Hit Discovery and Hit-To-Lead Approaches Reviews
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Organization of a Drug Discovery Platform
DOI: 10.5772/intechopen.73170 ProvisionalChapter chapter 2 On the Organization of a Drug Discovery Platform Jean A. Boutin,A. Boutin, Olivier NosjeanOlivier Nosjean and Gilles FerryGilles Ferry Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.73170 Abstract Some of the most exciting parts of work in the pharmaceutical industry are the steps lead- ing up to drug discovery. This process can be oversimplified by describing it as a screen- ing campaign involving the systematic testing of many compounds in a test relevant to a given pathology. This naïve description takes place without taking into consideration the numerous key steps that led up to the screening or the steps that might follow. The present chapter describes this whole process as it was conducted in our company dur- ing our early drug discovery activities. First, the purpose of the procedures is described and rationalized. Next follows a series of mostly published examples from our own work illustrating the various steps of the process from cloning to biophysics, including expression systems and membrane-bound protein purifications. We believe that what is described here presents an example of how pharmaceutical industry research can orga- nize its platform(s) when the goal is to find and qualify a new preclinical drug candidate using cutting-edge technologies and a lot of hard work. Keywords: drug discovery, validation, cloning & expression, biophysics, structural biology, organization 1. Introduction Drug discovery involves a suite of processes as part of a program aimed at finding drug thera- pies for diseases. These programs encompass many different scientific steps from validation of the target (or attempts to do so) and characterization of the hits until the selection of can- didates for medicinal chemistry programs. -
Predicting Strategies for Lead Optimization Via Learning to Rank
IPSJ Transactions on Bioinformatics Vol.11 41–47 (Dec. 2018) [DOI: 10.2197/ipsjtbio.11.41] Original Paper Predicting Strategies for Lead Optimization via Learning to Rank Nobuaki Yasuo1,2,a) Keisuke Watanabe1 Hideto Hara3 Kentaro Rikimaru3 Masakazu Sekijima1,4,b) Received: August 21, 2018, Accepted: September 18, 2018 Abstract: Lead optimization is an essential step in drug discovery in which the chemical structures of compounds are modified to improve characteristics such as binding affinity, target selectivity, physicochemical properties, and tox- icity. We present a concept for a computational compound optimization system that outputs optimized compounds from hit compounds by using previous lead optimization data from a pharmaceutical company. In this study, to predict the drug-likeness of compounds in the evaluation function of this system, we evaluated and compared the ability to correctly predict lead optimization strategies through learning to rank methods. Keywords: lead optimization, learning to rank, computer-aided drug design, machine learning computer-aided drug discovery (CADD), which has been utilized 1. Introduction since the 1960s, are also leading current drug discovery. The During drug discovery, enormous attempts are being made to methods of CADD can be combined with various biological data identify better drug candidates. Since the cost of drug discovery including genomic sequence, protein tertiary structure, and chem- has been drastically increased, recently the process of drug dis- ical structure, and can be utilized in various steps in drug discov- covery typically takes 12–14 years [1] and costs approximately ery: target identification, compound screening, and ADME (ab- 2.6 billion USD [2]. The process of drug discovery is sometimes sorption, distribution, metabolism, excretion, toxicity) properties likened to looking for a needle in a haystack; it is the process prediction [9], [10], [11]. -
Computational Approaches for Drug Design and Discovery: an Overview
Review Article Computational Approaches for Drug Design and Discovery: An Overview Baldi A College of Pharmacy, Dr. Shri R.M.S. Institute of Science & Technology, Bhanpura, Dist. Mandsaur (M.P.), India ARTICLE INFO ABSTRACT Article history: The process of drug discovery is very complex and requires an interdisciplinary effort to design Received 12 July 2009 effective and commercially feasible drugs. The objective of drug design is to find a chemical Accepted 21 July 2009 compound that can fit to a specific cavity on a protein target both geometrically and chemically. Available online 04 February 2010 After passing the animal tests and human clinical trials, this compound becomes a drug available Keywords: to patients. The conventional drug design methods include random screening of chemicals Computer-aided drug design found in nature or synthesized in laboratories. The problems with this method are long design Combinatorial chemistry cycle and high cost. Modern approach including structure-based drug design with the help Drug of informatic technologies and computational methods has speeded up the drug discovery Structure-based drug deign process in an efficient manner. Remarkable progress has been made during the past five years in almost all the areas concerned with drug design and discovery. An improved generation of softwares with easy operation and superior computational tools to generate chemically stable and worthy compounds with refinement capability has been developed. These tools can tap into cheminformation to shorten the cycle of drug discovery, and thus make drug discovery more cost-effective. A complete overview of drug discovery process with comparison of conventional approaches of drug discovery is discussed here. -
Opportunities and Challenges in Phenotypic Drug Discovery: an Industry Perspective
PERSPECTIVES Nevertheless, there are still challenges in OPINION prospectively understanding the key success factors for modern PDD and how maximal Opportunities and challenges in value can be obtained. Articles published after the analysis by Swinney and Anthony have re-examined the contribution of PDD phenotypic drug discovery: an to new drug discovery6,7 and have refined the conditions for its successful application8. industry perspective Importantly, it is apparent on closer examination that the classification of drugs John G. Moffat, Fabien Vincent, Jonathan A. Lee, Jörg Eder and as ‘phenotypically discovered’ is somewhat Marco Prunotto inconsistent6,7 and that, in fact, the majority of successful drug discovery programmes Abstract | Phenotypic drug discovery (PDD) approaches do not rely on knowledge combine target knowledge and functional of the identity of a specific drug target or a hypothesis about its role in disease, in cellular assays to identify drug candidates contrast to the target-based strategies that have been widely used in the with the most advantageous molecular pharmaceutical industry in the past three decades. However, in recent years, there mechanism of action (MoA). Although there is clear evidence that phenotypic has been a resurgence in interest in PDD approaches based on their potential to screening can be an attractive proposition address the incompletely understood complexity of diseases and their promise for efficiently identifying functionally of delivering first-in-class drugs, as well as major advances in the tools for active hits that lead to first-in-class drugs, cell-based phenotypic screening. Nevertheless, PDD approaches also have the gap between a screening hit and an considerable challenges, such as hit validation and target deconvolution. -
Medicinal Chemistry for Drug Discovery | Charles River
Summary Medicinal chemistry is an integral part of bringing a drug through development. Our medicinal chemistry approach enables clients to benefit from efficient navigation of the early drug discovery process through to delivery of preclinical candidates. DISCOVERY Click to learn more Medicinal Chemistry for Drug Discovery Medicinal Chemistry A Proven Track Record in Drug Discovery Services: Our medicinal chemistry team has experience in progressing small molecule drug discovery programs across a broad range • Target identification of therapeutic areas and gene families. Our scientists are skilled in the design and synthesis of novel pharmacologically active - Capture Compound® mass compounds and understand the challenges facing modern drug discovery. Together, they are cited as inventors on over spectrometry (CCMS) 350 patents and have identified 80 preclinical candidates for client organizations across a variety of therapeutic areas. As • Hit-finding strategies project leaders, our chemists are fundamental in driving the program strategy and have consistently empowered our clients’ - Optimizing high-throughput success. A high proportion of candidates regularly progress to the clinic, and our first co-invented drug, Belinostat, received screening (HTS) hits marketing approval in 2015. As an organization, Charles River has worked on 85% of the therapies approved in 2018. • Hit-to-lead We have a deep understanding of the factors that drive medicinal chemistry design: structure-activity relationship (SAR), • Lead optimization biology, physical chemistry, drug metabolism and pharmacokinetics (DMPK), pharmacokinetic/pharmacodynamic (PK/PD) • Patent strategy modelling, and in vivo efficacy. Charles River scientists are skilled in structure-based and ligand-based design approaches • Preparation for IND filing utilizing our in-house computer-aided drug design (CADD) expertise. -
Overcoming the Immunosuppressive Tumor Microenvironment in Multiple Myeloma
cancers Review Overcoming the Immunosuppressive Tumor Microenvironment in Multiple Myeloma Fatih M. Uckun 1,2,3 1 Norris Comprehensive Cancer Center and Childrens Center for Cancer and Blood Diseases, University of Southern California Keck School of Medicine (USC KSOM), Los Angeles, CA 90027, USA; [email protected] 2 Department of Developmental Therapeutics, Immunology, and Integrative Medicine, Drug Discovery Institute, Ares Pharmaceuticals, St. Paul, MN 55110, USA 3 Reven Pharmaceuticals, Translational Oncology Program, Golden, CO 80401, USA Simple Summary: This article provides a comprehensive review of new and emerging treatment strategies against multiple myeloma that employ precision medicines and/or drugs capable of improving the ability of the immune system to prevent or slow down the progression of multiple myeloma. These rationally designed new treatment methods have the potential to change the therapeutic landscape in multiple myeloma and improve the long-term survival outcome. Abstract: SeverFigurel cellular elements of the bone marrow (BM) microenvironment in multiple myeloma (MM) patients contribute to the immune evasion, proliferation, and drug resistance of MM cells, including myeloid-derived suppressor cells (MDSCs), tumor-associated M2-like, “alter- natively activated” macrophages, CD38+ regulatory B-cells (Bregs), and regulatory T-cells (Tregs). These immunosuppressive elements in bidirectional and multi-directional crosstalk with each other inhibit both memory and cytotoxic effector T-cell populations as well as natural killer (NK) cells. Immunomodulatory imide drugs (IMiDs), protease inhibitors (PI), monoclonal antibodies (MoAb), Citation: Uckun, F.M. Overcoming the Immunosuppressive Tumor adoptive T-cell/NK cell therapy, and inhibitors of anti-apoptotic signaling pathways have emerged as Microenvironment in Multiple promising therapeutic platforms that can be employed in various combinations as part of a rationally Myeloma. -
Drug Discovery - Yesterday and Tomorrow: the Common Approaches in Drug Design and Cancer
Cell & Cellular Life Sciences Journal Drug Discovery - Yesterday and Tomorrow: The Common Approaches in Drug Design and Cancer 1,2 1 3 Hamad ON *, Amran SIB and Sabbah AM Mini Review 1Faculty of Bioscience & Medical Engineering, Malaysia Volume 3 Issue 1 2University of Wasit, College of Medicine, Iraq Received Date: February 27, 2018 3Forensic DNA for research and training Centre, Al Nahrain University, Iraq Published Date: April 03, 2018 *Corresponding author: Oras Naji Hamad, Faculty of Bioscience & Medical Engineering, University of Technology, Malaysia, Tel: 01121715960; E-mail: [email protected] Abstract The process of drug discovery has undergone radical changes and development over years. Traditionally, the drugs were discovered by employing chemistry and pharmacology-based cautious approach. When natural products were the most important source of drugs or drug precursors, but the conventional randomized drug research phenomenon was no longer effective at that time due to many negatives of these approaches like: high expenses of discovering new drugs, time-consuming and reduced success guarantee. Thus, with the development of the era, the concept of “Rational Drug Design” has enabled drug target identification and validation to be more specific. In addition, several novel technologies and approaches have been introducing economics, proteomics and other omics areas such as 3D QSAR, pharmacophore modeling and other, which playing a promising role in accelerating the pace of drug discovery process. Their view of the current -
DMPK) Studies Are Critical to Efficient Drug Discovery Programs and Successful Delivery of Candidate Molecules
Summary Discovery drug metabolism and pharmacokinetics (DMPK) studies are critical to efficient drug discovery programs and successful delivery of candidate molecules. DISCOVERY Drug Metabolism and Pharmacokinetics (DMPK) Click to learn more Supporting Discovery Research DMPK Services The identification and inclusion of appropriate DMPK studies is key to the success of discovery research by helping to de-risk • In vitro ADME candidate molecules and improve project productivity through more targeted chemical synthesis and progression of the right compounds. Charles River’s flexible and collaborativeDMPK team offers a variety of partnerships and pricing structures to suit • Physicochemical properties client needs. In addition to fee-for-service assays and expertise, we can embed our DMPK scientists within existing integrated • Metabolic stability chemistry programs as core team members of multidisciplinary project teams. We offer a wealth of experience in a range of • Drug-drug interactions therapeutic areas and biological targets and can help support strategy and implementation of appropriate screening cascades. • Distribution • Safety • High-throughput and automation Chemistry • Pharmacokinetics (PK) support • Bioanalysis and Biology pharmacokinetic support DMPK Questions for our chemists? Visit https://www.criver.com/ consult-pi-ds-questions-for-our- chemists EVERY STEP OF THE WAY www.criver.com In Vitro ADME As compound potency improves during hit-to-lead and lead optimization, in vitro ADME assays provide necessary data to establish insight into the key physiochemical properties and structural motifs that will provide the targeted candidate profile. Our in vitro ADME scientists have established a suite of assays that routinely support drug discovery programs, continue to work on the development and validation of new assays, and regularly monitor assay performance. -
Second Generation Inhibitors of BCR- ABL for the Treatment of Imatinib- Resistant Chronic Myeloid Leukaemia
REVIEWS Second generation inhibitors of BCR- ABL for the treatment of imatinib- resistant chronic myeloid leukaemia Ellen Weisberg*, Paul W. Manley‡, Sandra W. Cowan-Jacob§, Andreas Hochhaus|| and James D. Griffin¶ Abstract | Imatinib, a small-molecule ABL kinase inhibitor, is a highly effective therapy for early-phase chronic myeloid leukaemia (CML), which has constitutively active ABL kinase activity owing to the expression of the BCR-ABL fusion protein. However, there is a high relapse rate among advanced- and blast-crisis-phase patients owing to the development of mutations in the ABL kinase domain that cause drug resistance. Several second-generation ABL kinase inhibitors have been or are being developed for the treatment of imatinib- resistant CML. Here, we describe the mechanism of action of imatinib in CML, the structural basis of imatinib resistance, and the potential of second-generation BCR-ABL inhibitors to circumvent resistance. The BCR-ABL oncogene, which is the product of the design of new drugs to circumvent resistance, and Philadelphia chromosome (Ph) 22q, encodes a chimeric several new agents have been developed specifically BCR-ABL protein that has constitutively activated ABL for this purpose. These compounds have been well tyrosine kinase activity; it is the underlying cause of characterized for efficacy against the mutant enzymes chronic myeloid leukaemia (CML)1–3. Whereas the 210 in preclinical studies, and impressive therapeutic activ- kDa BCR-ABL protein is expressed in patients with ity has now been reported for two second generation CML, a 190 kDa BCR-ABL protein, resulting from an drugs in phase I and II clinical trials in patients with *Dana Farber Cancer alternative breakpoint in the BCR gene, is expressed in imatinib-resistant CML. -
Early Hit-To-Lead ADME Screening Bundle Bundled Screening Assays to Accelerate Candidate Selection in Drug Discovery
Fact Sheet Early Hit-to-Lead ADME Screening Bundle Bundled Screening Assays to Accelerate Candidate Selection in Drug Discovery In vitro ADME screening during the lead optimization stage of drug discovery positively impacts drug candidate selection with an enhanced probability of success in clinical trials. Since most new drug candidates fail during preclinical and clinical development, and the late stage of the drug development cycle can be a lengthy and costly process, any means of identifying drug candidates with optimized ADME and pharmacokinetics properties in the discovery stage will have a significant impact on the drug discovery process overall. Focused on Solutions to Address DMPK Issues and to Enable the Success of Our Clients Our scientists routinely conduct industry standard in vitro metabolism and DDI-based assays, including highly automated ADME in vitro screens. We can help drive your discovery phase structure activity relationship (SAR) by optimizing for ADME properties, in parallel to your receptor binding potency and selectivity, for more rapid identification of high quality drug candidates. Metabolic stability, risk assessment for inhibiting key Cytochrome P450 enzymes, and cell permeability are three main early hit-to-lead ADME screening assays that all new chemical entities (NCEs) are tested for in the industry in effort to optimize key ADME properties. In Vitro ADME Screening Services: Early Hit-to-Lead ADME Screening Bundle Intrinsic Clearance Assay in Liver Microsomes • Liver microsomes; species selectable • Incubation -
Medicinal Chemistry
Medicinal Chemistry Dr. Shuaib Alahmad Medicinal and Pharmaceutical Chemistry References: 1- Wilson and Gisvold’s Text book of Organic Medicinal & Pharmaceutical Chemistry, Twelfthe Edition, 2011 2- Gareth Thomas’’ Medicinal Chemistry; An Introduction,2nd Edition. 2007. 3- Dr.Iyad Allous lectures 2 Introduction Medicinal Chemistry: is the discovery, the development, the identification and the interpretation of the mode of action of biologically active compounds that can be used as drugs for the prevention, treatment or cure of human and animal diseases. Medicinal chemistry includes the study of already existing drugs, of their biological properties and their structure-activity relationships. During the early stages of medicinal chemistry development, scientists were primarily concerned with the isolation of medicinal agents found in plants. Today, scientists in this field are also equally concerned with the creation of new synthetic compounds as drugs. Medicinal chemistry is devoted to the discovery and development of new agents for treating diseases. 3 Introduction The primary objective of Medicinal Chemistry is the design and discovery of new compounds that are suitable for use as drugs. This process involves a team of workers from a wide range of disciplines such as chemistry, biology, biochemistry, pharmacology, mathematics, medicine and computing, amongst others 4 Introduction Medicinal chemistry covers the following stages: I.The first stage is lead discovery in which new active substances or drugs are identified and prepared -
A New Ligand-Based Approach to Virtual Screening and Profiling of Large Chemical Libraries
A new ligand-based approach to virtual screening and profiling of large chemical libraries Elisabet Gregori Puigjané Memòria presentada per optar al grau de Doctor en Biologia per la Universitat Pompeu Fabra. Aquesta Tesi Doctoral ha estat realitzada sota la direcció del Dr. Jordi Mestres al Departament de Ciències Experimentals i de la Salut de la Universitat Pompeu Fabra Jordi Mestres Elisabet Gregori Puigjané Barcelona, Maig 2008 The research in this thesis has been carried out at the Chemogenomics Laboratory (CGL) within the Unitat de Recerca en Informàtica Biomèdica (GRIB) at the Parc de Recerca Biomèdica de Barcelona (PRBB). The research carried out in this thesis has been supported by Chemotargets S. L. Table of contents Acknowledgements ........................................................................................... 3 Abstract .............................................................................................................. 5 Objectives ........................................................................................................... 7 List of publications ............................................................................................ 9 Part I – INTRODUCTION .................................................................................. 11 Chapter I.1. Drug discovery ..................................................................... 13 I.1.1. Obtaining a drug candidate ....................................................... 14 I.1.1.1. Hit identification ..........................................................