Opportunities and Challenges in Phenotypic Drug Discovery: an Industry Perspective

Total Page:16

File Type:pdf, Size:1020Kb

Opportunities and Challenges in Phenotypic Drug Discovery: an Industry Perspective PERSPECTIVES Nevertheless, there are still challenges in OPINION prospectively understanding the key success factors for modern PDD and how maximal Opportunities and challenges in value can be obtained. Articles published after the analysis by Swinney and Anthony have re-examined the contribution of PDD phenotypic drug discovery: an to new drug discovery6,7 and have refined the conditions for its successful application8. industry perspective Importantly, it is apparent on closer examination that the classification of drugs John G. Moffat, Fabien Vincent, Jonathan A. Lee, Jörg Eder and as ‘phenotypically discovered’ is somewhat Marco Prunotto inconsistent6,7 and that, in fact, the majority of successful drug discovery programmes Abstract | Phenotypic drug discovery (PDD) approaches do not rely on knowledge combine target knowledge and functional of the identity of a specific drug target or a hypothesis about its role in disease, in cellular assays to identify drug candidates contrast to the target-based strategies that have been widely used in the with the most advantageous molecular pharmaceutical industry in the past three decades. However, in recent years, there mechanism of action (MoA). Although there is clear evidence that phenotypic has been a resurgence in interest in PDD approaches based on their potential to screening can be an attractive proposition address the incompletely understood complexity of diseases and their promise for efficiently identifying functionally of delivering first-in-class drugs, as well as major advances in the tools for active hits that lead to first-in-class drugs, cell-based phenotypic screening. Nevertheless, PDD approaches also have the gap between a screening hit and an considerable challenges, such as hit validation and target deconvolution. This efficacious drug is often immense and, in article focuses on the lessons learned by researchers engaged in PDD in the our experience, more challenging than for a hit with a known molecular target. Hopes pharmaceutical industry and considers the impact of ‘omics’ knowledge in for PDD to ‘rescue’ the pharmaceutical defining a cellular disease phenotype in the era of precision medicine, introducing industry might also be viewed as an example the concept of a chain of translatability. We particularly aim to identify features of a Gartner hype cycle, in which a peak of and areas in which PDD can best deliver value to drug discovery portfolios and inflated expectations is followed by a trough can contribute to the identification and the development of novel medicines, of disillusionment, before establishing a plateau of productivity. and to illustrate the challenges and uncertainties that are associated with PDD in This article aims to address two order to help set realistic expectations with regard to its benefits and costs. aspects of this situation: first, to illustrate current challenges and uncertainties that In the past three decades, target-based drug of TDD (for example, see REF. 2), and from are associated with PDD to set realistic discovery (TDD) — in which the starting the authors’ experience and anecdotal expectations for benefits and costs; and point is a defined molecular target that is communications, it seems that efforts within second, to identify areas in which PDD hypothesized to have an important role in the pharmaceutical industry to pursue PDD can best deliver value to drug discovery disease — has been the dominant approach have recently greatly increased compared portfolios through the identification and to drug discovery in the pharmaceutical with the years preceding 2011. The power of the development of novel medicines. In the industry, driven by advances in molecular PDD as a tool to address the complexity past two years, conferences organized by biology and genomics. However, in recent of diseases that are poorly understood by the the New York Academy of Sciences9 and the years, there has been a revival in interest scientific community is also clear (see REF. 3 Keystone Symposia on Molecular in phenotypic drug discovery (PDD) for a recent review). Furthermore, there and Cellular Biology, along with the approaches, which do not rely on knowledge have been recent rapid advances in various establishment of a PDD special interest of the identity of a specific drug target or a technologies for cell-based phenotypic group under the auspices of the Society hypothesis about its role in disease. screening, including the development for Laboratory Automation and Screening, This interest has been catalysed in part of induced pluripotent stem (iPS) cell have sustained discussion around PDD and by an influential analysis by Swinney and technologies4, gene-editing tools such its value for the pharmaceutical industry. Anthony in 2011 that highlighted the strong as CRISPR–Cas5, organoids and imaging This article also aims to capture the spirit contribution of PDD to the discovery of assay technologies. Such tools have enabled of these recent meetings by focusing on first-in-class drugs1. PDD has since been the development of novel cell-based disease the state of the art in PDD, sharing lessons cited by various authors as a potential models that promise to more realistically learned, and carefully examining the solution to the perceived poor productivity recapitulate human disease biology. opportunities and challenges for PDD. NATURE REVIEWS | DRUG DISCOVERY VOLUME 16 | AUGUST 2017 | 531 ©2017 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. PERSPECTIVES We first highlight core concepts in PDD understanding to a mechanistically defined Rare monogenic diseases can also provide and introduce the concept of a chain of effect on a pathway or a biomarker to drug, an opportunity to establish PDD projects translatability for PDD screens, and then and then to a therapeutic effect. with a strong chain of translatability18,19, discuss strategic considerations and as knowledge of the mutation that causes operational aspects for PDD projects, Chain of translatability. The fundamental the disease can be used as the basis for the including library development, hit triage, determinant of the potential success of a development of disease models that are compound optimization and safety PDD effort is the ability of the screening suitable for PDD. For example, pioneering assessments. assay to predict the clinical therapeutic genome-wide expression analysis in patients response to a drug with a specific mechanism with recessive dystrophic epidermolysis Core concepts in PDD of action. This was described by Scannell bullosa (RDEB), a rare disease that is Defining PDD. Drugs typically act by and Bosley as the “predictive validity” of characterized by fragile skin due to mutations engaging a molecular target; however, a discovery model2. Here, we propose the in the COL7A1 gene, showed that the a priori knowledge of that target is term chain of translatability to describe differential expression of genes associated not essential. In the case of PDD, a the presence of a shared mechanistic basis with the transforming growth factor-β ‘physiologically relevant’ biological for the disease model, the assay readout (TGFβ) pathway was responsible for system or cellular signalling pathway is and the biology of the disease in humans, differences in the clinical manifestation of directly interrogated by chemical matter as a framework for developing phenotypic the disease. Based on these results, and the to identify biologically active compounds. screening assays with a greater likelihood of knowledge that the approved angiotensin This target-agnostic approach is the having strong predictive validity. II receptor antagonist losartan attenuates underlying attribute that differentiates PDD projects in the area of infectious both canonical and non-canonical TGFβ PDD from hypothesis-driven TDD10. These disease (seeking antibiotics12, antivirals13 signalling, Nyström et al.20 demonstrated target-agnostic and empirical aspects of and anti-parasitic agents14) often have that long-term losartan treatment of PDD are consistent with its description a strong chain of translatability. Indeed, a COL7A1‑mutant RDEB mice efficiently and usage by scientists in academia and typical PDD assay readout — inhibiting the reduced TGFβ signalling in chronically industry. Use of a uniform definition for replication of bacteria, viruses or parasites injured forepaws and alleviated hallmarks PDD helps to illuminate the impact of PDD on plates — can strongly correspond of RDEB progression. It is possible that on modern drug discovery1,6, and underlines not only to anti-infective activity in a differential phenotypic screen using the importance and impact of empirical in vivo preclinical models, but also to the wild-type and COL7A1‑deficient fibroblasts drug discovery approaches in an era that pharmacodynamic (PD) and the therapeutic could identify compounds that modulate or is dominated by strategies that are based effects sought in patients. For example, that prevent RDEB disease progression to a on molecular target hypotheses1. Although the anti-hepatitis C virus (HCV) drug greater extent than losartan. As in the case primarily an approach for small-molecule daclatasvir was discovered phenotypically of antibacterial and anti-parasitic drugs, discovery, PDD has also contributed to using human cells engineered to express the the chain of translatability for monogenic antibody drug discovery (see the excellent HCV replicon corresponding to a number diseases may extend
Recommended publications
  • Computational Approaches for Drug Design and Discovery: an Overview
    Review Article Computational Approaches for Drug Design and Discovery: An Overview Baldi A College of Pharmacy, Dr. Shri R.M.S. Institute of Science & Technology, Bhanpura, Dist. Mandsaur (M.P.), India ARTICLE INFO ABSTRACT Article history: The process of drug discovery is very complex and requires an interdisciplinary effort to design Received 12 July 2009 effective and commercially feasible drugs. The objective of drug design is to find a chemical Accepted 21 July 2009 compound that can fit to a specific cavity on a protein target both geometrically and chemically. Available online 04 February 2010 After passing the animal tests and human clinical trials, this compound becomes a drug available Keywords: to patients. The conventional drug design methods include random screening of chemicals Computer-aided drug design found in nature or synthesized in laboratories. The problems with this method are long design Combinatorial chemistry cycle and high cost. Modern approach including structure-based drug design with the help Drug of informatic technologies and computational methods has speeded up the drug discovery Structure-based drug deign process in an efficient manner. Remarkable progress has been made during the past five years in almost all the areas concerned with drug design and discovery. An improved generation of softwares with easy operation and superior computational tools to generate chemically stable and worthy compounds with refinement capability has been developed. These tools can tap into cheminformation to shorten the cycle of drug discovery, and thus make drug discovery more cost-effective. A complete overview of drug discovery process with comparison of conventional approaches of drug discovery is discussed here.
    [Show full text]
  • Medicinal Chemistry for Drug Discovery | Charles River
    Summary Medicinal chemistry is an integral part of bringing a drug through development. Our medicinal chemistry approach enables clients to benefit from efficient navigation of the early drug discovery process through to delivery of preclinical candidates. DISCOVERY Click to learn more Medicinal Chemistry for Drug Discovery Medicinal Chemistry A Proven Track Record in Drug Discovery Services: Our medicinal chemistry team has experience in progressing small molecule drug discovery programs across a broad range • Target identification of therapeutic areas and gene families. Our scientists are skilled in the design and synthesis of novel pharmacologically active - Capture Compound® mass compounds and understand the challenges facing modern drug discovery. Together, they are cited as inventors on over spectrometry (CCMS) 350 patents and have identified 80 preclinical candidates for client organizations across a variety of therapeutic areas. As • Hit-finding strategies project leaders, our chemists are fundamental in driving the program strategy and have consistently empowered our clients’ - Optimizing high-throughput success. A high proportion of candidates regularly progress to the clinic, and our first co-invented drug, Belinostat, received screening (HTS) hits marketing approval in 2015. As an organization, Charles River has worked on 85% of the therapies approved in 2018. • Hit-to-lead We have a deep understanding of the factors that drive medicinal chemistry design: structure-activity relationship (SAR), • Lead optimization biology, physical chemistry, drug metabolism and pharmacokinetics (DMPK), pharmacokinetic/pharmacodynamic (PK/PD) • Patent strategy modelling, and in vivo efficacy. Charles River scientists are skilled in structure-based and ligand-based design approaches • Preparation for IND filing utilizing our in-house computer-aided drug design (CADD) expertise.
    [Show full text]
  • Overcoming the Immunosuppressive Tumor Microenvironment in Multiple Myeloma
    cancers Review Overcoming the Immunosuppressive Tumor Microenvironment in Multiple Myeloma Fatih M. Uckun 1,2,3 1 Norris Comprehensive Cancer Center and Childrens Center for Cancer and Blood Diseases, University of Southern California Keck School of Medicine (USC KSOM), Los Angeles, CA 90027, USA; [email protected] 2 Department of Developmental Therapeutics, Immunology, and Integrative Medicine, Drug Discovery Institute, Ares Pharmaceuticals, St. Paul, MN 55110, USA 3 Reven Pharmaceuticals, Translational Oncology Program, Golden, CO 80401, USA Simple Summary: This article provides a comprehensive review of new and emerging treatment strategies against multiple myeloma that employ precision medicines and/or drugs capable of improving the ability of the immune system to prevent or slow down the progression of multiple myeloma. These rationally designed new treatment methods have the potential to change the therapeutic landscape in multiple myeloma and improve the long-term survival outcome. Abstract: SeverFigurel cellular elements of the bone marrow (BM) microenvironment in multiple myeloma (MM) patients contribute to the immune evasion, proliferation, and drug resistance of MM cells, including myeloid-derived suppressor cells (MDSCs), tumor-associated M2-like, “alter- natively activated” macrophages, CD38+ regulatory B-cells (Bregs), and regulatory T-cells (Tregs). These immunosuppressive elements in bidirectional and multi-directional crosstalk with each other inhibit both memory and cytotoxic effector T-cell populations as well as natural killer (NK) cells. Immunomodulatory imide drugs (IMiDs), protease inhibitors (PI), monoclonal antibodies (MoAb), Citation: Uckun, F.M. Overcoming the Immunosuppressive Tumor adoptive T-cell/NK cell therapy, and inhibitors of anti-apoptotic signaling pathways have emerged as Microenvironment in Multiple promising therapeutic platforms that can be employed in various combinations as part of a rationally Myeloma.
    [Show full text]
  • Drug Discovery - Yesterday and Tomorrow: the Common Approaches in Drug Design and Cancer
    Cell & Cellular Life Sciences Journal Drug Discovery - Yesterday and Tomorrow: The Common Approaches in Drug Design and Cancer 1,2 1 3 Hamad ON *, Amran SIB and Sabbah AM Mini Review 1Faculty of Bioscience & Medical Engineering, Malaysia Volume 3 Issue 1 2University of Wasit, College of Medicine, Iraq Received Date: February 27, 2018 3Forensic DNA for research and training Centre, Al Nahrain University, Iraq Published Date: April 03, 2018 *Corresponding author: Oras Naji Hamad, Faculty of Bioscience & Medical Engineering, University of Technology, Malaysia, Tel: 01121715960; E-mail: [email protected] Abstract The process of drug discovery has undergone radical changes and development over years. Traditionally, the drugs were discovered by employing chemistry and pharmacology-based cautious approach. When natural products were the most important source of drugs or drug precursors, but the conventional randomized drug research phenomenon was no longer effective at that time due to many negatives of these approaches like: high expenses of discovering new drugs, time-consuming and reduced success guarantee. Thus, with the development of the era, the concept of “Rational Drug Design” has enabled drug target identification and validation to be more specific. In addition, several novel technologies and approaches have been introducing economics, proteomics and other omics areas such as 3D QSAR, pharmacophore modeling and other, which playing a promising role in accelerating the pace of drug discovery process. Their view of the current
    [Show full text]
  • The Impact of Early ADME Profiling on Drug Discovery and Development Strategy
    ADME Profiling The impact of early ADME profiling on drug discovery and development strategy The increased costs in the discovery and development of new drugs, due in part to the high attrition rate of drug candidates in development, has led to a new strategy to introduce early, parallel evaluation of efficacy and biopharmaceutical properties of drug candidates. Investigation of terminated projects revealed that the primary cause for drug failure in the development phase was the poor pharmacokinetic and ADMET (Absorption, Distribution, Metabolism, Discretion and Toxicity) properties rather than unsatisfactory efficacy. In addition, the applications of parallel synthesis and combinatory chemistry to expedite lead finding and lead optimisation processes has shifted the chemical libraries towards poorer biopharmaceutical properties. Establishments of high throughput and fast ADMET profiling assays allow for the prioritisation of leads or drug candidates by their biopharmaceutical properties in parallel with optimisation of their efficacy at early discovery phases.This is expected to not only improve the overall quality of drug candidates and therefore the probability of their success, but also shorten the drug discovery and development process. In this article, we review the early ADME profiling approach, their timing in relation to the entire drug discovery and development process and the latest technologies of the selected assays will be reviewed. iscovery and development of a new drug is a lead finding/selection process, which in general takes By Dr Jianling Wang long, labour-demanding process. Recent a minimum of two more years. Typically, the whole and Dr Laszlo Urban Dstudies1 revealed that the average time to process is fragmented into ‘Discovery’, ‘Development’ discover, develop and approve a new drug in the and ‘Registration’ phases.
    [Show full text]
  • Setting Fair Prices for Life-Saving Drugs by Bruce A
    Virtual Mentor American Medical Association Journal of Ethics January 2007, Volume 9, Number 1: 38-43. Policy forum Setting fair prices for life-saving drugs by Bruce A. Chabner, MD, and Thomas G. Roberts Jr., MD, MSocSci Cancer drugs are big business. Worldwide sales are projected to reach $25 billion in 2006 and to increase to almost $50 billion by 2010 [1]. This represents a startling growth in a segment of the drug industry once shunned by major pharmaceutical manufacturers as too high-risk and unprofitable. While a few drug companies, notably Bristol-Myers Squibb (BMS) and Pharmatalia, made significant profits on cancer drugs between 1970 and 1990 when the first effective combination therapies came into common practice, the turning point in this industrial segment occurred in 1992 with the approval of Bristol-Myers Squibb’s paclitaxel, which became a multibillion-dollar-per-year product by 1998. To understand our current concerns with cancer drug costs and their potential effect on medical care financing and access, one needs to be familiar with the paclitaxel experience. The story of paclitaxel’s discovery and commercial development reflects both the lack of interest that industry had in cancer drugs at that time and the sudden emergence of drug cost as a social justice issue. In 1964 Monroe Wall and associates, working at the Research Triangle Institute under a National Cancer Institute (NCI) contract, isolated the active compound in paclitaxel from the bark of the common yew tree [2]. Its tortuous development, complicated by difficulties in material procurement, compound purification and formulation, delayed its entry into clinical trials until 1983, and its efficacy in treating ovarian cancer was not demonstrated until 1987 [3].
    [Show full text]
  • Current Screening Methodologies in Drug Discovery for Selected Human Diseases
    marine drugs Review Current Screening Methodologies in Drug Discovery for Selected Human Diseases Olga Maria Lage 1,2,*, María C. Ramos 3, Rita Calisto 1,2, Eduarda Almeida 1,2, Vitor Vasconcelos 1,2 ID and Francisca Vicente 3 1 Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/nº 4169-007 Porto, Portugal; [email protected] (R.C.); [email protected] (E.A.); [email protected] (V.V.) 2 CIIMAR/CIMAR–Centro Interdisciplinar de Investigação Marinha e Ambiental–Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal 3 Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain; [email protected] (M.C.R.); [email protected] (F.V.) * Correspondence: [email protected]; Tel.: +351-22-0402724; Fax.: +351-22-0402799 Received: 7 August 2018; Accepted: 11 August 2018; Published: 14 August 2018 Abstract: The increase of many deadly diseases like infections by multidrug-resistant bacteria implies re-inventing the wheel on drug discovery. A better comprehension of the metabolisms and regulation of diseases, the increase in knowledge based on the study of disease-born microorganisms’ genomes, the development of more representative disease models and improvement of techniques, technologies, and computation applied to biology are advances that will foster drug discovery in upcoming years. In this paper, several aspects of current methodologies for drug discovery of antibacterial and antifungals, anti-tropical diseases, antibiofilm and antiquorum sensing, anticancer and neuroprotectors are considered.
    [Show full text]
  • Incentivizing the Utilization of Pharmacogenomics in Drug Development Valerie Gutmann Koch
    Journal of Health Care Law and Policy Volume 15 | Issue 2 Article 3 Incentivizing the Utilization of Pharmacogenomics in Drug Development Valerie Gutmann Koch Follow this and additional works at: http://digitalcommons.law.umaryland.edu/jhclp Part of the Chemicals and Drugs Commons, and the Health Law Commons Recommended Citation Valerie G. Koch, Incentivizing the Utilization of Pharmacogenomics in Drug Development, 15 J. Health Care L. & Pol'y 263 (2012). Available at: http://digitalcommons.law.umaryland.edu/jhclp/vol15/iss2/3 This Article is brought to you for free and open access by DigitalCommons@UM Carey Law. It has been accepted for inclusion in Journal of Health Care Law and Policy by an authorized administrator of DigitalCommons@UM Carey Law. For more information, please contact [email protected]. INCENTIVIZING THE UTILIZATION OF PHARMACOGENOMICS IN DRUG DEVELOPMENT VALERIE GUTMANN KOCH* I. INTRODUCTION The last decades have witnessed remarkable advancements in the fields of genetics and genomics, highlighted by the successful completion of the map of the human genome in 2003.' With this achievement came scientific possibilities that, only a few decades earlier, seemed more science fiction than reality. Of these developments, pharmacogenomics is hailed by many as a panacea for problems associated with pharmaceutical drug use and development.2 The Human Genome Project (HGP) and associated research have demonstrated that all human beings share 99.9 percent of their DNA. 3 Pharmacogenomics focuses on the 0.1 percent differences between individuals and promises to allow physicians to tailor a patient's prescription according to his or her genetic profile, reducing painful and sometimes deadly side effects, ensuring appropriate dosage decisions, and targeting specific disease pathways.4 Copyright © 2012 by Valerie Gutmann Koch.
    [Show full text]
  • Computer Aided Drug Design: a Novel Loom to Drug Discovery
    Organic and Medicinal Chemistry International Journal ISSN 2474-7610 Review Article Organic & Medicinal Chem IJ Volume 1 Issue 4 - February 2017 Copyright © All rights are reserved by Syed Sarim Imam DOI: 10.19080/OMCIJ.2017.01.555567 Computer Aided Drug Design: A Novel Loom To Drug Discovery Syed Sarim Imam and Sadaf Jamal Gilani* Department of Pharmaceutics, Glocal School of Pharmacy, The Glocal University, Saharanpur, U.P, India Department of Pharmaceutical Chemistry, Glocal School of Pharmacy, The Glocal University, Saharanpur, U.P, India Submission: February 15, 2017; Published: February 20, 2017 *Corresponding author: Dr. Sadaf Jamal Gilani, Associate Professor, Department of Pharmaceutical Chemistry, Glocal School of Pharmacy, The Glocal University, Saharanpur-247121, Uttar Pradesh, India, Tel: ; Email: Abstract Computer-Aided Drug Design (CADD) is a growing effort to apply computational power to the combined chemical and biological space in order to streamline drug discovery design, development, and optimization. This technique of drug discovery and development are very time and resources consuming processes. But this tool can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. This application has been widely used in the biomedical arena, in silico design is being utilized Here in this mini review, we present overviews of computational methods used in the different arena of drug discovery and focusing some of theto expedite recent successes. and facilitate hit identification, hit-to-lead selection, optimize the pharmacokinetic profile, toxicity profile and avoid safety issues. Keywords: Computer-aided drug design (CADD); In-silico design; Computational methods Introduction b.
    [Show full text]
  • Pharmacogenomic-Guided Drug Development LJ Lesko and J Woodcock 21
    The Pharmacogenomics Journal (2002) 2, 20–24 2002 Nature Publishing Group All rights reserved 1470-269X/02 $25.00 www.nature.com/tpj EELS (Ethical, Economic, Legal & Social) ARTICLE response, caused by genetic differ- Pharmacogenomic-guided drug ences. The ability to predict and account for such differences could development: regulatory perspective markedly improve the therapeutic index of many drug interventions. LJ Lesko1 and J Woodcock2 Finally, it is hoped that genetically- based mechanisms of toxicity can be 1Office of Clinical Pharmacology and Biopharmaceutics, Center for Drug Evaluation and elucidated, and adverse effects avoided, Research, Food and Drug Administration, Rockville, MD, USA; 2Office of the Center by application of pharmacogenomic Director, Center for Drug Evaluation and Research, Food and Drug Administration, information. Rockville, MD, USA The explosion of interest in PGt and PGx has raised concerns that the regu- latory environment could inhibit pro- The Pharmacogenomics Journal (2002) 2, mechanism of drug actions, and the gress. While drug discovery and pre- 20–24. DOI: 10.1038/sj/tpj/ 6500046 drug–disease interaction. Taken clinical studies are not likely to be together, these techniques are significantly affected, there is concern Pharmacogenetics (PGt) and now the expected to yield major advances in about the use of PGt/PGx in clinical more global term, pharmacogenomics identifying drug candidates. trials. This article provides an overall (PGx), have come to the forefront after Genomic information will be regulatory perspective on the clinical an evolutionary period of more than increasingly used in the preclinical study issues and considerations, many 30 years. Several transforming events phases of drug development.
    [Show full text]
  • Topic 7 Drug Discovery and Design Pt. 1
    Topic 7 Drug Discovery and design Pt. 1 Chapter 9 Patrick Contents Part 1: Sections 9.1-9.3 1. Target disease 2. Drug Targets 3. Testing Drugs 3.1. In vivo Tests 3.2. In vitro Tests 3.2.1. Enzyme Inhibition Tests 3.2.2. Testing with Receptors DRUG DESIGN AND DEVELOPMENT Stages 1) Identify target disease 2) Identify drug target 3) Establish testing procedures 4) Find a lead compound 5) Structure Activity Relationships (SAR) 6) Identify a pharmacophore 7) Drug design- optimising target interactions 8) Drug design - optimising pharmacokinetic properties 9) Toxicological and safety tests 10) Chemical development and production 11) Patenting and regulatory affairs 12) Clinical trials 1. TARGET DISEASE Priority for the Pharmaceutical Industry • Can the profits from marketing a new drug outweigh the cost of developing and testing that drug? Questions to be addressed • Is the disease widespread? (e.g. cardiovascular disease, ulcers, malaria) • Does the disease affect the first world? (e.g. cardiovascular disease, ulcers) • Are there drugs already on the market? • If so, what are there advantages and disadvantages? (e.g. side effects) • Can one identify a market advantage for a new therapy? 2. DRUG TARGETS-Remember? A) LIPIDS Cell Membrane Lipids B) PROTEINS Receptors Enzymes Carrier Proteins Structural Proteins (tubulin) C) NUCLEIC ACIDS DNA RNA D) CARBOHYDRATES Cell surface carbohydrates Antigens and recognition molecules 2. DRUG TARGETS TARGET SELECTIVITY Between species • Antibacterial and antiviral agents • Identify targets which are unique to the invading pathogen • Identify targets which are shared but which are significantly different in structure Within the body • Selectivity between different enzymes, receptors etc.
    [Show full text]
  • An Emerging Strategy for Rapid Target and Drug Discovery
    R E V I E W S CHEMOGENOMICS: AN EMERGING STRATEGY FOR RAPID TARGET AND DRUG DISCOVERY Markus Bredel*‡ and Edgar Jacoby§ Chemogenomics is an emerging discipline that combines the latest tools of genomics and chemistry and applies them to target and drug discovery. Its strength lies in eliminating the bottleneck that currently occurs in target identification by measuring the broad, conditional effects of chemical libraries on whole biological systems or by screening large chemical libraries quickly and efficiently against selected targets. The hope is that chemogenomics will concurrently identify and validate therapeutic targets and detect drug candidates to rapidly and effectively generate new treatments for many human diseases. Over the past five decades, pharmacological compounds however, that owing to the emergence of various sub- TRANSCRIPTIONAL PROFILING The study of the transcriptome have been identified that collectively target the products specialties of chemogenomics (discussed in the next — the complete set of RNA of ~400–500 genes in the human body; however, only section) and the involvement of several disciplines, it is transcripts that are produced by ~120 of these genes have reached the market as the tar- currently almost impossible to give a simple and com- the genome at any one time — gets of drugs1,2. The Human Genome Project3,4 has mon definition for this research discipline (BOX 1). using high-throughput methods, such as microarray made available many potential new targets for drug In chemogenomics-based drug discovery, large col- analysis. intervention: several thousand of the approximately lections of chemical products are screened for the paral- 30,000–40,000 estimated human genes4 could be associ- lel identification of biological targets and biologically ated with disease and, similarly, several thousand active compounds.
    [Show full text]