 2014
    TWENTY-FIFTH EUROPEAN MEETING ON DYSMORPHOLOGY 10 – 12 SEPTEMBER 2014 25th EUROPEAN MEETING ON DYSMORPHOLOGY LE BISCHENBERG WEDNESDAY 10th SEPTEMBER 5 p.m. to 7.30 p.m. Registration 7.30 p.m. to 8.30 p.m. Welcome reception 8.30 p.m. Dinner 9.30 p.m. Unknown THURSDAY 11th SEPTEMBER 8.15 a.m. Opening address 8.30 a.m. to 1.00 p.m. First session 1.00 p.m. Lunch 2.30 p.m. to 7.00 p.m. Second and third sessions 8.00 p.m. Dinner 9.00 p.m. to 11.00 p.m. Unknown FRIDAY 12th SEPTEMBER 8.30 a.m. to 1.00 p.m. Fourth and fifth sessions 1.00 p.m. Lunch 2.30 p.m. to 6.00 p.m. Sixth and seventh sessions 7.30 p.m. Dinner SATURDAY 13th SEPTEMBER Breakfast – Departure Note: This program is tentative and may be modified. WEDNESDAY 10th SEPTEMBER 9.30 UNKNOWN SESSION Chair: FRYNS J.P. H. VAN ESCH Case 1 H. VAN ESCH Case 2 H. JILANI, S. HIZEM, I. REJEB, F. DZIRI AND L. BEN JEMAA Developmental delay, dysmorphic features and hirsutism in a Tunisian girl. Cornelia de Lange syndrome? L. VAN MALDERGEM, C. CABROL, B. LOEYS, M. SALEH, Y. BERNARD, L. CHAMARD AND J. PIARD Megalophthalmos and thoracic great vessels aneurisms E. SCHAEFER AND Y. HERENGER An unknown diagnosis associating facial dysmorphism, developmental delay, posterior urethral valves and severe constipation P. RUMP AND T. VAN ESSEN What’s in the name G. MUBUNGU, A. LUMAKA, K.
    [Show full text]
  • CHARGE Syndrome: an Update
    European Journal of Human Genetics (2007) 15, 389–399 & 2007 Nature Publishing Group All rights reserved 1018-4813/07 $30.00 www.nature.com/ejhg PRACTICAL GENETICS In association with CHARGE syndrome: an update CHARGE syndrome is a rare, usually sporadic autosomal dominant disorder due in 2/3 of cases to mutations within the CHD7 gene. The clinical definition has evolved with time. The 3C triad (Coloboma- Choanal atresia-abnormal semicircular Canals), arhinencephaly and rhombencephalic dysfunctions are now considered the most important and constant clues to the diagnosis. We will discuss here recent aspects of the phenotypic delineation of CHARGE syndrome and highlight the role of CHD7 in its pathogeny. We review available data on its molecular pathology as well as cytogenetic and molecular evidences for genetic heterogeneity within CHARGE syndrome. In brief CHARGE syndrome results from a dysblastogenetic and dysneurulative process and could be related by a CHARGE syndrome is an autosomal dominant disorder common pathogenetic mechanism resulting in dis- with a prevalence of one in 10 000. Most cases are turbed neural crest development. sporadic, but, in rare instances, transmission from a Using a CGH microaray approach, the gene CHD7 (in mildly affected parent has been reported. 8q12) was identified as causative for CHARGE syn- The acronym CHARGE is based on the cardinal features drome in approximately 2/3 of patients with a clinical identified when the syndrome was delineated: Colobo- diagnosis of CHARGE syndrome. ma, Heart malformation, choanal Atresia, Retardation CHD7 belongs to a large family of evolutionarily of growth and / or development, Genital anomalies, conserved proteins thought to play a role in chromatin and Ear anomalies.
    [Show full text]
  • CHARGE Syndrome Gastrointestinal Involvement: from Mouth to Anus
    Clin Genet 2017: 92: 10–17 © 2016 John Wiley & Sons A/S. Printed in Singapore. All rights reserved Published by John Wiley & Sons Ltd CLINICAL GENETICS doi: 10.1111/cge.12892 Mini Review CHARGE syndrome gastrointestinal involvement: from mouth to anus A. Hudsona, M. Macdonalda, Hudson A., Macdonald M., Friedman J.N., Blake K. CHARGE syndrome , gastrointestinal involvement: from mouth to anus. J.N. Friedmanb and K. Blakec d Clin Genet 2017: 92: 10–17. © John Wiley & Sons A/S. Published by John aDalhousie Medical School, Halifax, Wiley & Sons Ltd, 2016 Canada, bDepartment of Pediatrics, The Hospital for Sick Children, University of CHARGE syndrome is an autosomal dominant disorder that occurs as a Toronto, Toronto, Canada, cDivision of result of a heterozygous loss-of-function mutation in the chromodomain Medical Education, Dalhousie University helicase DNA-binding (CHD7) gene, which is important for neural crest cell Faculty of Medicine, Halifax, Canada, and formation. Gastrointestinal (GI) symptoms and feeding difficulties are highly dDepartment of Pediatrics, IWK Health prevalent but are often a neglected area of diagnosis, treatment, and research. Centre, Halifax, Canada Cranial nerve dysfunction, craniofacial abnormalities, and other physical manifestations of this syndrome lead to gut dysmotility, sensory impairment, Key words: CHARGE syndrome – cranial nerve dysfunction – feeding and oral–motor function abnormalities. Over 90% of children need tube difficulties – gastrointestinal – feeding early in their life and many experience weak sucking/chewing, gastroesophageal reflux disease gastroesophageal reflux disease (GERD), and aspiration. The mainstay of (GERD) – abnormal motility treatment thus far has consisted of feeding therapy, GERD medications, Nissen fundoplication, gastrostomy/jejunostomy, and food texture limitation.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0210567 A1 Bevec (43) Pub
    US 2010O2.10567A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0210567 A1 Bevec (43) Pub. Date: Aug. 19, 2010 (54) USE OF ATUFTSINASATHERAPEUTIC Publication Classification AGENT (51) Int. Cl. A638/07 (2006.01) (76) Inventor: Dorian Bevec, Germering (DE) C07K 5/103 (2006.01) A6IP35/00 (2006.01) Correspondence Address: A6IPL/I6 (2006.01) WINSTEAD PC A6IP3L/20 (2006.01) i. 2O1 US (52) U.S. Cl. ........................................... 514/18: 530/330 9 (US) (57) ABSTRACT (21) Appl. No.: 12/677,311 The present invention is directed to the use of the peptide compound Thr-Lys-Pro-Arg-OH as a therapeutic agent for (22) PCT Filed: Sep. 9, 2008 the prophylaxis and/or treatment of cancer, autoimmune dis eases, fibrotic diseases, inflammatory diseases, neurodegen (86). PCT No.: PCT/EP2008/007470 erative diseases, infectious diseases, lung diseases, heart and vascular diseases and metabolic diseases. Moreover the S371 (c)(1), present invention relates to pharmaceutical compositions (2), (4) Date: Mar. 10, 2010 preferably inform of a lyophilisate or liquid buffersolution or artificial mother milk formulation or mother milk substitute (30) Foreign Application Priority Data containing the peptide Thr-Lys-Pro-Arg-OH optionally together with at least one pharmaceutically acceptable car Sep. 11, 2007 (EP) .................................. O7017754.8 rier, cryoprotectant, lyoprotectant, excipient and/or diluent. US 2010/0210567 A1 Aug. 19, 2010 USE OF ATUFTSNASATHERAPEUTIC ment of Hepatitis BVirus infection, diseases caused by Hepa AGENT titis B Virus infection, acute hepatitis, chronic hepatitis, full minant liver failure, liver cirrhosis, cancer associated with Hepatitis B Virus infection. 0001. The present invention is directed to the use of the Cancer, Tumors, Proliferative Diseases, Malignancies and peptide compound Thr-Lys-Pro-Arg-OH (Tuftsin) as a thera their Metastases peutic agent for the prophylaxis and/or treatment of cancer, 0008.
    [Show full text]
  • Spectrum of Clinical and Associated MR Imaging Findings in Children with Olfactory Anomalies
    Published March 17, 2016 as 10.3174/ajnr.A4738 ORIGINAL RESEARCH PEDIATRICS Spectrum of Clinical and Associated MR Imaging Findings in Children with Olfactory Anomalies X T.N. Booth and X N.K. Rollins ABSTRACT BACKGROUND AND PURPOSE: The olfactory apparatus, consisting of the bulb and tract, is readily identifiable on MR imaging. Anom- alous development of the olfactory apparatus may be the harbinger of anomalies of the secondary olfactory cortex and associated structures. We report a large single-site series of associated MR imaging findings in patients with olfactory anomalies. MATERIALS AND METHODS: A retrospective search of radiologic reports (2010 through 2014) was performed by using the keyword “olfactory”; MR imaging studies were reviewed for olfactory anomalies and intracranial and skull base malformations. Medical records were reviewed for clinical symptoms, neuroendocrine dysfunction, syndromic associations, and genetics. RESULTS: We identified 41 patients with olfactory anomalies (range, 0.03–18 years of age; M/F ratio, 19:22); olfactory anomalies were bilateral in 31 of 41 patients (76%) and absent olfactory bulbs and olfactory tracts were found in 56 of 82 (68%). Developmental delay was found in 24 (59%), and seizures, in 14 (34%). Pituitary dysfunction was present in 14 (34%), 8 had panhypopituitarism, and 2 had isolated hypogonadotropic hypogonadism. CNS anomalies, seen in 95% of patients, included hippocampal dysplasia in 26, cortical malformations in 15, malformed corpus callosum in 10, and optic pathway hypoplasia in 12. Infratentorial anomalies were seen in 15 (37%) patients and included an abnormal brain stem in 9 and an abnormal cerebellum in 3. Four patients had an abnormal membranous labyrinth.
    [Show full text]
  • Uveal Coloboma: the Related Syndromes by IRINA BELINSKY, MD; APARNA RAMASUBRAMANIAN, MD; NEELEMA SINHA, MD; and CAROL SHIELDS, MD
    RETINAL ONCOLOGY CASE REPORTS IN OCULAR ONCOLOGY SECTION EDITOR: CAROL L. SHIELDS, MD Uveal Coloboma: The Related Syndromes BY IRINA BELINSKY, MD; APARNA RAMASUBRAMANIAN, MD; NEELEMA SINHA, MD; AND CAROL SHIELDS, MD oloboma is a term derived from a Greek root, meaning mutilated or curtailed.1 Optic nerve and retino- C choroidal coloboma are caused by incomplete closure of the embryonic fissure during fetal development.1 The incidence of coloboma is reported per 10,000 births to be 0.5 in Spain, 0.7 in France, and 0.75 in China.2-4 When isolated, coloboma is most commonly sporadic and can be inherited in an autosomal dominant, autosomal recessive, and x-linked recessive fashion.1 Its predominant association with other congenital anomalies, however, highlights the genetic heterogeneity of this ocular malformation. In this report, we discuss a family with mul- tiple ocular malformations and emphasize the various disorders associated with chorioretinal Figure 1. Patient 1. A 3-1/2-month old male presenting with coloboma. strabismus and leukocoria was found to have bilateral chori- oretinal colobomas. External photograph demonstrating THREE CASES FROM ONE FAMILY right eye leukocoria and bilateral esotropia. There was no Patient 1. A 3-1/2-month-old white male iris coloboma in either eye (A). Chorioretinal coloboma in manifested left esotropia since birth. On the inferonasal quadrant of right eye measuring 10 x 9 mm examination, visual acuity was fix-and-follow that involves the optic disc sparing the fovea (B). in both eyes. Slit-lamp exam of both eyes dis- Chorioretinal coloboma in the inferonasal quadrant of left closed bilateral leukocoria and 30 prism eye measuring 7 x 7 mm that involves the optic disc (C).
    [Show full text]