Aacr Cancer Progress Report

Total Page:16

File Type:pdf, Size:1020Kb

Aacr Cancer Progress Report AACR CANCER PROGRESS REPORT CANCER PROGRESS AACR 615 Chestnut Street, 17th Floor, Philadelphia, PA 19106-4404 2017 AACR CANCER PROGRESS REPORT 2017 Harnessing Research Discoveries to Save Lives AACR.org CancerProgressReport.org #CancerProgress17 For your FREE copy of the full report, go to www.CancerProgressReport.org AACR CANCER PROGRESS REPORT 2017 Harnessing Research Discoveries to Save Lives AACR.org CancerProgressReport.org #CancerProgress17 Please cite this report as: cancerprogressreport.org [Internet]. Philadelphia: American Association for Cancer Research; ©2017 [cited year month date]. Available from http://www.cancerprogressreport.org/. HARNESSING RESEARCH TABLE OF DISCOVERIES TO SAVE LIVES 48 Biomedical Research 48 CONTENTS Progress across the Clinical Cancer Care Continuum 54 Cancer Prevention, Detection, and Diagnosis 54 Simplifying the HPV Vaccination Schedule 54 Enhancing Cancer Detection AACR CANCER PROGRESS and Diagnosis with Technology 54 REPORT 2017 STEERING COMMITTEE iii Treatment with Surgery, Radiotherapy, and Cytotoxic Chemotherapy 56 AACR STAFF iv Improving Outcomes by Combining Existing Treatments 56 Reducing the Adverse Effects of Surgery 56 A MESSAGE FROM THE AACR 1 Tailoring Radiotherapy: Less Is Sometimes More 57 EXECUTIVE SUMMARY 3 Treatment with Molecularly Targeted Therapeutics 57 Cancer in 2017 3 Adding Precision to Treatment for Acute Myeloid Leukemia 61 Targeting Soft Tissue Sarcoma 62 Preventing Cancer: Understanding Risk Factors 4 Increasing Options for Patients with Ovarian Cancer 64 Screening for Cancer Prevention and Early Detection 4 Keeping Breast Cancer Cells at Bay 64 Harnessing Research Discoveries to Save Lives 4 Helping Some Lung Cancer Patients Breathe Easier 69 Looking to the Future 5 Treatment with Immunotherapeutics 72 Working Together to Releasing the Brakes on the Immune System 72 Overcome Cancer through Public Policy 5 Supporting Cancer Patients and Survivors 80 Call to Action 6 Optimizing Quality of Life across the Continuum of Cancer Care 81 A SNAPSHOT OF A YEAR OF PROGRESS 7 Palliating Physical Symptoms 81 CANCER IN 2017 8 Psycho-Oncology 85 Modifying Behaviors to Improve Outcomes 88 Research: Driving Progress against Cancer 8 Cancer: An Ongoing Challenge 8 LOOKING TO THE FUTURE 89 Variable Progress between Types of Cancer Fueling a New Era of Cancer and Stages of Diagnosis 11 Discoveries Harnessing Big Data 89 Disparities in Progress for Distinct Population Groups 11 Greater Effort to Reduce Cancer Health Disparities 92 A Growing Challenge 12 WORKING TOGETHER TO OVERCOME Cancer: A Costly Disease. Research: A Vital Investment 14 CANCER THROUGH PUBLIC POLICY 94 Robust, Sustained, and Predictable COMPREHENDING Funding Increases for Biomedical Research 95 CANCER DEVELOPMENT 18 The Beau Biden Cancer Moonshot: Cancer Development: Influences inside the Cell 18 Toward “Ending Cancer As We Know It.” 99 Cancer Development: Influences outside the Cell 20 Enhancing Support for Regulatory Science and Policy Activities at the FDA 99 Cancer Development: Integrating Our Knowledge 23 Developing and Training the Cancer Workforce of Tomorrow 101 PREVENTING CANCER: Policies to Advance UNDERSTANDING RISK FACTORS 25 Patient-centered Research and Care 102 Eliminate Tobacco Use 25 THE AACR CALL TO ACTION 103 Maintain a Healthy Weight, Eat a Healthy Diet, and Stay Active 30 APPENDIX 104 Protect Skin from UV Exposure 33 Glossary 104 Prevent Infection with FDA-approved Therapeutics for Cancer Risk Cancer-causing Pathogens 36 Reduction or Treatment of Precancerous Conditions 108 Limit Exposure to Environmental Risk Factors 37 FDA-approved Therapeutics SCREENING FOR CANCER for the Treatment of Cancer 109 PREVENTION AND EARLY DETECTION 38 Surgical and Radiotherapy Treatments for Cancer 112 What Is Cancer Screening and How Is It Done? 38 REFERENCES 113 Who Should Be Screened, When Should They Be Screened, and Why? 39 INDEX 120 Ryan C. Fields, MD AACR Associate Professor of Surgery Division of General Surgery Washington University School of Medicine CANCER St Louis, Missouri PROGRESS Jonathan L. Finlay, MB, ChB, FRCP Director of Neuro-Oncology REPORT 2017 Nationwide Children’s Hospital STEERING Columbus, Ohio Margaret Foti, PhD, MD (hc) Chief Executive Officer COMMITTEE American Association for Cancer Research Philadelphia, Pennsylvania Philip D. Greenberg, MD Michael A. Caligiuri, MD Head Chair Program in Immunology AACR President 2017–2018 Fred Hutchinson Cancer Research Center CEO and Director Seattle, Washington James Cancer Hospital & Solove Research Institute The Ohio State University Sandra J. Horning, MD Comprehensive Cancer Center Chief Medical Officer and Head of Global Product Columbus, Ohio Development Genentech, Inc. Melissa L. Bondy, PhD San Francisco, California Associate Director for Cancer Prevention and Population Sciences Michael V. Knopp, MD, PhD Baylor College of Medicine Vice Chair and Professor Houston, Texas Department of Radiology Ohio State University William S. Breitbart, MD Columbus, Ohio Chair Department of Psychiatry and Behavioral Sciences Joshua M. Lang, MD Memorial Sloan Kettering Cancer Center Assistant Professor New York, New York Department of Medicine University of Wisconsin School of Medicine and Public Health John D. Carpten, PhD Madison, Wisconsin Chair Department of Translational Genomics Patricia LoRusso, DO USC Keck School of Medicine Associate Director of Innovative Medicine Los Angeles, California and Professor of Medicine Yale Cancer Center Graham A. Colditz, DrPH, MD, MPH New Haven, Connecticut Associate Director Prevention and Control Kornelia Polyak, MD, PhD Alvin J. Siteman Cancer Center Professor of Medicine St Louis, Missouri Department of Medical Oncology Dana-Farber Cancer Institute George D. Demetri, MD Boston, Massachusetts Director Center for Sarcoma and Bone Oncology Wendy Stock, MD Dana-Farber Cancer Institute Anjuli Seth Nayak Professor in Leukemia Boston, Massachusetts The University of Chicago Medicine Chicago, Illinois AMERICAN ASSOCIATION FOR CANCER RESEARCH iii AACR STAFF Rajarshi Sengupta, PhD Brandon Leonard Project Lead Assistant Director Senior Project Manager, Cancer Progress Report Government Relations and Advocacy Philadelphia, Pennsylvania Washington, DC Karen Honey, PhD Sarah K. Martin, PhD Lead Science Writer Senior Regulatory Science and Policy Analyst Project Co-lead Washington, DC Senior Managing Editor, Science Communications Philadelphia, Pennsylvania Mary Anne Mennite Executive Editor and Senior Liaison to the CEO Brenna L. Adams Philadelphia, Pennsylvania Lead Designer Special Publications Designer Philadelphia, Pennsylvania Jon G. Retzlaff, MBA, MPA Chief Policy Officer and Vice President Science Policy & Government Affairs Nicholas M. Bashour Washington, DC Manager Science Policy Communications Washington, DC Anna B. Sadusky, PhD Director Regulatory Science and Policy Nicole M. Boschi, PhD Washington, DC Senior Science Policy Analyst Washington, DC Shawn M. Sweeney, PhD Project Advisor Paul J. Driscoll, Jr. Director, Project GENIE Coordinating Center Senior Director Philadelphia, Pennsylvania Marketing and Creative Services Philadelphia, Pennsylvania Mary Lee Watts, MPH, RD Director Thomas Gibbons Government Relations and Advocacy Senior Editor Washington, DC Program Development Philadelphia, Pennsylvania Joshua F. Goldstein Nicolle Rager Fuller Director Illustrator Brand Strategy Communications Sayo-Art, LLC. Philadelphia, Pennsylvania Bellingham, Washington iv AACR CANCER PROGRESS REPORT 2017 A MESSAGE collaborative efforts to generate big data is AACRProject Genomics, Evidence, Neoplasia, Information, Exchange FROM (GENIE). In January 2017, the AACR Project GENIE consortium publicly released nearly 19,000 de-identified genomic records collected from patients who were treated THE AACR at the eight participating institutions. The goal of this data release is to catalyze new clinical and translational research that will significantly enhance the future utility This is an incredibly exciting time for the cancer community. of precision medicine. In the United States, overall cancer incidence and death rates Despite the significant progress made against the many are declining, and an increasing number of people are living diseases we call cancer, there is a vital need for continued longer, higher-quality lives after a cancer diagnosis. This research innovation. This urgency is underscored by the progress has been made possible by individuals working sobering reality that the 5-year relative survival rates for across the continuum of cancer research from basic to U.S. patients diagnosed with some types of cancer, such as translational to clinical and population research who are liver cancer, pancreatic cancer, or the aggressive form of harnessing discoveries to drive advances across the clinical brain cancer with which Senator John McCain was recently cancer care spectrum and save an increasing number of diagnosed, glioblastoma, have not improved significantly lives from cancer. over the past several decades. The AACR Cancer Progress Report 2017 provides a comprehensive overview of the progress we are making Moving forward, we also need to ensure that everyone because of research, much of which is supported by benefits from the groundbreaking advances that are being federal investments in the National Institutes of Health made against cancer. Cancer can strike anyone—no age, (NIH) including the National Cancer Institute (NCI). gender, race, ethnicity, socioeconomic status, or political As highlighted in the report,
Recommended publications
  • On the Organization of a Drug Discovery Platform
    DOI: 10.5772/intechopen.73170 ProvisionalChapter chapter 2 On the Organization of a Drug Discovery Platform Jean A. Boutin,A. Boutin, Olivier NosjeanOlivier Nosjean and Gilles FerryGilles Ferry Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.73170 Abstract Some of the most exciting parts of work in the pharmaceutical industry are the steps lead- ing up to drug discovery. This process can be oversimplified by describing it as a screen- ing campaign involving the systematic testing of many compounds in a test relevant to a given pathology. This naïve description takes place without taking into consideration the numerous key steps that led up to the screening or the steps that might follow. The present chapter describes this whole process as it was conducted in our company dur- ing our early drug discovery activities. First, the purpose of the procedures is described and rationalized. Next follows a series of mostly published examples from our own work illustrating the various steps of the process from cloning to biophysics, including expression systems and membrane-bound protein purifications. We believe that what is described here presents an example of how pharmaceutical industry research can orga- nize its platform(s) when the goal is to find and qualify a new preclinical drug candidate using cutting-edge technologies and a lot of hard work. Keywords: drug discovery, validation, cloning & expression, biophysics, structural biology, organization 1. Introduction Drug discovery involves a suite of processes as part of a program aimed at finding drug thera- pies for diseases. These programs encompass many different scientific steps from validation of the target (or attempts to do so) and characterization of the hits until the selection of can- didates for medicinal chemistry programs.
    [Show full text]
  • Predicting Strategies for Lead Optimization Via Learning to Rank
    IPSJ Transactions on Bioinformatics Vol.11 41–47 (Dec. 2018) [DOI: 10.2197/ipsjtbio.11.41] Original Paper Predicting Strategies for Lead Optimization via Learning to Rank Nobuaki Yasuo1,2,a) Keisuke Watanabe1 Hideto Hara3 Kentaro Rikimaru3 Masakazu Sekijima1,4,b) Received: August 21, 2018, Accepted: September 18, 2018 Abstract: Lead optimization is an essential step in drug discovery in which the chemical structures of compounds are modified to improve characteristics such as binding affinity, target selectivity, physicochemical properties, and tox- icity. We present a concept for a computational compound optimization system that outputs optimized compounds from hit compounds by using previous lead optimization data from a pharmaceutical company. In this study, to predict the drug-likeness of compounds in the evaluation function of this system, we evaluated and compared the ability to correctly predict lead optimization strategies through learning to rank methods. Keywords: lead optimization, learning to rank, computer-aided drug design, machine learning computer-aided drug discovery (CADD), which has been utilized 1. Introduction since the 1960s, are also leading current drug discovery. The During drug discovery, enormous attempts are being made to methods of CADD can be combined with various biological data identify better drug candidates. Since the cost of drug discovery including genomic sequence, protein tertiary structure, and chem- has been drastically increased, recently the process of drug dis- ical structure, and can be utilized in various steps in drug discov- covery typically takes 12–14 years [1] and costs approximately ery: target identification, compound screening, and ADME (ab- 2.6 billion USD [2]. The process of drug discovery is sometimes sorption, distribution, metabolism, excretion, toxicity) properties likened to looking for a needle in a haystack; it is the process prediction [9], [10], [11].
    [Show full text]
  • Medicinal Chemistry for Drug Discovery | Charles River
    Summary Medicinal chemistry is an integral part of bringing a drug through development. Our medicinal chemistry approach enables clients to benefit from efficient navigation of the early drug discovery process through to delivery of preclinical candidates. DISCOVERY Click to learn more Medicinal Chemistry for Drug Discovery Medicinal Chemistry A Proven Track Record in Drug Discovery Services: Our medicinal chemistry team has experience in progressing small molecule drug discovery programs across a broad range • Target identification of therapeutic areas and gene families. Our scientists are skilled in the design and synthesis of novel pharmacologically active - Capture Compound® mass compounds and understand the challenges facing modern drug discovery. Together, they are cited as inventors on over spectrometry (CCMS) 350 patents and have identified 80 preclinical candidates for client organizations across a variety of therapeutic areas. As • Hit-finding strategies project leaders, our chemists are fundamental in driving the program strategy and have consistently empowered our clients’ - Optimizing high-throughput success. A high proportion of candidates regularly progress to the clinic, and our first co-invented drug, Belinostat, received screening (HTS) hits marketing approval in 2015. As an organization, Charles River has worked on 85% of the therapies approved in 2018. • Hit-to-lead We have a deep understanding of the factors that drive medicinal chemistry design: structure-activity relationship (SAR), • Lead optimization biology, physical chemistry, drug metabolism and pharmacokinetics (DMPK), pharmacokinetic/pharmacodynamic (PK/PD) • Patent strategy modelling, and in vivo efficacy. Charles River scientists are skilled in structure-based and ligand-based design approaches • Preparation for IND filing utilizing our in-house computer-aided drug design (CADD) expertise.
    [Show full text]
  • Title 16. Crimes and Offenses Chapter 13. Controlled Substances Article 1
    TITLE 16. CRIMES AND OFFENSES CHAPTER 13. CONTROLLED SUBSTANCES ARTICLE 1. GENERAL PROVISIONS § 16-13-1. Drug related objects (a) As used in this Code section, the term: (1) "Controlled substance" shall have the same meaning as defined in Article 2 of this chapter, relating to controlled substances. For the purposes of this Code section, the term "controlled substance" shall include marijuana as defined by paragraph (16) of Code Section 16-13-21. (2) "Dangerous drug" shall have the same meaning as defined in Article 3 of this chapter, relating to dangerous drugs. (3) "Drug related object" means any machine, instrument, tool, equipment, contrivance, or device which an average person would reasonably conclude is intended to be used for one or more of the following purposes: (A) To introduce into the human body any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (B) To enhance the effect on the human body of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (C) To conceal any quantity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; or (D) To test the strength, effectiveness, or purity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state. (4) "Knowingly" means having general knowledge that a machine, instrument, tool, item of equipment, contrivance, or device is a drug related object or having reasonable grounds to believe that any such object is or may, to an average person, appear to be a drug related object.
    [Show full text]
  • DMPK) Studies Are Critical to Efficient Drug Discovery Programs and Successful Delivery of Candidate Molecules
    Summary Discovery drug metabolism and pharmacokinetics (DMPK) studies are critical to efficient drug discovery programs and successful delivery of candidate molecules. DISCOVERY Drug Metabolism and Pharmacokinetics (DMPK) Click to learn more Supporting Discovery Research DMPK Services The identification and inclusion of appropriate DMPK studies is key to the success of discovery research by helping to de-risk • In vitro ADME candidate molecules and improve project productivity through more targeted chemical synthesis and progression of the right compounds. Charles River’s flexible and collaborativeDMPK team offers a variety of partnerships and pricing structures to suit • Physicochemical properties client needs. In addition to fee-for-service assays and expertise, we can embed our DMPK scientists within existing integrated • Metabolic stability chemistry programs as core team members of multidisciplinary project teams. We offer a wealth of experience in a range of • Drug-drug interactions therapeutic areas and biological targets and can help support strategy and implementation of appropriate screening cascades. • Distribution • Safety • High-throughput and automation Chemistry • Pharmacokinetics (PK) support • Bioanalysis and Biology pharmacokinetic support DMPK Questions for our chemists? Visit https://www.criver.com/ consult-pi-ds-questions-for-our- chemists EVERY STEP OF THE WAY www.criver.com In Vitro ADME As compound potency improves during hit-to-lead and lead optimization, in vitro ADME assays provide necessary data to establish insight into the key physiochemical properties and structural motifs that will provide the targeted candidate profile. Our in vitro ADME scientists have established a suite of assays that routinely support drug discovery programs, continue to work on the development and validation of new assays, and regularly monitor assay performance.
    [Show full text]
  • Early Hit-To-Lead ADME Screening Bundle Bundled Screening Assays to Accelerate Candidate Selection in Drug Discovery
    Fact Sheet Early Hit-to-Lead ADME Screening Bundle Bundled Screening Assays to Accelerate Candidate Selection in Drug Discovery In vitro ADME screening during the lead optimization stage of drug discovery positively impacts drug candidate selection with an enhanced probability of success in clinical trials. Since most new drug candidates fail during preclinical and clinical development, and the late stage of the drug development cycle can be a lengthy and costly process, any means of identifying drug candidates with optimized ADME and pharmacokinetics properties in the discovery stage will have a significant impact on the drug discovery process overall. Focused on Solutions to Address DMPK Issues and to Enable the Success of Our Clients Our scientists routinely conduct industry standard in vitro metabolism and DDI-based assays, including highly automated ADME in vitro screens. We can help drive your discovery phase structure activity relationship (SAR) by optimizing for ADME properties, in parallel to your receptor binding potency and selectivity, for more rapid identification of high quality drug candidates. Metabolic stability, risk assessment for inhibiting key Cytochrome P450 enzymes, and cell permeability are three main early hit-to-lead ADME screening assays that all new chemical entities (NCEs) are tested for in the industry in effort to optimize key ADME properties. In Vitro ADME Screening Services: Early Hit-to-Lead ADME Screening Bundle Intrinsic Clearance Assay in Liver Microsomes • Liver microsomes; species selectable • Incubation
    [Show full text]
  • A New Ligand-Based Approach to Virtual Screening and Profiling of Large Chemical Libraries
    A new ligand-based approach to virtual screening and profiling of large chemical libraries Elisabet Gregori Puigjané Memòria presentada per optar al grau de Doctor en Biologia per la Universitat Pompeu Fabra. Aquesta Tesi Doctoral ha estat realitzada sota la direcció del Dr. Jordi Mestres al Departament de Ciències Experimentals i de la Salut de la Universitat Pompeu Fabra Jordi Mestres Elisabet Gregori Puigjané Barcelona, Maig 2008 The research in this thesis has been carried out at the Chemogenomics Laboratory (CGL) within the Unitat de Recerca en Informàtica Biomèdica (GRIB) at the Parc de Recerca Biomèdica de Barcelona (PRBB). The research carried out in this thesis has been supported by Chemotargets S. L. Table of contents Acknowledgements ........................................................................................... 3 Abstract .............................................................................................................. 5 Objectives ........................................................................................................... 7 List of publications ............................................................................................ 9 Part I – INTRODUCTION .................................................................................. 11 Chapter I.1. Drug discovery ..................................................................... 13 I.1.1. Obtaining a drug candidate ....................................................... 14 I.1.1.1. Hit identification ..........................................................
    [Show full text]
  • An Emerging Strategy for Rapid Target and Drug Discovery
    R E V I E W S CHEMOGENOMICS: AN EMERGING STRATEGY FOR RAPID TARGET AND DRUG DISCOVERY Markus Bredel*‡ and Edgar Jacoby§ Chemogenomics is an emerging discipline that combines the latest tools of genomics and chemistry and applies them to target and drug discovery. Its strength lies in eliminating the bottleneck that currently occurs in target identification by measuring the broad, conditional effects of chemical libraries on whole biological systems or by screening large chemical libraries quickly and efficiently against selected targets. The hope is that chemogenomics will concurrently identify and validate therapeutic targets and detect drug candidates to rapidly and effectively generate new treatments for many human diseases. Over the past five decades, pharmacological compounds however, that owing to the emergence of various sub- TRANSCRIPTIONAL PROFILING The study of the transcriptome have been identified that collectively target the products specialties of chemogenomics (discussed in the next — the complete set of RNA of ~400–500 genes in the human body; however, only section) and the involvement of several disciplines, it is transcripts that are produced by ~120 of these genes have reached the market as the tar- currently almost impossible to give a simple and com- the genome at any one time — gets of drugs1,2. The Human Genome Project3,4 has mon definition for this research discipline (BOX 1). using high-throughput methods, such as microarray made available many potential new targets for drug In chemogenomics-based drug discovery, large col- analysis. intervention: several thousand of the approximately lections of chemical products are screened for the paral- 30,000–40,000 estimated human genes4 could be associ- lel identification of biological targets and biologically ated with disease and, similarly, several thousand active compounds.
    [Show full text]
  • Pharmaceuticals As Environmental Contaminants
    PharmaceuticalsPharmaceuticals asas EnvironmentalEnvironmental Contaminants:Contaminants: anan OverviewOverview ofof thethe ScienceScience Christian G. Daughton, Ph.D. Chief, Environmental Chemistry Branch Environmental Sciences Division National Exposure Research Laboratory Office of Research and Development Environmental Protection Agency Las Vegas, Nevada 89119 [email protected] Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Why and how do drugs contaminate the environment? What might it all mean? How do we prevent it? Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada This talk presents only a cursory overview of some of the many science issues surrounding the topic of pharmaceuticals as environmental contaminants Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada A Clarification We sometimes loosely (but incorrectly) refer to drugs, medicines, medications, or pharmaceuticals as being the substances that contaminant the environment. The actual environmental contaminants, however, are the active pharmaceutical ingredients – APIs. These terms are all often used interchangeably Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Office of Research and Development Available: http://www.epa.gov/nerlesd1/chemistry/pharma/image/drawing.pdfNational
    [Show full text]
  • Photodynamic Therapy for the Treatment of Actinic Keratoses and Other Skin Lesions
    Photodynamic Therapy for the Treatment of Actinic Keratoses and Other Skin Lesions Policy Number: Current Effective Date: MM.02.016 March 22, 2019 Lines of Business: Original Effective Date: HMO; PPO; QUEST Integration April 01, 2008 Place of Service: Precertification: Office Not Required I. Description Photodynamic therapy (PDT) refers to light activation of a photosensitizer to generate highly reactive intermediaries, which ultimately cause tissue injury and necrosis. Photosensitizing agents are being proposed for use with dermatologic conditions such as actinic keratoses and nonmelanoma skin cancers.For individuals who have nonhyperkeratotic actinic keratoses on the face or scalp who receive PDT, the evidence includes randomized controlled trials (RCTs). The relevant outcomes are symptoms, change in disease status, quality of life, and treatment-related morbidity. Evidence from multiple RCTs has found that PDT improves the net health outcome in patients with nonhyperkeratotic actinic keratoses on the face or scalp compared with placebo or other active interventions. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome. For individuals who have low-risk basal cell carcinoma who receive PDT, the evidence includes RCTs and systematic reviews of RCTs. The relevant outcomes are symptoms, change in disease status, quality of life, and treatment-related morbidity. Systematic reviews of RCTs have found that PDT may not be as effective as surgery for superficial and nodular basal cell carcinoma. In the small number of trials available, PDT was more effective than placebo. The available evidence from RCTs has suggested that PDT has better cosmetic outcomes than surgery.
    [Show full text]
  • Hit-To-Lead (H2L) and Lead Optimization in Medicinal Chemistry
    Hit-to-lead (H2L) and Lead Optimization in Medicinal Chemistry 1 This document provides an outline of a presentation and is incomplete without the accompanying oral commentary and discussion. Drug Discovery: Lead Optimization 2 Lecture Overview • Ligand-protein interactions. • Physico-chemical properties and drug design: attributes of a lead molecule. • Introduction to medicinal chemistry and lead optimization. • Best practices in medicinal chemistry. • Case-studies (Alzheimer’s disease): – Fragment-based approaches in discovery of beta- secretase inhibitors – Identification of a PDE9 clinical candidate 3 Lecture Overview • Ligand-protein interactions. • Physico-chemical properties and drug design: attributes of a lead molecule. • Introduction to medicinal chemistry and lead optimization. • Best practices in medicinal chemistry. • Case-studies (Alzheimer’s disease): – Fragment-based approaches in discovery of beta- secretase inhibitors – Identification of a PDE9 clinical candidate 4 Ligand-protein binding event SolutionSolução ComplexComplexo Gbind + Something to remember: 1.36 kcal/mol ~ 10-fold gain in affinity 2.72 kcal/mol ~ 100-fold 4.08 kcal/mol ~ 1000-fold 5 Some Factors Affecting Gbind Favor Binding Oppose Binding Entropy and enthalpy gain due to the “hydrophobic effect” – taking ligand out of Ligand desolvation enthalpy – loss of water eliminates the penalty associated with the interactions with the solvent. solvent cavity creation. Entropy and enthalpy gain due to the Binding pocket desolvation enthalpy – loss of “hydrophobic effect” for ordered waters bound interactions with the solvent. to protein moving to bulk solvent. Residual vibrational entropy in protein-ligand Translational and rotational entropy loss for complex. ligand and protein upon binding (loss of 3 translational and 3 rotational degrees of freedom).
    [Show full text]
  • Hit Discovery and Hit-To-Lead Approaches Reviews
    Drug Discovery Today Volume 11, Numbers 15/16 August 2006 REVIEWS POST SCREEN Hit discovery and hit-to-lead approaches Reviews Gyo¨ rgy M. Keseru˝ 1 and Gergely M. Makara2 1 CADD&HTS Unit, Gedeon Richter Ltd, 19-21 Gyo¨mro˝iu´t, Budapest, H-1103, Hungary 2 Merck Research Laboratories, Merck & Co, RY80Y-325, 126 E. Lincoln Ave, Rahway, New Jersey, 07065, USA Hit discovery technologies range from traditional high-throughput screening to affinity selection of large libraries, fragment-based techniques and computer-aided de novo design, many of which have been extensively reviewed. Development of quality leads using hit confirmation and hit-to-lead approaches present their own challenges, depending on the hit discovery method used to identify the initial hits. In this paper, we summarize common industry practices adopted to tackle hit-to-lead challenges and review how the advantages and drawbacks of different hit discovery techniques could affect the various issues hit-to-lead groups face. It has been shown that marketed drugs are very frequently highly All hit discovery approaches have – often orthogonal – short- similar to the leads from which they were derived [1]. Thus, both comings prompting the frequent use of multiple techniques for hit the quality and the quantity of lead classes available to medicinal confirmation (Table 1). Challenges facing traditional HTS tech- chemists are primary drivers for discovering best-in-class medi- nologies include high false-positive rates, the need for reporter cines. This makes lead generation a crucial step in the drug dis- assays and the limitation in throughput imposed by testing com- covery process.
    [Show full text]