Review Article

Total Page:16

File Type:pdf, Size:1020Kb

Review Article Review Article Photodynamic therapy in dermatology Chitra S. Nayak Department of Dermatology, BYL Nair Hospital and TN Medial College, Mumbai, India Address for correspondence: Chitra S. Nayak, 302, Arun, 6th Road, Santacruz East, Mumbai - 400055, India. E-mail: [email protected] ABSTRACT Photodynamic therapy is a new modality of therapy being used for the diagnosis and treatment of many tumors. It is now being increasingly used for skin tumors and other dermatological disorders. With its range of application it is certainly the therapy of the future. Its mechanism of action is by the Type II photo-oxidative reaction. The variables are the photosensitizer, the tissue oxygenation and the light source. It has been used to treat various disorders including Bowen’s disease, actinic keratoses, squamous cell carcinomas, basal cell carcinomas, and mycosis fungoides. The side-effects are fortunately mild and transient. Newer photosensitisers like methyl aminolevulinate hold a lot of promise for better therapy. Key Words: Photosensitizer, Light source, Aminolevulinate HISTORY in the target cells followed by selective irradiation of the lesion with visible light. The drug and light are The use of sunlight for the treatment of various skin individually non-toxic, but in combination destroy disorders (heliotherapy) was known to ancient Indians tissues. and Greeks. In the modern era, Oscar Raab, a German medical student first reported the death of Paramecium MECHANISM OF ACTION caudatum (a protozoan) after light exposure in the presence of acridine orange in the year 1900.[1] His The efficacy of PDT depends on all the following professor, von Tappeiner, coined the term mechanisms which are inter-linked: direct cytotoxicity, “photodynamic” to describe oxygen-consuming vascular damage, inflammation and immune host chemical reactions in vivo. Von Tappeiner and Jesionek response.[2] (a dermatologist), in 1904, used topical eosin and visible light to treat skin tumors, condyloma lata and lupus Direct cytotoxicity: In PDT absorption of a light photon vulgaris.[1] by the sensitizer causes its promotion from the ground state to the extremely unstable short lived excited DEFINITION singlet state. The singlet excited photosensitizer emits fluorescence and decays back to the ground state or to Photodynamic therapy (PDT) is a treatment modality the longer lived triplet excited state. Interaction of the involving administration of a photosensitizing triplet sensitizer with surrounding molecules results compound, accumulation of the sensitizer molecules in photo-oxidative reactions (POR) that release singlet How to cite this article: Nayak CS. Photodynamic therapy in dermatology. Indian J Dermatol Venereol Leprol 2005;71:155-60. Received: July, 2004. Accepted: November, 2004. Source of Support: Nil. Conflict of interest: None declared. 155 Indian J Dermatol Venereol Leprol May-June 2005 Vol 71 Issue 3 Nayak CS: Photodynamic therapy in dermatology oxygen resulting in phototoxicity. Lipid peroxidation specific immune cells that appear to be directed against leads to cell membrane defects, which result in cell both strongly and poorly immunogenic cancer types. lysis [Figure 1]. Damage to mitochondria, lysosomes or endoplasmic reticulum occurs depending on the Host immune response: Thus mobilization of the host location of the photosensitizer in the cell. As most to participate in the tumor ablation process is a unique photosensitisers do not localize in the nucleus, nuclear feature of PDT and is an advantage over conventional damage is not an important factor of PDT-mediated anticancer therapy. Use of monoclonal antibody- cytotoxicity. sensitizer conjugates results in greater selectivity and higher complete response rates, enhancing the anti- Vascular injury: Vascular injury is important in tumor tumor properties of PDT. destruction mediated by PDT. Vascular endothelial damage leads to platelet and polymorphonuclear Factors affecting efficacy of PDT leucocyte activation that releases pro-aggregatory The variables in PDT are: agents. These events result in arteriolar constriction, 1. Photosensitizer venular thrombosis and blood flow stasis causing 2. Tissue oxygenation indirect tumor cell kill from nutritional deprivation. 3. Light source Inflammatory response: Degradation of phospholipids Photosensitisers occurring after photo-oxidative damage of cell Photosensitisers that are under various stages of membrane and impairment of vascular functions results investigation for photodynamic therapy are listed in in the release of various inflammatory mediators. This Table 1. An ideal photosensitizer should be chemically leads to accumulation of immune effector cells like pure, have capability of localizing specifically in macrophages and neutrophil granulocytes. neoplastic tissue, should accumulate maximally in Degranulation of neutrophils and release of toxic tumor in short time, and have a short half-life and rapid oxygen radicals, lysosomal enzymes and chemotactic clearance from normal tissues. It should activate at agents contribute to the destruction of the tumor tissue wavelengths with optimal tissue penetration, have a and sustain the damage by attracting further immune high quantum yield for singlet oxygen generation, cells. Establishment of immunological response against should lack dark toxicity and should be effective on the treated malignancy leads to generation of tumor- topical application for dermatological uses. Systemic PDT Initially, after systemic administration, photosensitizing Photon compounds are taken up by most normal and malignant Excited cells, but are retained longer in tumor and rapidly Photosensitiserizer Singlet State proliferating cells. This may be due to increased blood vessel number and permeability and poor lymphatic Type II POR drainage in neoplastic tissue. In fact, many normal Singlet O2 tissues, especially the reticuloendothelial system have greater affinity for photosensitisers than tumor tissue. • Lipid peroxidation • Mitochondrial damage Excited Triplet State • Damage to lysosomes The drug is activated by light corresponding to the • Damage to ER absorption spectrum of the compound. The depth of • DNA damage tissue penetration depends on the wavelength of this absorption spectrum. Light of 630 nm wavelength penetrates 5 mm into tissues while that between 700- 800 nm penetrates to 1-2 cm depth. Light at 850 nm Figure 1: Mechanism of photodynamic therapy within cell does not yield enough energy to produce sufficient Indian J Dermatol Venereol Leprol May-June 2005 Vol 71 Issue 3 156 Nayak CS: Photodynamic therapy in dermatology Table 1: Photosensitizers being clinically investigated for PDT Photosensitizer Wavelength for PDT, nm Indications Route of administration Porfimer sodium (Photofrin) 630 Approved for bladder, esophagus, IV lung cancer. Studies for BCC Tin ethyl etiopurpurin (Purlytin) 660-665 Cutaneous metastases, Kaposi’s IV, lipid emulsion sarcoma, macular degeneration 5-aminolevulinic acid (ALA, Levulan) 635 Actinic keratoses, BCC, CTCL, Topical psoriasis, permanent hair removal Lutetium texaphyrin (Lu- Tex) 720-760 Skin cancer IV ATMPn 640 Psoriasis Topical BPD-MA (Verteporfin) 690 BCC, psoriasis, macular degeneration IV, liposomal formulation m-THPC (Foscan) 650 BCC, head and neck cancer IV, topical Npe6 660-665 Skin cancer IV Talaporfin sodium 640 Carcinoma aerodigestive tract IV photochemical response. is an unstable hydrophilic molecule, has poor penetration depth and consequent requirement of long Hematoporphyrin derivative (HpD) was the first application times, has low tissue selectivity and may systemically studied photosensitizer for clinical PDT. cause porphyrin to accumulate in distant sites Photofrin (porfimer sodium) has enhanced photosensitizing properties and consists of non- Methyl aminolevulinate cream is currently being metallic oligomeric porphyrins viz. a mixture of ethers investigated clinically. Its advantages are that it is a and esters of porphyrin.[1] This is activated at 630 nm. stable lipophilic molecule, has greater and faster At this wavelength there is no penetration beyond 5 penetration as well as a greater selectivity for neoplastic mm, hence lesions may not be effectively treated. The cells and shows no systemic uptake. main disadvantage is cutaneous accumulation and slow clearance from skin leading to long lasting cutaneous Tissue oxygenation photosensitivity, as long as 4-6 weeks. Experimental attempts at improving PDT effectiveness by manipulating tumor oxygen content like subjecting Systemic ALA is used to treat gastrointestinal, the tissue to hyperbaric oxygen have been made. bronchopulmonary and cerebral tumors. ALA-based However, this has no place as yet in clinical PDT. PDT can be potentiated with the use of additive compounds to inhibit or induce certain enzymes of the Light sources heme synthesis pathway.[2] The therapeutic window for PDT is between 600 nm 1. Desferrioxamine enhances ALA-induced and 1200 nm as light of wavelength below 600 nm is protoporphyrin IX (PpIX) accumulation. absorbed by hemoglobin in the tissues and that above 2. Combination of DMSO and EDTA with ALA increased 1200 nm is absorbed by water. Light sources may be PpIX production and enhanced the complete coherent (lasers) or incoherent. Laser beams can be response rate of nodular basal cell carcinomas. launched via fiberoptic cables and delivered into internal tumors via implanted fibers. Topical PDT Topical PDT depends on protoporphyrin IX (PpIX) When porphyrin photosensitisers are used,
Recommended publications
  • AHFS Pharmacologic-Therapeutic Classification System
    AHFS Pharmacologic-Therapeutic Classification System Abacavir 48:24 - Mucolytic Agents - 382638 8:18.08.20 - HIV Nucleoside and Nucleotide Reverse Acitretin 84:92 - Skin and Mucous Membrane Agents, Abaloparatide 68:24.08 - Parathyroid Agents - 317036 Aclidinium Abatacept 12:08.08 - Antimuscarinics/Antispasmodics - 313022 92:36 - Disease-modifying Antirheumatic Drugs - Acrivastine 92:20 - Immunomodulatory Agents - 306003 4:08 - Second Generation Antihistamines - 394040 Abciximab 48:04.08 - Second Generation Antihistamines - 394040 20:12.18 - Platelet-aggregation Inhibitors - 395014 Acyclovir Abemaciclib 8:18.32 - Nucleosides and Nucleotides - 381045 10:00 - Antineoplastic Agents - 317058 84:04.06 - Antivirals - 381036 Abiraterone Adalimumab; -adaz 10:00 - Antineoplastic Agents - 311027 92:36 - Disease-modifying Antirheumatic Drugs - AbobotulinumtoxinA 56:92 - GI Drugs, Miscellaneous - 302046 92:20 - Immunomodulatory Agents - 302046 92:92 - Other Miscellaneous Therapeutic Agents - 12:20.92 - Skeletal Muscle Relaxants, Miscellaneous - Adapalene 84:92 - Skin and Mucous Membrane Agents, Acalabrutinib 10:00 - Antineoplastic Agents - 317059 Adefovir Acamprosate 8:18.32 - Nucleosides and Nucleotides - 302036 28:92 - Central Nervous System Agents, Adenosine 24:04.04.24 - Class IV Antiarrhythmics - 304010 Acarbose Adenovirus Vaccine Live Oral 68:20.02 - alpha-Glucosidase Inhibitors - 396015 80:12 - Vaccines - 315016 Acebutolol Ado-Trastuzumab 24:24 - beta-Adrenergic Blocking Agents - 387003 10:00 - Antineoplastic Agents - 313041 12:16.08.08 - Selective
    [Show full text]
  • Photodynamic Therapy with Methyl Aminolevulinate for Primary Nodular Basal Cell Carcinoma: Results of Two Randomized Studies
    Clinical trial Photodynamic therapy with methyl aminolevulinate for primary nodular basal cell carcinoma: results of two randomized studies Peter Foley, MBBS, BMedSc, MD, FACD, Michael Freeman, MBBS, FACD, Alan Menter, MB, FAAD, Gregory Siller, MBBS, FACD, Rokea A. El-Azhary, MD, PhD, FAAD, Kurt Gebauer, MBBS, FACD, Nicholas J. Lowe, MD, FAAD, Michael T. Jarratt, MD, FAAD, Dedee F. Murrell, BMBCh, MD, FAAD, Phoebe Rich, MD, FAAD, David M. Pariser, MD, FAAD, Allan R. Oseroff, MD, PhD, FAAD, Ross Barnetson, MD, FRACP, FACD, Christopher Anderson, MBBS, FACD, Steven Kossard, MBBS, FACD, Lawrence E. Gibson, MD, FAAD, and Whitney D. Tope, MPhIL, MD, FAAD From the Department of Medicine Abstract (Dermatology), The University of Background Data suggest that photodynamic therapy using topical methyl aminolevulinate Melbourne, St. Vincent’s Hospital (MAL PDT) may be a noninvasive alternative to excisional surgery for nodular basal cell Melbourne, Fitzroy, Vic., Suite 5 ACH carcinoma (BCC). In the studies described here, we investigated the histologic response, House, Benowa and Department of Dermatology, Princess Alexandra tolerability, and cosmetic outcome with MAL PDT for primary nodular BCC (£ 5 mm in depth). Hospital, Woolloongabba, Qld, Fremantle Methods Two multicenter, randomized, double-blind studies with similar design and Dermatology, Fremantle, WA, and procedures were conducted. After surface debridement and minor tumor debulking, MAL cream Department of Dermatology, St. George 160 mg/g (66 patients with 75 lesions) or placebo cream (65 patients with 75 lesions) was applied Hospital, University of New South Wales, for 3 h, followed by illumination with broad-spectrum red light (75 J/cm2, 570–670 nm).
    [Show full text]
  • Title 16. Crimes and Offenses Chapter 13. Controlled Substances Article 1
    TITLE 16. CRIMES AND OFFENSES CHAPTER 13. CONTROLLED SUBSTANCES ARTICLE 1. GENERAL PROVISIONS § 16-13-1. Drug related objects (a) As used in this Code section, the term: (1) "Controlled substance" shall have the same meaning as defined in Article 2 of this chapter, relating to controlled substances. For the purposes of this Code section, the term "controlled substance" shall include marijuana as defined by paragraph (16) of Code Section 16-13-21. (2) "Dangerous drug" shall have the same meaning as defined in Article 3 of this chapter, relating to dangerous drugs. (3) "Drug related object" means any machine, instrument, tool, equipment, contrivance, or device which an average person would reasonably conclude is intended to be used for one or more of the following purposes: (A) To introduce into the human body any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (B) To enhance the effect on the human body of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (C) To conceal any quantity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; or (D) To test the strength, effectiveness, or purity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state. (4) "Knowingly" means having general knowledge that a machine, instrument, tool, item of equipment, contrivance, or device is a drug related object or having reasonable grounds to believe that any such object is or may, to an average person, appear to be a drug related object.
    [Show full text]
  • BC Cancer Benefit Drug List September 2021
    Page 1 of 65 BC Cancer Benefit Drug List September 2021 DEFINITIONS Class I Reimbursed for active cancer or approved treatment or approved indication only. Reimbursed for approved indications only. Completion of the BC Cancer Compassionate Access Program Application (formerly Undesignated Indication Form) is necessary to Restricted Funding (R) provide the appropriate clinical information for each patient. NOTES 1. BC Cancer will reimburse, to the Communities Oncology Network hospital pharmacy, the actual acquisition cost of a Benefit Drug, up to the maximum price as determined by BC Cancer, based on the current brand and contract price. Please contact the OSCAR Hotline at 1-888-355-0355 if more information is required. 2. Not Otherwise Specified (NOS) code only applicable to Class I drugs where indicated. 3. Intrahepatic use of chemotherapy drugs is not reimbursable unless specified. 4. For queries regarding other indications not specified, please contact the BC Cancer Compassionate Access Program Office at 604.877.6000 x 6277 or [email protected] DOSAGE TUMOUR PROTOCOL DRUG APPROVED INDICATIONS CLASS NOTES FORM SITE CODES Therapy for Metastatic Castration-Sensitive Prostate Cancer using abiraterone tablet Genitourinary UGUMCSPABI* R Abiraterone and Prednisone Palliative Therapy for Metastatic Castration Resistant Prostate Cancer abiraterone tablet Genitourinary UGUPABI R Using Abiraterone and prednisone acitretin capsule Lymphoma reversal of early dysplastic and neoplastic stem changes LYNOS I first-line treatment of epidermal
    [Show full text]
  • Aminolevulinic Acid (ALA) As a Prodrug in Photodynamic Therapy of Cancer
    Molecules 2011, 16, 4140-4164; doi:10.3390/molecules16054140 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Aminolevulinic Acid (ALA) as a Prodrug in Photodynamic Therapy of Cancer Małgorzata Wachowska 1, Angelika Muchowicz 1, Małgorzata Firczuk 1, Magdalena Gabrysiak 1, Magdalena Winiarska 1, Małgorzata Wańczyk 1, Kamil Bojarczuk 1 and Jakub Golab 1,2,* 1 Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1A F Building, 02-097 Warsaw, Poland 2 Department III, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel. +48-22-5992199; Fax: +48-22-5992194. Received: 3 February 2011 / Accepted: 3 May 2011 / Published: 19 May 2011 Abstract: Aminolevulinic acid (ALA) is an endogenous metabolite normally formed in the mitochondria from succinyl-CoA and glycine. Conjugation of eight ALA molecules yields protoporphyrin IX (PpIX) and finally leads to formation of heme. Conversion of PpIX to its downstream substrates requires the activity of a rate-limiting enzyme ferrochelatase. When ALA is administered externally the abundantly produced PpIX cannot be quickly converted to its final product - heme by ferrochelatase and therefore accumulates within cells. Since PpIX is a potent photosensitizer this metabolic pathway can be exploited in photodynamic therapy (PDT). This is an already approved therapeutic strategy making ALA one of the most successful prodrugs used in cancer treatment. Key words: 5-aminolevulinic acid; photodynamic therapy; cancer; laser; singlet oxygen 1. Introduction Photodynamic therapy (PDT) is a minimally invasive therapeutic modality used in the management of various cancerous and pre-malignant diseases.
    [Show full text]
  • Oregon Health Authority Division of Medical Assistance Programs Addendum a - Final OPPS Apcs for CY 2012 Effective October 1, 2012
    Oregon Health Authority Division of Medical Assistance Programs Addendum A - Final OPPS APCs for CY 2012 Effective October 1, 2012 Relative APC Group Title SI Weight 0001 Level I Photochemotherapy S 0.5042 0002 Fine Needle Biopsy/Aspiration T 1.6115 0003 Bone Marrow Biopsy/Aspiration T 3.5702 0004 Level I Needle Biopsy/ Aspiration Except Bone Marrow T 4.5746 0005 Level II Needle Biopsy/Aspiration Except Bone Marrow T 8.1566 0006 Level I Incision & Drainage T 1.4206 0007 Level II Incision & Drainage T 13.1250 0008 Level III Incision and Drainage T 20.5648 0012 Level I Debridement & Destruction T 0.3878 0013 Level II Debridement & Destruction T 0.8785 0015 Level III Debridement & Destruction T 1.4989 0016 Level IV Debridement & Destruction T 2.7592 0017 Level V Debridement & Destruction T 21.6661 0019 Level I Excision/ Biopsy T 4.4238 0020 Level II Excision/ Biopsy T 8.2746 0021 Level III Excision/ Biopsy T 17.0074 0022 Level IV Excision/ Biopsy T 23.2662 0028 Level I Breast Surgery T 25.5054 0029 Level II Breast Surgery T 33.4070 0030 Level III Breast Surgery T 44.8999 0031 Smoking Cessation Services X 0.2997 0034 Mental Health Services Composite S 2.7295 0035 Vascular Puncture and Minor Diagnostic Procedures X 0.2691 0037 Level IV Needle Biopsy/Aspiration Except Bone Marrow T 15.3499 0039 Level I Implantation of Neurostimulator Generator S 216.7598 0040 Level I Implantation/Revision/Replacement of Neurostimulator Electrodes S 63.7616 0041 Level I Arthroscopy T 29.6568 0042 Level II Arthroscopy T 57.0137 0045 Bone/Joint Manipulation Under
    [Show full text]
  • Pub 100-04 Medicare Claims Processing
    Department of Health CMS Manual System & Human Services (DHHS) Pub 100-04 Medicare Claims Centers for Medicare Processing & Medicaid Services (CMS) Transmittal 2128 Date: DECEMBER 29, 2010 Change Request 7275 SUBJECT: January 2011 Update of the Ambulatory Surgical Center (ASC) Payment System I. SUMMARY OF CHANGES: This Recurring Update Notification describes changes to and billing instructions for various payment policies implemented in the January 2011 ASC update. As appropriate, this notification also includes updates to the Healthcare Common Procedure Coding System (HCPCS). EFFECTIVE DATE: January 1, 2011 IMPLEMENTATION DATE: January 3, 2011 Disclaimer for manual changes only: The revision date and transmittal number apply only to red italicized material. Any other material was previously published and remains unchanged. However, if this revision contains a table of contents, you will receive the new/revised information only, and not the entire table of contents. II. CHANGES IN MANUAL INSTRUCTIONS: (N/A if manual is not updated) R=REVISED, N=NEW, D=DELETED-Only One Per Row. R/N/D CHAPTER / SECTION / SUBSECTION / TITLE N/A III. FUNDING: For Fiscal Intermediaries (FIs), Regional Home Health Intermediaries (RHHIs): No additional funding will be provided by CMS; Contractor activities are to be carried out within their operating budgets. For Medicare Administrative Contractors (MACs): The Medicare Administrative Contractor is hereby advised that this constitutes technical direction as defined in your contract. CMS does not construe this as a change to the MAC Statement of Work. The contractor is not obligated to incur costs in excess of the amounts allotted in your contract unless and until specifically authorized by the Contracting Officer.
    [Show full text]
  • APPENDICES: a Systematic Review of Photodynamic Therapy in the Treatment of Pre-Cancerous Skin Conditions, Barrett's Oesophagu
    Health Technology Assessment 2010; Vol. 14: No.371 Health Technology Assessment 2010; Vol. 14: No. 37 Appendix 5 Pre-cancerous skin scoping Appendix 6 Appendices Go to main text Skin cancer scoping Appendix 7 Barrett’s oesophagus scoping Appendix 8 Oesophageal cancer scoping A systematic review of photodynamic Appendix 9 therapy in the treatment of pre- Lung cancer scoping cancerous skin conditions, Barrett’s Appendix 10 oesophagus and cancers of the biliary Biliary tract cancer scoping Appendix 11 tract, brain, head and neck, lung, Brain cancer scoping oesophagus and skin Appendix 12 Head and neck cancer scoping D Fayter, M Corbett, M Heirs, D Fox Appendix 13 and A Eastwood Actinic keratosis data extraction Appendix 14 Bowen’s disease data extraction Appendix 15 Basal cell carcinoma data extraction Appendix 16 Barrett’s oesophagus data extraction Appendix 17 Oesophageal cancer data extraction Appendix 18 Lung cancer data extraction Appendix 19 Biliary tract cancer data extraction Appendix 20 Brain cancer data extraction Appendix 21 July 2010 Head and neck cancer data extraction 10.3310/hta14370 Health Technology Assessment NIHR HTA programme www.hta.ac.uk HTA How to obtain copies of this and other HTA programme reports An electronic version of this title, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (www.hta.ac.uk). A fully searchable DVD is also available (see below). Printed copies of HTA journal series issues cost £20 each (post and packing free in the UK) to both public and private sector purchasers from our despatch agents.
    [Show full text]
  • Methyl-Aminolevulinate-Based-Photodynamic-Therapy-O 2019 Photodiagnosis-And.Pdf
    Photodiagnosis and Photodynamic Therapy 26 (2019) 295–299 Contents lists available at ScienceDirect Photodiagnosis and Photodynamic Therapy journal homepage: www.elsevier.com/locate/pdpdt Methyl aminolevulinate-based photodynamic therapy of Bowen´s disease: Observational study of 21 lesions T ⁎ Clara Gómeza, , Marian Cobosb, Enrique Alberdib a Institute of Physical Chemistry Rocasolano, Spanish National Research Council, CSIC, Madrid, Spain b Private clinic of Dr. Alberdi, Madrid, Spain ARTICLE INFO ABSTRACT Keywords: Background: Although surgical removal is the treatment of choice in Bowen's disease (BD), there are cases in Photodynamic therapy which by age, comorbidities, use of anticoagulants, location, cosmetic result, or size, it is preferable to use other Methyl aminolevulinate treatments such as cryotherapy, 5-fluorouracil cream, imiquimod 5% cream or photodynamic therapy (PDT). ’ Bowen s disease Efficacy of PDT in BD is supported by substantial research and clinical data. Objectives: This study aimed to evaluate the long term effectiveness of methyl aminolevulinate-PDT (MAL/PDT) on a wide range of Bowen lesions in different locations and sizes. Methods: Patients diagnosed with BD were treated in 3 sessions with a 4-week interval in between with MAL/ PDT between January 2016 and January 2017 in a private clinic. Clinical response and relevant patient and tumour characteristics were analyzed during the first year after start of the PDT sessions. Results: In total, 21 BD lesions in 18 patients were included in the study. Complete regression (CR) after 3rd PDT session was 87.5% and 100% at the 6-month follow-up. Treatment was well tolerated and local adverse reactions were very scarce.
    [Show full text]
  • Pharmaceuticals As Environmental Contaminants
    PharmaceuticalsPharmaceuticals asas EnvironmentalEnvironmental Contaminants:Contaminants: anan OverviewOverview ofof thethe ScienceScience Christian G. Daughton, Ph.D. Chief, Environmental Chemistry Branch Environmental Sciences Division National Exposure Research Laboratory Office of Research and Development Environmental Protection Agency Las Vegas, Nevada 89119 [email protected] Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Why and how do drugs contaminate the environment? What might it all mean? How do we prevent it? Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada This talk presents only a cursory overview of some of the many science issues surrounding the topic of pharmaceuticals as environmental contaminants Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada A Clarification We sometimes loosely (but incorrectly) refer to drugs, medicines, medications, or pharmaceuticals as being the substances that contaminant the environment. The actual environmental contaminants, however, are the active pharmaceutical ingredients – APIs. These terms are all often used interchangeably Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Office of Research and Development Available: http://www.epa.gov/nerlesd1/chemistry/pharma/image/drawing.pdfNational
    [Show full text]
  • Photodynamic Therapy for the Treatment of Actinic Keratoses and Other Skin Lesions
    Photodynamic Therapy for the Treatment of Actinic Keratoses and Other Skin Lesions Policy Number: Current Effective Date: MM.02.016 March 22, 2019 Lines of Business: Original Effective Date: HMO; PPO; QUEST Integration April 01, 2008 Place of Service: Precertification: Office Not Required I. Description Photodynamic therapy (PDT) refers to light activation of a photosensitizer to generate highly reactive intermediaries, which ultimately cause tissue injury and necrosis. Photosensitizing agents are being proposed for use with dermatologic conditions such as actinic keratoses and nonmelanoma skin cancers.For individuals who have nonhyperkeratotic actinic keratoses on the face or scalp who receive PDT, the evidence includes randomized controlled trials (RCTs). The relevant outcomes are symptoms, change in disease status, quality of life, and treatment-related morbidity. Evidence from multiple RCTs has found that PDT improves the net health outcome in patients with nonhyperkeratotic actinic keratoses on the face or scalp compared with placebo or other active interventions. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome. For individuals who have low-risk basal cell carcinoma who receive PDT, the evidence includes RCTs and systematic reviews of RCTs. The relevant outcomes are symptoms, change in disease status, quality of life, and treatment-related morbidity. Systematic reviews of RCTs have found that PDT may not be as effective as surgery for superficial and nodular basal cell carcinoma. In the small number of trials available, PDT was more effective than placebo. The available evidence from RCTs has suggested that PDT has better cosmetic outcomes than surgery.
    [Show full text]
  • Recent Emergence of Rhenium(I) Tricarbonyl Complexes As Photosensitisers for Cancer Therapy
    molecules Review Recent Emergence of Rhenium(I) Tricarbonyl Complexes as Photosensitisers for Cancer Therapy Hui Shan Liew 1, Chun-Wai Mai 2,3 , Mohd Zulkefeli 3, Thiagarajan Madheswaran 3, Lik Voon Kiew 4, Nicolas Delsuc 5 and May Lee Low 3,* 1 School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; [email protected] 2 Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; [email protected] 3 School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; [email protected] (M.Z.); [email protected] (T.M.) 4 Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; [email protected] 5 Laboratoire des Biomolécules, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, 75005 Paris, France; [email protected] * Correspondence: [email protected]; Tel.: +60-3-27317694 Academic Editor: Kogularamanan Suntharalingam Received: 8 July 2020; Accepted: 23 July 2020; Published: 12 September 2020 Abstract: Photodynamic therapy (PDT) is emerging as a significant complementary or alternative approach for cancer treatment. PDT drugs act as photosensitisers, which upon using appropriate wavelength light and in the presence of molecular oxygen, can lead to cell death. Herein, we reviewed the general characteristics of the different generation of photosensitisers. We also outlined the emergence of rhenium (Re) and more specifically, Re(I) tricarbonyl complexes as a new generation of metal-based photosensitisers for photodynamic therapy that are of great interest in multidisciplinary research. The photophysical properties and structures of Re(I) complexes discussed in this review are summarised to determine basic features and similarities among the structures that are important for their phototoxic activity and future investigations.
    [Show full text]