(Cestoda: Pseudophyllidea). Harry L

Total Page:16

File Type:pdf, Size:1020Kb

(Cestoda: Pseudophyllidea). Harry L Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1969 Immunological Studies on the Genus Spirometra (Cestoda: Pseudophyllidea). Harry L. Henson Jr Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Henson, Harry L. Jr, "Immunological Studies on the Genus Spirometra (Cestoda: Pseudophyllidea)." (1969). LSU Historical Dissertations and Theses. 1662. https://digitalcommons.lsu.edu/gradschool_disstheses/1662 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 70-9062 HENSON, Jr., Harry L., 1931- IMMUNOLOGICAL STUDIES ON THE GENUS SPIROMETRA (CESTODA.'PSEUDOPHYLLIDEA). The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1969 Zoology University Microfilms, Inc., Ann Arbor, Michigan IMMUNOLOGICAL STUDIES ON THE GENUS SPIROMETRA (CESTODA: PSEUDOPHYLLIDEA) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Zoology and Physiology by Harry L. Henson, Jr. B.S., Southeastern Louisiana College, 1956 M.Ed., Louisiana State University, 1960 M.S., Louisiana State University, 1966 August, 1969 ACKNOWLEDGMENT The author wishes to express his sincere gratitude to Dr. Kenneth C. Corkum for his interest, guidance and suggestions during the work leading to and preparation of this manuscript. A special thanks is extended to his wife, Gerry, and sons for their understanding, patience and encouragement throughout the course of study. TABLE OF CONTENTS Page ACKNOWLEDGMENT.......................................... ii LIST OF TABLES................................... iv LIST OF FIGURES........................................ vi LIST OF PLATES..................... vii ABSTRACT................... viii INTRODUCTION............................... 1 Acquired Immunity ................................ 5 In Vitro Action of Immune Serum on the Life Stages of Helminths........................... 16 Changes in Serum Proteins........................ 19 Antigens.......................................... 22 Diagnostic Tests for Helminth Infections......... 26 MATERIALS AND METHODS.................................. 31 RESULTS................................................ 39 Electrophoresis.............................. 41 Passive Immunization. ...................... 45 Gel Diffusion ........ .................... 47 Intradermal Test. ............ 48 EXPLANATION OF PLATES........................ 74 DISCUSSION AND CONCLUSIONS.............................. 77 Electrophoretic Studies .......................... 78 Gel Diffusion 83 Passive Immunization.......................... 86 Intradermal Tests ........ ................ 87 SUMMARY................................................ 88 LITERATURE CITED........................................ 90 VITA......................... 114 iii LIST OF TABLES Table Page I. Absolute values for protein fractions in sera from control mice (gms/100 ml)................ 49 II. Electrophoretic analysis of sera from control. mice (relative concentrations in percent). 50 III. Electrophoretic analysis of sera from mice infected with the plerocercoids of Spirometra mansoni (relative concentrations in per cent) .... 51 IV. Absolute values for protein fractions in sera from mice infected with plerocercoids of Spirometra mansoni (gms/100 m l ) ..................... 52 V. Electrophoretic analysis of sera from mice infected with the plerocercoids of Spirometra urichi (relative concentrations in per cent)..... 53 VI. Absolute values for protein fractions in sera from mice infected with plerocercoids of Spirometra urichi (gms/100 ml) . 54 VII. Electrophoretic analysis of sera from mice infected with the plerocercoids of Spirometra mansonoides "A" (relative concentrations in per c e n t ) ................................ 55 VIII. Absolute values for protein fractions in sera from mice infected with plerocercoids of Spirometra mansonoides "A" (gms/100 ml) ....... 56 IX. Electrophoretic analysis of sera from mice infected with the plerocercoids of Spirometra mansonoides "B" (relative concentrations in per c ent).......................................... 57 X. Absolute values for protein fractions in sera from mice infected with plerocercoids of Spirometra mansonoides "B" (gms/100 m l ) ............ 58 XI. Absolute values for protein fractions in sera from sham injected rabbits (gms/100 ml) ............ 59 XII. Electrophoretic analysis of sera from sham injected rabbits (concentrations in per cent) .... 60 iv LIST OF TABLES (continued) Table Page XIII. Absolute values for protein fractions in sera from rabbits immunized against Spirometra mansoni (gms/100 m l ) .......... 61 XIV. Electrophoretic analysis of sera from rabbits immunized against Spirometra mansoni (concentration in per cent)........................ 62 XV. Absolute values for protein fractions in sera from rabbits immunized against Spirometra urichi (gms/100 ml)................................ 63 XVI. Electrophoretic analysis of sera from rabbits immunized against Spirometra urichi (concentrations in per c e n t ) ...................... 64 XVII. Absolute values for protein fractions in sera from rabbits immunized against Spirometra mansonoides "A” (gms/100 m l ) ............ 65 XVIII. Electrophoretic analysis of sera from rabbits immunized against Spirometra mansonoides "A” (concentrations in per c e n t ) ...................... 66 XIX. Absolute values for protein fractions in sera from rabbits immunized against Spirometra mansonoides "B" (gms/100 m l ) ................ 67 XX. Electrophoretic analysis of sera from rabbits immunized against Spirometra mansonoides "B" (concentrations in per cent) ........... 68 v LIST OF FIGURES Figure Page 1 Pattern of changes In serum proteins In control mice.............................. 69 2 Pattern of changes In serum proteins In mice experimentally infected with the plerocercoids of Spirometra ma n s o n i.......................... 70 3 Pattern of changes in serum proteins in mice experimentally infected with the plerocercoids of Spirometra urichi................ 71 4 Pattern of changes in serum proteins in mice experimentally infected with the plerocercoids of Spirometra mansonoides "A" .................. 72 5 Pattern of changes in serum proteins in mice experimentally infected with the plerocercoids of Spirometra mansonoides "B" .......... 73 6 Average of changes in serum protein fractions in mice experimentally infected with the plerocercoids of Spirometra mansoni, j>. urichi and S. mansonoides "A" and "B".......... 89 vi LIST OF ELATES Plate Page I. Double gel diffusion of sera from mice experimentally infected with the plerocercoids of Spirometra.................... 75 II. Double gel diffusion of sera from rabbits passively immunized against the plerocercoids of Spirometra.................................... 76 vii ABSTRACT Total serum proteins were determined, electrophoresis and double gel diffusion were performed on the sera from animals infected with the plerocercoids or passively immunized with larval antigen from Spirometra mansoni, jS. urichi and £S. mansonoides "A" and "B". Serum samples from mice were taken at three, 12 and 24 hours post infection and at four day intervals thereafter for a period of 12 weeks. Sera from these groups analyzed by electrophoresis exhibited decreased serum albumin concentrations and generally increases in the alpha, beta and gamma globulins. Rabbits passively immunized against the plerocercoids of these species exhibited little change in the total proteins after immuniza­ tion. Changes in the protein fractions were expressed as slight decreases in albumin and a corresponding increase in the gamma globulins. Precipitin bands were demonstrable by double gel diffusion in sera from all groups of mice infected with the plerocercoids of the three species of worms. Sera from rabbits passively immunized against the three species formed a maximum of three precipitin bands in agar gel six weeks post immunization. Intradermal tests in mice passively immunized against Spirometra mansoni and S. urichi gave widely variable results. Reactions obtained with injection of larval antigens indicate the presence of delayed hypersensitivity. viii INTRODUCTION Faust, et al. (1929) divided the genus Diphyllobothrium Cobbold, 1858, into two subgenera, Diphyllobothrium and Spirometra, based on uterine configuration and the shape of the eggs. Diphyllobothrium was to include those species with the outer uterine coils forming a. rosette and eggs with rounded ends. The subgenus Spirometra was to include those species with the outer uterine coils spiralled and eggs with pointed ends. Mueller (1937) elevated Spirometra to generic rank and further suggested the establishment of two other genera, subsequently named Dibothriocephalus and Cordicephalus by Wardle, et al. (1947). The cirrus, vagina and uterus open separately in Spirometra, whereas, the other two genera have common cirro-vaginal atria and separate pores. As further evidence for separation, Mueller (1937) noted
Recommended publications
  • Conservation and Diversification of Small RNA Pathways Within Flatworms Santiago Fontenla1, Gabriel Rinaldi2, Pablo Smircich1,3 and Jose F
    Fontenla et al. BMC Evolutionary Biology (2017) 17:215 DOI 10.1186/s12862-017-1061-5 RESEARCH ARTICLE Open Access Conservation and diversification of small RNA pathways within flatworms Santiago Fontenla1, Gabriel Rinaldi2, Pablo Smircich1,3 and Jose F. Tort1* Abstract Background: Small non-coding RNAs, including miRNAs, and gene silencing mediated by RNA interference have been described in free-living and parasitic lineages of flatworms, but only few key factors of the small RNA pathways have been exhaustively investigated in a limited number of species. The availability of flatworm draft genomes and predicted proteomes allowed us to perform an extended survey of the genes involved in small non-coding RNA pathways in this phylum. Results: Overall, findings show that the small non-coding RNA pathways are conserved in all the analyzed flatworm linages; however notable peculiarities were identified. While Piwi genes are amplified in free-living worms they are completely absent in all parasitic species. Remarkably all flatworms share a specific Argonaute family (FL-Ago) that has been independently amplified in different lineages. Other key factors such as Dicer are also duplicated, with Dicer-2 showing structural differences between trematodes, cestodes and free-living flatworms. Similarly, a very divergent GW182 Argonaute interacting protein was identified in all flatworm linages. Contrasting to this, genes involved in the amplification of the RNAi interfering signal were detected only in the ancestral free living species Macrostomum lignano. We here described all the putative small RNA pathways present in both free living and parasitic flatworm lineages. Conclusion: These findings highlight innovations specifically evolved in platyhelminths presumably associated with novel mechanisms of gene expression regulation mediated by small RNA pathways that differ to what has been classically described in model organisms.
    [Show full text]
  • Coinfection of Schistosoma (Trematoda) with Bacteria, Protozoa and Helminths
    CHAPTER 1 Coinfection of Schistosoma (Trematoda) with Bacteria, Protozoa and Helminths ,† ‡ Amy Abruzzi* and Bernard Fried Contents 1.1. Introduction 3 1.2. Coinfection of Species of Schistosoma and Plasmodium 4 1.2.1. Animal studies 21 1.2.2. Human studies 23 1.3. Coinfection of Schistosoma Species with Protozoans other than in the Genus Plasmodium 24 1.3.1. Leishmania 32 1.3.2. Toxoplasma 32 1.3.3. Entamoeba 34 1.3.4. Trypanosoma 35 1.4. Coinfection of Schistosoma Species with Salmonella 36 1.4.1. Animal studies 36 1.4.2. Human studies 42 1.5. Coinfection of Schistosoma Species with Bacteria other than Salmonella 43 1.5.1. Mycobacterium 43 1.5.2. Helicobacter pylori 49 1.5.3. Staphylococcus aureus 50 1.6. Coinfection of Schistosoma and Fasciola Species 50 1.6.1. Animal studies 57 1.6.2. Human studies 58 * Skillman Library, Lafayette College, Easton, Pennsylvania, USA { Epidemiology, University of Medicine and Dentistry of New Jersey (UMDNJ), Piscataway, New Jersey, USA { Department of Biology, Lafayette College, Easton, Pennsylvania, USA Advances in Parasitology, Volume 77 # 2011 Elsevier Ltd. ISSN 0065-308X, DOI: 10.1016/B978-0-12-391429-3.00005-8 All rights reserved. 1 2 Amy Abruzzi and Bernard Fried 1.7. Coinfection of Schistosoma Species and Helminths other than the Genus Fasciola 59 1.7.1. Echinostoma 59 1.7.2. Hookworm 70 1.7.3. Trichuris 70 1.7.4. Ascaris 71 1.7.5. Strongyloides and Trichostrongyloides 72 1.7.6. Filarids 73 1.8. Concluding Remarks 74 References 75 Abstract This review examines coinfection of selected species of Schisto- soma with bacteria, protozoa and helminths and focuses on the effects of the coinfection on the hosts.
    [Show full text]
  • Helminth Parasites (Trematoda, Cestoda, Nematoda, Acanthocephala) of Herpetofauna from Southeastern Oklahoma: New Host and Geographic Records
    125 Helminth Parasites (Trematoda, Cestoda, Nematoda, Acanthocephala) of Herpetofauna from Southeastern Oklahoma: New Host and Geographic Records Chris T. McAllister Science and Mathematics Division, Eastern Oklahoma State College, Idabel, OK 74745 Charles R. Bursey Department of Biology, Pennsylvania State University-Shenango, Sharon, PA 16146 Matthew B. Connior Life Sciences, Northwest Arkansas Community College, Bentonville, AR 72712 Abstract: Between May 2013 and September 2015, two amphibian and eight reptilian species/ subspecies were collected from Atoka (n = 1) and McCurtain (n = 31) counties, Oklahoma, and examined for helminth parasites. Twelve helminths, including a monogenean, six digeneans, a cestode, three nematodes and two acanthocephalans was found to be infecting these hosts. We document nine new host and three new distributional records for these helminths. Although we provide new records, additional surveys are needed for some of the 257 species of amphibians and reptiles of the state, particularly those in the western and panhandle regions who remain to be examined for helminths. ©2015 Oklahoma Academy of Science Introduction Methods In the last two decades, several papers from Between May 2013 and September 2015, our laboratories have appeared in the literature 11 Sequoyah slimy salamander (Plethodon that has helped increase our knowledge of sequoyah), nine Blanchard’s cricket frog the helminth parasites of Oklahoma’s diverse (Acris blanchardii), two eastern cooter herpetofauna (McAllister and Bursey 2004, (Pseudemys concinna concinna), two common 2007, 2012; McAllister et al. 1995, 2002, snapping turtle (Chelydra serpentina), two 2005, 2010, 2011, 2013, 2014a, b, c; Bonett Mississippi mud turtle (Kinosternon subrubrum et al. 2011). However, there still remains a hippocrepis), two western cottonmouth lack of information on helminths of some of (Agkistrodon piscivorus leucostoma), one the 257 species of amphibians and reptiles southern black racer (Coluber constrictor of the state (Sievert and Sievert 2011).
    [Show full text]
  • Broad Tapeworms (Diphyllobothriidae)
    IJP: Parasites and Wildlife 9 (2019) 359–369 Contents lists available at ScienceDirect IJP: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Broad tapeworms (Diphyllobothriidae), parasites of wildlife and humans: T Recent progress and future challenges ∗ Tomáš Scholza, ,1, Roman Kuchtaa,1, Jan Brabeca,b a Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic b Natural History Museum of Geneva, PO Box 6434, CH-1211, Geneva 6, Switzerland ABSTRACT Tapeworms of the family Diphyllobothriidae, commonly known as broad tapeworms, are predominantly large-bodied parasites of wildlife capable of infecting humans as their natural or accidental host. Diphyllobothriosis caused by adults of the genera Dibothriocephalus, Adenocephalus and Diphyllobothrium is usually not a life-threatening disease. Sparganosis, in contrast, is caused by larvae (plerocercoids) of species of Spirometra and can have serious health consequences, exceptionally leading to host's death in the case of generalised sparganosis caused by ‘Sparganum proliferum’. While most of the definitive wildlife hosts of broad tapeworms are recruited from marine and terrestrial mammal taxa (mainly carnivores and cetaceans), only a few diphyllobothriideans mature in fish-eating birds. In this review, we provide an overview the recent progress in our understanding of the diversity, phylogenetic relationships and distribution of broad tapeworms achieved over the last decade and outline the prospects of future research. The multigene family-wide phylogeny of the order published in 2017 allowed to propose an updated classi- fication of the group, including new generic assignment of the most important causative agents of human diphyllobothriosis, i.e., Dibothriocephalus latus and D.
    [Show full text]
  • Hymenolepis Nana Is a Ubiquitous Parasite, Found Throughout Many Developing and Developed Countries
    Characterisation of Community-Derived Hymenolepis Infections in Australia Marion G. Macnish BSc. (Medical Science) Hons Division of Veterinary and Biomedical Sciences Murdoch University Western Australia This thesis is presented for the degree of Doctor of Philosophy of Murdoch University 2001 I declare that this thesis is my own account of my research and contains as its main work which has not been submitted for a degree at any other educational institution. ………………………………………………. (Marion G. Macnish) Characterisation of Community-Derived Hymenolepis Infections in Australia ii Abstract Hymenolepis nana is a ubiquitous parasite, found throughout many developing and developed countries. Globally, the prevalence of H. nana is alarmingly high, with estimates of up to 75 million people infected. In Australia, the rates of infection have increased substantially in the last decade, from less than 20% in the early 1990’s to 55 - 60% in these same communities today. Our knowledge of the epidemiology of infection of H. nana is hampered by the confusion surrounding the host specificity and taxonomy of this parasite. The suggestion of the existence of two separate species, Hymenolepis nana von Siebold 1852 and Hymenolepis fraterna Stiles 1906, was first proposed at the beginning of the 20th century. Despite ongoing discussions in the subsequent years it remained unclear, some 90 years later, whether there were two distinct species, that are highly host specific, or whether they were simply the same species present in both rodent and human hosts. The ongoing controversy surrounding the taxonomy of H. nana has not yet been resolved and remains a point of difference between the taxonomic and medical literature.
    [Show full text]
  • Waterborne Zoonotic Helminthiases Suwannee Nithiuthaia,*, Malinee T
    Veterinary Parasitology 126 (2004) 167–193 www.elsevier.com/locate/vetpar Review Waterborne zoonotic helminthiases Suwannee Nithiuthaia,*, Malinee T. Anantaphrutib, Jitra Waikagulb, Alvin Gajadharc aDepartment of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Patumwan, Bangkok 10330, Thailand bDepartment of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Bangkok 10400, Thailand cCentre for Animal Parasitology, Canadian Food Inspection Agency, Saskatoon Laboratory, Saskatoon, Sask., Canada S7N 2R3 Abstract This review deals with waterborne zoonotic helminths, many of which are opportunistic parasites spreading directly from animals to man or man to animals through water that is either ingested or that contains forms capable of skin penetration. Disease severity ranges from being rapidly fatal to low- grade chronic infections that may be asymptomatic for many years. The most significant zoonotic waterborne helminthic diseases are either snail-mediated, copepod-mediated or transmitted by faecal-contaminated water. Snail-mediated helminthiases described here are caused by digenetic trematodes that undergo complex life cycles involving various species of aquatic snails. These diseases include schistosomiasis, cercarial dermatitis, fascioliasis and fasciolopsiasis. The primary copepod-mediated helminthiases are sparganosis, gnathostomiasis and dracunculiasis, and the major faecal-contaminated water helminthiases are cysticercosis, hydatid disease and larva migrans. Generally, only parasites whose infective stages can be transmitted directly by water are discussed in this article. Although many do not require a water environment in which to complete their life cycle, their infective stages can certainly be distributed and acquired directly through water. Transmission via the external environment is necessary for many helminth parasites, with water and faecal contamination being important considerations.
    [Show full text]
  • Spirometra Decipiens (Cestoda: Diphyllobothriidae) Collected in a Heavily Infected Stray Cat from the Republic of Korea
    ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 56, No. 1: 87-91, February 2018 ▣ BRIEF COMMUNICATION https://doi.org/10.3347/kjp.2018.56.1.87 Spirometra decipiens (Cestoda: Diphyllobothriidae) Collected in A Heavily Infected Stray Cat from the Republic of Korea Hyeong-Kyu Jeon†, Hansol Park†, Dongmin Lee, Seongjun Choe, Keeseon S. Eom* Department of Parasitology, Medical Research Institute and Parasite Resource Bank, Chungbuk National University School of Medicine, Cheongju 28644, Korea Abstract: Morphological and molecular characteristics of spirometrid tapeworms, Spirometra decipiens, were studied, which were recovered from a heavily infected stray cat road-killed in Eumseong-gun, Chungcheongbuk-do (Province), the Republic of Korea (= Korea). A total of 134 scolices and many broken immature and mature proglottids of Spirometra tapeworms were collected from the small intestine of the cat. Morphological observations were based on 116 specimens. The scolex was 22.8-32.6 mm (27.4 mm in average) in length and small spoon-shape with 2 distinct bothria. The uterus was coiled 3-4 times, the end of the uterus was ball-shaped, and the vaginal aperture shaped as a crescent moon was closer to the cirrus aperture than to the uterine aperture. PCR amplification and direct sequencing of the cox1 target frag- ment (377 bp in length and corresponding to positions 769-1,146 bp of the cox1 gene) were performed using total ge- nomic DNA extracted from 134 specimens. The cox1 sequences (377 bp) of the specimens showed 99.0% similarity to the reference sequence of S. decipiens and 89.3% similarity to the reference sequence of S.
    [Show full text]
  • Endemicity of Opisthorchis Viverrini Liver Flukes, Vietnam, 2011–2012
    LETTERS Endemicity of for species identification of Opisthor- A total of 4 fish species were in- chis fluke metacercariae 7( ). fected with O. viverrini metacercariae Opisthorchis Fish were collected from Tuy (online Technical Appendix Table 1, viverrini Liver Hoa City and from the districts of Hoa wwwnc.cdc.gov/EID/article/20/1/13- Flukes, Vietnam, Xuan Dong, Tuy An, and Song Hinh; 0168-Techapp1.pdf). Metacercariae these 3 districts are areas of large prevalence was highest (28.1%) 2011–2012 aquaculture production of freshwater among crucian carp (Carasius aura- To the Editor: Fishborne zoo- fish. Fresh fish from ponds, rice fields, tus). Specific identification was con- notic trematodes are highly prevalent rivers, and swamps were purchased at firmed by morphologic appearance of in many Asian communities (1,2). Al- local markets from April 2011 through adult worms recovered from hamsters though presence of the liver flukeClo - March 2012. The fish sellers provided (Figure) and PCR and sequence anal- norchis sinensis is well documented information about the source of the ysis of the partial metacercarial CO1 in Vietnam (3), evidence of the pres- fish (e.g., type of water body). Fish gene, amplified by CO1-OV-Hap- ence of the more common liver fluke were transported live with mechani- F&R primers (7). Infected fish origi- of Southeast Asia, Opisthorchis viver- cal aeration to the Research Institute nated predominantly from so-called rini, is only circumstantial. Surveys of for Aquaculture No. 3 in Nha Trang, wild water (i.e., swamps, rice fields, human fecal samples have frequently where they were examined for meta- rivers).
    [Show full text]
  • Literature: Speothos Venaticus Compiled by the Amazonian Canids Working Group – 01/2021
    Literature: Speothos venaticus Compiled by the Amazonian Canids Working Group – 01/2021 Aguirre LF, Tarifa T, Wallace RB, Bernal N, Siles L, Aliaga-Rossel E & Salazar-Bravo J. 2019. Lista actualizada y comentada de los mamíferos de Bolivia. Ecología en Bolivia 54(2):107-147. Álvarez-Solas S, Ramis L & Peñuela MC. 2020. Highest bush dog (Speothos venaticus) record for Ecuador with a potential association to a palm tree (Socratea rostrata). Studies on Neotropical Fauna and Environment. DOI: 10.1080/01650521.2020.1809973 Alverson WS, Rodriguez LO, & Moskovits DK (Editors). 2001. Peru: Biabo Cardillera Azul. Rapid Biological Inventories. The Field Museum, Chicago, USA. Anderson A. 1997. Mammals of Bolivia, taxonomy and distribution. Bulletin American Museum of Natural History 231:1-652. Aquino R & Puertas P. 1996. Observaciones preliminares sobre la ecological de Speothos venaticus (Canidae: Carnivore) en su habitat natural. Folia Amazonica 8:133-145. Aquino R & Puertas P. 1997. Observations of Speothos venaticus (Canidae: Carnivora) in its natural habitat in Peruvian Amazonia. Zeitschrift für Säugetierkunde 62:117-118. Arispe R & Rumiz DI. 2002. Una estimación del uso de los recursos silvestres en la zona del Bosque Chiquitano, Cerrado y Pantanal de Santa Cruz. Revista Boliviana de Ecología y Conservación Ambiental 11:17-29 Arispe R, Rumiz D. & Venegas C. 2007. Censo de jaguares (Panthera onca) y otros mamíferos con trampas cámara en la Concesión Forestal El Encanto. Informe Técnico 173. Wildlife Conservation Society. Santa Cruz, Bolivia. 39pp. Aya-Cuero CA, Mosquera-Guerra F, Esquivel DA, Trujillo F, & Brooks D. 2019. Medium and large mammals of the mid Planas River basin, Colombia.
    [Show full text]
  • The Helminthological Society of Washinqton I
    . Volume 46 1979 Number 2 PROCEEDINGS The Helminthological Society %Hi.-s'^ k •''"v-'.'."'/..^Vi-":W-• — • '.'V ' ;>~>: vf-; • ' ' / '••-!' . • '.' -V- o<•' fA • WashinQto" , ' •- V ' ,• -. " ' <- < 'y' : n I •;.T'''-;«-''•••.'/ v''.•'••/••'; •;•-.-•• : ' . -•" 3 •/"-:•-:•-• ..,!>.>>, • >; A semiannual: journal Jof research devoted to Helminthology and a// branches of Paras/fo/ogy ,I ^Supported in part by<the / ^ ^ ;>"' JBrayton H. Ransom^Memorial TrustJiund /^ v ''•',''•'•- '-- ^ I/ •'/"! '' " '''-'• ' • '' * ' •/ -"."'• Subscription $i;iB.OO a Volume; foreign, $1 ?1QO /' rv 'I, > ->\ ., W./JR. Polypocephalus sp. (CeModa; Lecanieephalidae): ADescrip- / ^xtion, of .Tentaculo-PJerocercoids .'from Bay Scallops of the Northeastern Gulf ( ,:. ••-,' X)f Mexico^-— u-':..-., ____ :-i>-.— /— ,-v-— -— ;---- ^i--l-L4^,- _____ —.—.;—— -.u <165 r CAREER, GEORGE^ J.^ANDKENNETI^: C, CORKUM. 'Life jpycle (Studies of Three Di- .:•';' genetic; Trpmatodes, Including /Descriptions of Two New' Species (Digenea: ' r vCryptpgonirnidae) ,^.: _____ --—cr? ..... ______ v-^---^---<lw--t->-7----^--'r-- ___ ~Lf. \8 . ; HAXHA WAY, RONALD P, The Morphology of Crystalline Inclusions in, Primary Qo: ^ - r ',{••' cylesfafiAspidogaJter conchicola von Baer,;1827((Trematoda: A^pidobpthria)— : ' 201 HAYUNGA, EUGENE ,G. (The Structure and Function of the GlaJids1! of .. Three .Carypphyllid T;ape\y,orms_Jr-_-_.--_--.r-_t_:_.l..r ____ ^._ ______ ^..—.^— —....: rJ7l ' KAYT0N , ROBERT J . , PELANE C. I^RITSKY, AND RICHARD C. TbaiAS. Rhabdochona /• ;A ; ycfitostomi sp. n. (Nematoifja: Rhaibdochonidae)"from the-Intestine of Catdstomusi ' 'i -<•'• ' spp.XGatostpmjdae)— ^ilL.^—:-;..-L_y— 1..:^^-_— -L.iv'-- ___ -—- ?~~ -~—:- — -^— '— -,--- X '--224- -: /McLoUGHON, D. K. AND M:JB. CHUTE: \ tenellq.in Chickens:, Resistance to y a Mixture .of Suifadimethoxine and'Ormetpprim (Rofenaid) ,___ _ ... .. ......... ^...j.. , 265 , M, C.-AND RV A;. KHAN. Taxonomy, Biology, and Occurrence of Some " Manhe>Lee^ches in 'Newfoundland Waters-i-^-\---il.^ , R.
    [Show full text]
  • Blood Coagulation and Haemostasis: a Review*
    BLOOD COAGULATION AND HAEMOSTASIS: A REVIEW* E. M. RODF_~QUE,M.D. AND J. E. WYNANDS, M.D., C.IVI.~ FnOM THE V~Y F_~aLY STUVmS of this subject, many controversies existed regard- ing the various factors and mechanisms involved in the dotting process. One simply has to review the current literature and note the complex, often variable terminology, and the differing opinions of several workers in this field to realize that many of the former controversies are still present. However, many facts have been firmly established. This review will deal primarily with these facts and will mention the disputed points only when they appear pertinent to a better under- standing of the problems of controlling haemorrhage. Various factors are involved in the haemostatic process; the established ones include (1) the extravascular tissues; (2) the vasculature itself, the size and type of vessel being important; (3) the number of functioning platelets, and (4) the plasma coagulation system,x,2 THE ErmAVASCtrLABTISSUES While the extravaseular tissues do not play a major role in the control of bleeding, yet "their integrity and/or the variations in the resistance they offer to escaping blood may determine the bleeding response of a particular part of the body after injury. The "black eye' is a well-known example."2 In other situations in which there is easy bruisability, as in the aged, in poor nutrition, in some women, and in disease states such as the Ehlers-Danlos syndrome, it is likely that poor extravascular support is a deciding or contributing factor. 2 THE V~CULATVBE Previous to the more advanced and tested knowledge of today, abnormal vascular function was implicated as the basic pathogenetic factor in a variety of bleeding disorders.
    [Show full text]
  • Cestóides Pseudophyllidea Parasitos De Congro-Rosa, Genypterus
    28 http://dx.doi.org/10.4322/rbcv.2014.192 Cestóides Pseudophyllidea parasitos de congro-rosa, Genypterus brasiliensis Regan, 1903 comercializados no estado do Rio de Janeiro, Brasil Pseudophyllidea cestodes parasitic in cusk-eel, Genypterus brasiliensis Regan, 1903 purchased in the Rio de Janeiro state, Brazil Marcelo Knoff,* Sérgio Carmona de São Clemente,** Caroline Del Giudice de Andrada,*** Francisco Carlos de Lima,** Rodrigo do Espírito Santo Padovani,**** Michelle Cristie Gonçalves da Fonseca,* Renata Carolina Frota Neves,* Delir Corrêa Gomes* Resumo Entre outubro de 2002 e setembro de 2003 foram adquiridos 74 espécimes de Genypterus brasiliensis comercializados nos mercados dos municípios de Niterói e Rio de Janeiro. Estes foram necropsiados, filetados e seus órgãos analisados. Dos 74 espécimes analisados, 18 (24,3%) estavam parasitados por plerocercóides pertencentes ao gênero Diphyllobothrium Cobbold, 1858 na cavidade abdominal, serosa do intestino, intestino e musculatura, onde a intensidade média de infecção foi de 1,66 parasitos por peixe, a amplitude de variação da intensidade de infecção variou de um a sete e a abundância média foi de 0,40. Este é o primeiro registro de plerocercóides de Diphyllobothrium sp. em peixes teleósteos no Brasil. Palavras-chave: Diphyllobothrium sp., Genypterus brasiliensis, Brasil. Abstract Between October 2002 and September 2003 were collected 74 specimens of Genypterus brasiliensis purchased in the Niterói and Rio de Janeiro municipalities. Those were necropsied, fileted and their organs analyzed. From 74 specimens analyzed, 18 (24,3%) were parasitized by plerocercoids of Diphyllobothrium Cobbold, 1858 on the cavity abdominal, intestine serose, intestine and musculature, where the mean intensity of infection was 1,66 parasites per fish, the range was one to seven and mean abundance was 0,40.
    [Show full text]