Anthelmintics for Drug Repurposing: Opportunities and Challenges ⇑ ⇑ Seyed Ebrahim Alavi , Hasan Ebrahimi Shahmabadi

Total Page:16

File Type:pdf, Size:1020Kb

Anthelmintics for Drug Repurposing: Opportunities and Challenges ⇑ ⇑ Seyed Ebrahim Alavi , Hasan Ebrahimi Shahmabadi Saudi Pharmaceutical Journal 29 (2021) 434–445 Contents lists available at ScienceDirect Saudi Pharmaceutical Journal journal homepage: www.sciencedirect.com Review Anthelmintics for drug repurposing: Opportunities and challenges ⇑ ⇑ Seyed Ebrahim Alavi , Hasan Ebrahimi Shahmabadi Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran article info abstract Article history: Drug repositioning is defined as a process to identify a new application for drugs. This approach is critical Received 19 February 2021 as it takes advantage of well-known pharmacokinetics, pharmacodynamics, and toxicity profiles of the Accepted 3 April 2021 drugs; thus, the chance of their future failure decreases, and the cost of their development and the Available online 16 April 2021 required time for their approval are reduced. Anthelmintics, which are antiparasitic drugs, have recently demonstrated promising anticancer effects in vitro and in vivo. This literature review focuses on the Keywords: potential of anthelmintics for repositioning in the treatment of cancers. It also discusses their pharma- Anthelmintics cokinetics and pharmacodynamics as antiparasitic drugs, proposed anticancer mechanisms, present Antiparasitic development conditions, challenges in cancer therapy, and strategies to overcome these challenges. Cancer Ó Drug repositioning 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access Solubility article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Contents 1. Introduction . ...................................................................................................... 435 2. Physicochemical properties of anthelmintics . ................................................................ 435 2.1. Pharmacokinetics and pharmacodynamic . ......................................................................... 435 2.1.1. Metabolism and excretion . .............................................................................. 436 3. Efficacy and spectra of activity of anthelmintics . ................................................................ 436 3.1. Benzimidazoles and pro-benzimidazoles . ......................................................................... 436 3.2. Imidazothiazoles and tetrahydropyrimidines ......................................................................... 437 3.3. Macrocyclic lactones . ......................................................................................... 437 4. Mode of action as anti-cancer agents . ................................................................................... 437 4.1. Anthelmintics under clinical trials . ......................................................................... 437 4.1.1. Albendazole. .............................................................................. 437 4.1.2. Ivermectin .............................................................................................. 437 4.1.3. Levamisole . .............................................................................. 438 4.1.4. Mebendazole. .............................................................................. 439 4.1.5. Niclosamide . .............................................................................. 439 4.2. Anthelmintics with promising anti-cancer effects . ...................................................... 439 4.2.1. Flubendazole. .............................................................................. 439 4.2.2. Rafoxanide . .............................................................................. 439 4.2.3. Nitazoxanide . .............................................................................. 439 4.2.4. Praziquantel . .............................................................................. 440 ⇑ Corresponding authors. E-mail addresses: [email protected] (S.E. Alavi), [email protected] (H. Ebrahimi Shahmabadi). Peer review under responsibility of King Saud University. Production and hosting by Elsevier https://doi.org/10.1016/j.jsps.2021.04.004 1319-0164/Ó 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Seyed Ebrahim Alavi and H. Ebrahimi Shahmabadi Saudi Pharmaceutical Journal 29 (2021) 434–445 4.2.5. Pyrvinium pamoate . .............................................................................. 440 4.2.6. Piperazine .............................................................................................. 440 4.2.7. Eprinomectin. .............................................................................. 440 5. Challenges with anthelmintics in cancer therapy . ................................................................ 440 6. Strategies to overcome these challenges . ................................................................ 441 6.1. Nanoparticles for improving the solubility of anthelmintics . ...................................................... 441 6.2. Pro-drug formulations. ......................................................................................... 441 6.3. Production of solid dispersions . ......................................................................... 441 7. Conclusion and future perspectives . ................................................................................... 443 Funding . ...................................................................................................... 443 Declaration of Competing Interest . ................................................................................... 443 References . ...................................................................................................... 443 1. Introduction more than 270 drugs are being assessed for their potential anti- tumor activity (Armando et al., 2020), and from these, approxi- Cancer, with rapidly increasing incidence (18.1 million new mately 57% have demonstrated anti-tumor effects in human clin- cases and annual incidence of 3–5%, 2018) and mortality (9.6 mil- ical trials (Xue, Li, Xie, & Wang, 2018). One of the important lion patients, 2018), is one of the most critical health issues groups of drugs, which have demonstrated anti-tumor activity, throughout the world (Hassankhani, Rahmani, Taleghani, Sanaat, is anthelmintic agents. & Dehghannezhad, 2020; J. Zhang et al., 2019). Many efforts have Anthelmintics are a series of compounds, demonstrating anti- been made to develop anti-cancer agents, and various lead candi- infectious activity against helminths, which settle in the human dates have been developed at preclinical and clinical stages; how- intestine (Laudisi et al., 2020). These therapeutics were initially ever, only 5% of compounds that enter phase I clinical trials receive developed for the treatment of veterinary parasites and have sub- the end approval (Kato et al., 2015). sequently been used for patients, suffering from helminthiasis. Generally, to develop a novel anti-neoplastic agent, various Anthelmintics have a variety of chemical entities and function natural-based compounds derived from microorganisms, animals, through changing the parasite (worm) metabolism or paralyzing and plants are evaluated by a variety of pharmacological and bio- the parasite, in which the parasite can be eliminated by the host chemical analyses, that often continue with the whole chemical immune system (Laudisi et al., 2020; Rajagopal et al., 2019). It synthesis or modification of determined individual compounds has been demonstrated that some of the anthelmintics are able (Cˇánˇová, Rozkydalová, & Rudolf, 2017). Further, this process of to inhibit critical oncogenic pathways, such as Wnt/b-catenin, sig- drug development has been complemented by screening the nal transducer and activator of transcription proteins 3 (STAT3), assays of libraries of all recognized and determined compounds and nuclear factor kappa-light-chain-enhancer of activated B cells to select the potentially appropriate candidates for further (NF-jB) (Laudisi et al., 2020); therefore, their application for cancer assessment. However, these strategies are associated with several treatment has been considered. difficulties, such as financial burden, laboriousness, and longer This literature review provides an overview of the updated duration for drug development (Cˇánˇová et al., 2017). Currently, information about anthelmintics with anti-cancer activity and the development of a new drug takes 10–15 years, and the success their possible use as anti-cancer agents (i.e., repositioned drugs). rate is negligible (approximately 2%). As the cost of clinical trials These anthelmintics are characterized, in terms of their i) struc- has recently increased, the number of new drugs, approved by tural analysis, ii) tumor type-specific effects, iii) mode of action, Food and Drug Administration (FDA) has been decreased (Laudisi, and iv) up to date data about the clinical trials. It also discusses Marônek, Di Grazia, Monteleone, & Stolfi, 2020; Scannell, the challenges for their applications as anti-cancer agents, such Blanckley, Boldon, & Warrington, 2012). Between 2004 and 2012, as low water solubility and low bioavailability, and strategies to on average 2–3 billion US dollars were spent for a pharmaceutical overcome these challenges, such as nanocarrier-based formula- clinical trial, and considering the inflation, this value would be tions,
Recommended publications
  • Anthelmintic Pyrvinium Pamoate Blocks Wnt/Β-Catenin and Induces Apoptosis in Multiple Myeloma Cells
    ONCOLOGY LETTERS 15: 5871-5878, 2018 Anthelmintic pyrvinium pamoate blocks Wnt/β-catenin and induces apoptosis in multiple myeloma cells FANG XU1, YINGJIE ZHU1, YUHONG LU2, ZHI YU2, JUN ZHONG2, YANGQIU LI2 and JINGXUAN PAN1 1Jinan University Institute of Tumor Pharmacology, College of Pharmacy; 2Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, P.R. China Received December 28, 2016; Accepted December 21, 2017 DOI: 10.3892/ol.2018.8006 Abstract. Multiple myeloma (MM) is a malignancy of the microenvironment components, such as bone marrow bone marrow. The median survival time of patients with stromal cells (4-6). MM is only 5 years, with patients frequently experiencing Although the introduction of thalidomide, lenalidomide relapse. Currently, there is no effective therapy for recurrent and bortezomib into the clinic has markedly improved MM. The results of the present study indicated that pyrvinium the response rates and survival in patients with MM (7), pamoate (PP), a US Food and Drug Administration-approved the disease remains largely incurable owing to relapse and oral anthelmintic drug, exhibited potent antitumor activity in drug resistance (8,9). Identifying novel agents to overcome MM cells in vitro. It is demonstrated that PP inhibited MM the adverse effects of current therapies remains an important cell proliferation and mediated apoptosis. Notably, PP mark- task in the clinic. edly promoted the degradation of β-catenin and abrogated The abnormal activation of the Wnt/β-catenin pathway its phosphorylation. PP triggered apoptosis in MM cells by in multiple types of cancer, including lymphomas and MM, inducing the release of cytochrome c and downregulating the makes it an attractive therapeutic target (10,11).
    [Show full text]
  • USP Reference Standards Catalog
    Last Updated On: January 6, 2016 USP Reference Standards Catalog Catalog # Description Current Lot Previous Lot CAS # NDC # Unit Price Special Restriction 1000408 Abacavir Sulfate R028L0 F1L487 (12/16) 188062-50-2 $222.00 (200 mg) 1000419 Abacavir Sulfate F0G248 188062-50-2 $692.00 Racemic (20 mg) (4-[2-amino-6-(cyclo propylamino)-9H-pur in-9yl]-2-cyclopenten e-1-methanol sulfate (2:1)) 1000420 Abacavir Related F1L311 F0H284 (10/13) 124752-25-6 $692.00 Compound A (20 mg) ([4-(2,6-diamino-9H- purin-9-yl)cyclopent- 2-enyl]methanol) 1000437 Abacavir Related F0M143 N/A $692.00 Compound D (20 mg) (N6-Cyclopropyl-9-{( 1R,4S)-4-[(2,5-diami no-6-chlorpyrimidin- 4-yloxy)methyl] cyclopent-2-enyl}-9H -purine-2,6-diamine) 1000441 Abacavir Related F1L318 F0H283 (10/13) N/A $692.00 Compound B (20 mg) ([4-(2,5-diamino-6-c Page 1 Last Updated On: January 6, 2016 USP Reference Standards Catalog Catalog # Description Current Lot Previous Lot CAS # NDC # Unit Price Special Restriction hloropyrimidin-4-yla mino)cyclopent-2-en yl]methanol) 1000452 Abacavir Related F1L322 F0H285 (09/13) 172015-79-1 $692.00 Compound C (20 mg) ([(1S,4R)-4-(2-amino -6-chloro-9H-purin-9 -yl)cyclopent-2-enyl] methanol hydrochloride) 1000485 Abacavir Related R039P0 F0J094 (11/16) N/A $692.00 Compounds Mixture (15 mg) 1000496 Abacavir F0J102 N/A $692.00 Stereoisomers Mixture (15 mg) 1000500 Abacavir System F0J097 N/A $692.00 Suitability Mixture (15 mg) 1000521 Acarbose (200 mg) F0M160 56180-94-0 $222.00 (COLD SHIPMENT REQUIRED) 1000532 Acarbose System F0L204 N/A $692.00 Suitability
    [Show full text]
  • Comparative Genomics of the Major Parasitic Worms
    Comparative genomics of the major parasitic worms International Helminth Genomes Consortium Supplementary Information Introduction ............................................................................................................................... 4 Contributions from Consortium members ..................................................................................... 5 Methods .................................................................................................................................... 6 1 Sample collection and preparation ................................................................................................................. 6 2.1 Data production, Wellcome Trust Sanger Institute (WTSI) ........................................................................ 12 DNA template preparation and sequencing................................................................................................. 12 Genome assembly ........................................................................................................................................ 13 Assembly QC ................................................................................................................................................. 14 Gene prediction ............................................................................................................................................ 15 Contamination screening ............................................................................................................................
    [Show full text]
  • Lääkealan Turvallisuus- Ja Kehittämiskeskuksen Päätös
    Lääkealan turvallisuus- ja kehittämiskeskuksen päätös N:o xxxx lääkeluettelosta Annettu Helsingissä xx päivänä maaliskuuta 2016 ————— Lääkealan turvallisuus- ja kehittämiskeskus on 10 päivänä huhtikuuta 1987 annetun lääke- lain (395/1987) 83 §:n nojalla päättänyt vahvistaa seuraavan lääkeluettelon: 1 § Lääkeaineet ovat valmisteessa suolamuodossa Luettelon tarkoitus teknisen käsiteltävyyden vuoksi. Lääkeaine ja sen suolamuoto ovat biologisesti samanarvoisia. Tämä päätös sisältää luettelon Suomessa lääk- Liitteen 1 A aineet ovat lääkeaineanalogeja ja keellisessä käytössä olevista aineista ja rohdoksis- prohormoneja. Kaikki liitteen 1 A aineet rinnaste- ta. Lääkeluettelo laaditaan ottaen huomioon lää- taan aina vaikutuksen perusteella ainoastaan lää- kelain 3 ja 5 §:n säännökset. kemääräyksellä toimitettaviin lääkkeisiin. Lääkkeellä tarkoitetaan valmistetta tai ainetta, jonka tarkoituksena on sisäisesti tai ulkoisesti 2 § käytettynä parantaa, lievittää tai ehkäistä sairautta Lääkkeitä ovat tai sen oireita ihmisessä tai eläimessä. Lääkkeeksi 1) tämän päätöksen liitteessä 1 luetellut aineet, katsotaan myös sisäisesti tai ulkoisesti käytettävä niiden suolat ja esterit; aine tai aineiden yhdistelmä, jota voidaan käyttää 2) rikoslain 44 luvun 16 §:n 1 momentissa tar- ihmisen tai eläimen elintoimintojen palauttami- koitetuista dopingaineista annetussa valtioneuvos- seksi, korjaamiseksi tai muuttamiseksi farmako- ton asetuksessa kulloinkin luetellut dopingaineet; logisen, immunologisen tai metabolisen vaikutuk- ja sen avulla taikka terveydentilan
    [Show full text]
  • Studies on Endemic Hookworm: 2. Comparison of the Efficacy of Anthelmintics in Taiwan and Liberia
    CJap. J. Parasit., Vol. 19, No. 5, 523-536, 1970] Studies on endemic hookworm: 2. Comparison of the efficacy of anthelmintics in Taiwan and Liberia Hsien-Chen HSIEH Department of Parasitology, Kaohsiung Medical College, Taiwan Republic of China (Received for publication ; August 18, 1970) Along with development of vaccination and Octylchloresorcinol (70 parts) and Octylreso- improvement of sanitation, searches for safe, rcinol (30 parts)] by Yamasaki et al. (1954). effective and cheap anti-hookworm drugs Since 1959, in Taiwan, the author and his have remained an important part of research co-wrorkers have evaluated the anthelmintic on endemic hookworm. activity of l-bromo-2-naphthol (Hsieh et al., Following experimental work by Perroncito 1960 a; Hsieh & Chen, 1965), piperazine (1879-1880) and clinical trials by Bozzolo & compounds (Brown et al., 1959 ; Hsieh et al., Pagliani (1880) in Italy, thymol, a phenolic 1961c, 1965), tetrachlorethylene (Hsieh et al., compound obtained from the aromatic oils 1960 a; Brown et al., 1959; Hsieh et al., of Thymus vulgaris, was found to be useful 1961c; Hsieh & Chen, 1965), bephenium against hookworm. It wras, however, unplea hydroxynaphthoate (Hsieh, 1959 ; Hsieh et sant to take and rather toxic. As indicated al., 1960b, 1961 be; Hsieh & Chen, 1965), in the Bibliography of Hookworm Disease stilbazium iodide (Hsieh et al., 1963 a), tri- published by the Rockefeller Foundation in chlorophenol piperazine (Hsieh et al., 1963 b), 1922 and the Bibliography of Hookworm thiabendazole (Hsieh, 1963) and phenylene- Disease (Ancylostomiasis) published by the diisothiocyanate (Hsieh et al., 1970), dithia- World Health Organization in 1965, the zanine iodide (Brown et al., 1959), ascaridol therapeutic efficacy of more than 50 drugs (Brown et al., 1959), and pyrvinium pamoate against hookworm had been tested by 1962.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0164864 A1 Soll Et Al
    US 2015O164864A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0164864 A1 Soll et al. (43) Pub. Date: Jun. 18, 2015 (54) PARASITICIDAL ORAL VETERINARY Publication Classification COMPOSITIONS COMPRISING SYSTEMICALLY-ACTING ACTIVE AGENTS, (51) Int. Cl. METHODS AND USES THEREOF A613 L/42 (2006.01) A63/94 (2006.01) (71) Applicant: MERIAL LIMITED, DULUTH, GA A619/00 (2006.01) (US) (52) U.S. Cl. CPC ............... A61K 31/42 (2013.01); A61 K9/0056 (72) Inventors: Mark David Soll, Alpharetta, GA (US); (2013.01); A61 K31/194 (2013.01) Diane Larsen, Buford, GA (US); Susan Mancini Cady, Yardley, PA (US); Peter (57) ABSTRACT Cheifetz, East Windsor, NJ (US); This invention relates to veterinary compositions for treating Izabela Galeska, Newtown, PA (US) and/or preventing fleas or ticks infection or infestation in an animal comprising an isoxazoline active agent of Formula (73) Assignee: MERIAL LIMITED, DULUTH, GA (II): (US) (21) Appl. No.: 14/627,499 C O-N O (22) Filed: Feb. 20, 2015 FC Related U.S. Application Data C (62) Division of application No. 13/754.969, filed on Jan. C CH3 31, 2013. (60) Provisional application No. 61/595,463, filed on Feb. or a pharmaceutically acceptable salt thereof, and a pharma 6, 2012. ceutically acceptable carrier. Patent Application Publication Jun. 18, 2015 Sheet 1 of 3 US 2015/O164864 A1 ( ;............................................................................................................. 8. &S 8( ;...............................:8.............................................................. ason::::ti: 8. is 8-8- xx 88):&:38: xx 3:3:::::s s $ 40 to w. x3 &::::::: : 8:y:::::: 2 : { ir anim:::::8: -xx 8::::::s w8w 3 88; its 88:::::::s Figure 2.
    [Show full text]
  • Systematic Review of Exposure to Albendazole Or Mebendazole
    International Journal for Parasitology 49 (2019) 541–554 Contents lists available at ScienceDirect International Journal for Parasitology journal homepage: www.elsevier.com/locate/ijpara Systematic review of exposure to albendazole or mebendazole during pregnancy and effects on maternal and child outcomes, with particular reference to exposure in the first trimester ⇑ Theresa W. Gyorkos a,b,c, , Kariane St-Denis a,b a Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3S5, Canada b Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec H3A 1A2, Canada c WHO Collaborating Centre for Research and Training in Parasite Epidemiology and Control, Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec H3A 1A2, Canada article info abstract Article history: Soil-transmitted helminth infections cause an important burden of morbidity worldwide, primarily from Received 3 January 2019 blood loss and malabsorption of nutrients. Where STH endemicity 20%, the World Health Organization Received in revised form 8 February 2019 (WHO) recommends preventive chemotherapy with single dose anthelminthic drugs: albendazole or Accepted 12 February 2019 mebendazole. Although WHO recommends that women of reproductive age, including pregnant women Available online 6 May 2019 after the first trimester, be included in large-scale deworming programs, there are concerns related to the use of anthelminthic drugs during pregnancy, especially inadvertent use in the first few weeks when the Keywords: pregnancy may not yet be confirmed. We therefore conducted a systematic review using the MEDLINE Albendazole database with the aim of appraising all peer-reviewed evidence, published up to July 1, 2018, on the asso- Mebendazole Soil-transmitted helminths ciation between exposure to albendazole or mebendazole and outcomes in pregnant women, including Pregnancy those in the first trimester of pregnancy, and their children.
    [Show full text]
  • Reseptregisteret 2014–2018 the Norwegian Prescription Database 2014–2018
    LEGEMIDDELSTATISTIKK 2019:2 Reseptregisteret 2014–2018 The Norwegian Prescription Database 2014–2018 Reseptregisteret 2014–2018 The Norwegian Prescription Database 2014–2018 Christian Lie Berg Kristine Olsen Solveig Sakshaug Utgitt av Folkehelseinstituttet / Published by Norwegian Institute of Public Health Område for Helsedata og digitalisering Avdeling for Legemiddelstatistikk Juni 2019 Tittel/Title: Legemiddelstatistikk 2019:2 Reseptregisteret 2014–2018 / The Norwegian Prescription Database 2014–2018 Forfattere/Authors: Christian Berg, redaktør/editor Kristine Olsen Solveig Sakshaug Acknowledgement: Julie D. W. Johansen (English text) Bestilling/Order: Rapporten kan lastes ned som pdf på Folkehelseinstituttets nettsider: www.fhi.no / The report can be downloaded from www.fhi.no Grafisk design omslag: Fete Typer Ombrekking: Houston911 Kontaktinformasjon / Contact information: Folkehelseinstituttet / Norwegian Institute of Public Health Postboks 222 Skøyen N-0213 Oslo Tel: +47 21 07 70 00 ISSN: 1890-9647 ISBN: 978-82-8406-014-9 Sitering/Citation: Berg, C (red), Reseptregisteret 2014–2018 [The Norwegian Prescription Database 2014–2018] Legemiddelstatistikk 2019:2, Oslo, Norge: Folkehelseinstituttet, 2019. Tidligere utgaver / Previous editions: 2008: Reseptregisteret 2004–2007 / The Norwegian Prescription Database 2004–2007 2009: Legemiddelstatistikk 2009:2: Reseptregisteret 2004–2008 / The Norwegian Prescription Database 2004–2008 2010: Legemiddelstatistikk 2010:2: Reseptregisteret 2005–2009. Tema: Vanedannende legemidler / The Norwegian
    [Show full text]
  • Integrated Structure-Transcription Analysis of Small Molecules Reveals
    bioRxiv preprint doi: https://doi.org/10.1101/119990; this version posted March 23, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Integrated Structure-Transcription analysis of small molecules reveals 2 widespread noise in drug-induced transcriptional responses and a 3 transcriptional signature for drug-induced phospholipidosis. 4 Francesco Sirci1, Francesco Napolitano1,+, Sandra Pisonero-Vaquero1,+, Diego Carrella1, Diego L. 5 Medina* and Diego di Bernardo*1, 2 6 7 1 Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli 8 (NA), Italy 9 2 Department of Chemical, Materials and Industrial Production Engineering, University of Naples 10 Federico II, Piazzale Tecchio 80, 80125 Naples, Italy 11 + These authors contributed equally to this work. 12 *co-corresponding authors 13 14 Abstract 15 We performed an integrated analysis of drug chemical structures and drug-induced transcriptional 16 responses. We demonstrated that a network representing 3D structural similarities among 5,452 17 compounds can be used to automatically group together drugs with similar scaffolds and mode-of- 18 action. We then compared the structural network to a network representing transcriptional 19 similarities among a subset of 1,309 drugs for which transcriptional response were available in the 20 Connectivity Map dataset. Analysis of structurally similar, but transcriptionally different, drugs 21 sharing the same mode of action (MOA) enabled us to detect and remove weak and noisy 22 transcriptional responses, greatly enhancing the reliability and usefulness of transcription-based 23 approaches to drug discovery and drug repositioning.
    [Show full text]
  • Parasiticidal Oral Veterinary Compositions Comprising Systemically-Acting Active Agents, Methods and Uses Thereof
    (19) TZZ¥Z__T (11) EP 3 061 454 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 31.08.2016 Bulletin 2016/35 A61K 31/422 (2006.01) A61P 33/00 (2006.01) (21) Application number: 16163407.6 (22) Date of filing: 31.01.2013 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • SOLL, Mark, D. GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Alpharetta, GA Georgia 30005 (US) PL PT RO RS SE SI SK SM TR • LARSEN, Diane Designated Extension States: Buford, GA Georgia 30519 (US) BA ME • CADY, Susan, Mancini Yardley, PA Pennsylvania 19067 (US) (30) Priority: 06.02.2012 US 201261595463 P • CHEIFETZ, Peter East Windsor, NJ New Jersey 08520 (US) (62) Document number(s) of the earlier application(s) in • GALESKA, Izabela accordance with Art. 76 EPC: Newtown, PA Pennsylvania 18940 (US) 13703705.7 / 2 811 998 • GONG, Saijun Bridgewater, NJ New Jersey 08807 (US) (71) Applicant: Merial, Inc. Duluth, GA 30096 (US) (74) Representative: D Young & Co LLP 120 Holborn London EC1N 2DY (GB) (54) PARASITICIDAL ORAL VETERINARY COMPOSITIONS COMPRISING SYSTEMICALLY-ACTING ACTIVE AGENTS, METHODS AND USES THEREOF (57) This invention relates to oral veterinary compo- methods for eradicating, controlling, and preventing par- sitions for combating ectoparasites and endoparasites in asite infections and infestations in an animal comprising animals, comprising at least one systemically-acting ac- administering the compositions of the invention to the tive agent in combination with a pharmaceutically accept- animal in need thereof.
    [Show full text]
  • Drug Repurposing for the Treatment of Acute Myeloid Leukaemia with Adverse Prognosis
    PhD degree in Systems Medicine (curriculum in Molecular Oncology) European School of Molecular Medicine (SEMM), University of Milan and University of Naples “Federico II” Settore disciplinare: MED/04 Drug repurposing for the treatment of acute myeloid leukaemia with adverse prognosis Debora Valli IEO, Milan Matricola n. R11470 Supervisor: Prof. Pier Giuseppe Pelicci IEO, Milan Added Supervisor: Prof. Myriam Alcalay IEO, Milan Anno accademico 2018-2019 2 Table of contents List of abbreviations ............................................................................................................ 7 Figures index ...................................................................................................................... 13 Tables index ........................................................................................................................ 17 Abstract ............................................................................................................................... 19 1 Introduction ................................................................................................................ 21 1.1 Acute myeloid leukaemia (AML) ......................................................................... 21 1.1.1 Molecular landscape of AML ........................................................................ 21 1.1.2 FLT3- tyrosine kinase receptor in AML ........................................................ 23 1.1.3 Current treatments for AML .........................................................................
    [Show full text]
  • Table S1. Characteristics of Repurposed Drugs/Compounds for Control of Fungal Pathogens. 1 Compounds Original Functions Target F
    Table S1. Characteristics of repurposed drugs/compounds for control of fungal pathogens. 1 Repurposing methods; Compounds Original functions Target fungi References cellular processes affected A. IN SILICO, COMPUTATIONAL Computational chemogenomics; Vistusertib, Anti-neoplastic drug Paracoccidioides species fungal phosphatidylinositol 3-kinase [15] BGT-226 candidates (TOR2) Candida albicans, Candida glabrata, Candida tropicalis, Candida dubliniensis, Candida parapsilosis, Aspergillus fumigatus, Aspergillus flavus, Rhizopus oryzae, Rhizopus microspores, Rhizomucor pusillus, Computational, Docking fluvastatin Rhizomucor miehei, Mucor racemosus, with cytochrome P450 (CYP51) Fluvastatin Anti-high cholesterol & [18,19] Mucor mucedo, Mucor circinelloides, model; triglycerides (blood) Absidia corymbifera, Absidia glauca, inhibition of growth and biofilm Trichophyton mentagrophytes, formation Trichophyton rubrum, Microsporum canis, Microsporum gypseum, Paecilomyces variotii, Syncephalastrum racemosum, Pythium insidiosum Ligand-based virtual screening, C. albicans, C. parapsilosis, Plant chorismate mutase homology modelling, molecular [16] Abscisic acid Aspergillus niger, inhibitor docking; T. rubrum, Trichophyton mentagrophytes chorismate mutase Homology modeling and molecular docking; P. insidiosum, Candida species, putative aldehyde dehydrogenase Disulfiram Treatment of alcoholism Cryptococcus species, A. fumigatus, [17,22] and urease activities, Histoplasma capsulatum bind/inactivate multiple proteins of P. insidiosum Raltegravir (MDDR, In
    [Show full text]