The German Wind Technology Cluster Microeconomics of Competitiveness
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TOP 100 POWER PEOPLE 2016 the Movers and Shakers in Wind
2016 Top 100 Power People 1 TOP 100 POWER PEOPLE 2016 The movers and shakers in wind Featuring interviews with Samuel Leupold from Dong Energy and Ian Mays from RES Group © A Word About Wind, 2016 2016 Top 100 Power People Contents 2 CONTENTS Compiling the Top 100: Advisory panel and ranking process 4 Interview: Dong Energy’s Samuel Leupold discusses offshore 6 Top 100 breakdown: Statistics on this year’s table 11 Profiles: Numbers 100 to 41 13 Interview: A Word About Wind meets RES Group’s Ian Mays 21 Profiles: Numbers 40 to 6 26 Top five profiles:The most influential people in global wind 30 Top 100 list: The full Top 100 Power People for 2016 32 Next year: Key dates for your diary in 2017 34 21 Facing the future: Ian Mays on RES Group’s plans after his retirement © A Word About Wind, 2016 2016 Top 100 Power People Editorial 3 EDITORIAL resident Donald Trump. It is one of The company’s success in driving down the Pthe biggest shocks in US presidential costs of offshore wind over the last year history but, in 2017, Trump is set to be the owes a great debt to Leupold’s background new incumbent in the White House. working for ABB and other big firms. Turn to page 6 now if you want to read the The prospect of operating under a climate- whole interview. change-denying serial wind farm objector will not fill the US wind sector with much And second, we went to meet Ian Mays joy. -
A Review of International Experience with Policies to Promote Wind Power Industry Development
A Review of International Experience with Policies to Promote Wind Power Industry Development FINAL REPORT Prepared by: Joanna Lewis, Consultant to the Center for Resource Solutions Ryan Wiser, Consultant to the Center for Resource Solutions Prepared for: Energy Foundation China Sustainable Energy Program March 10, 2005 Table of Contents Executive Summary...................................................................................................................... 4 1. Introduction........................................................................................................................... 9 2. Strategies for Localization ................................................................................................. 11 2.1. Models for wind turbine manufacturing ........................................................................ 11 2.2. Models for technology acquisition: purchasing versus internal development............... 11 2.3. Incentives for technology transfers................................................................................ 12 2.4. Implications.................................................................................................................... 12 3. Potential Benefits of Localization...................................................................................... 14 3.1. Domestic economic development and employment ...................................................... 14 3.2. International exports..................................................................................................... -
Socio-Spatial Dimensions in Energy Transitions: Applying the TPSN Framework to Case Studies in Germany
A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Gailing, Ludger; Bues, Andrea; Kern, Kristine; Röhring, Andreas Article — Published Version Socio-spatial dimensions in energy transitions: Applying the TPSN framework to case studies in Germany Environment and Planning A: Economy and Space Provided in Cooperation with: Leibniz Institute for Research on Society and Space (IRS) Suggested Citation: Gailing, Ludger; Bues, Andrea; Kern, Kristine; Röhring, Andreas (2019) : Socio-spatial dimensions in energy transitions: Applying the TPSN framework to case studies in Germany, Environment and Planning A: Economy and Space, ISSN 1472-3409, Sage, London, Vol. 52, Iss. 6, pp. 1112-1130, http://dx.doi.org/10.1177/0308518X19845142 This Version is available at: http://hdl.handle.net/10419/222867 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. -
Solar Energy Support in Germany: a Closer Look
Solar Energy Support in Germany A Closer Look PREPARED FOR Solar Energy Industries Association PREPARED BY Jurgen Weiss, PhD July 2014 This report was prepared for the Solar Energy Industries Association (SEIA). All results and any errors are the responsibility of the author and do not represent the opinion of The Brattle Group, Inc. or its clients. Acknowledgement: We acknowledge the valuable contributions of many individuals to this report and to the underlying analysis, including Daniel Stetter and members of the Brattle Group for peer review. Copyright © 2014 The Brattle Group, Inc. Table of Contents Executive Summary .............................................................................................................................. 1 I. Introduction ................................................................................................................................. 6 II. The Cost of Solar PV and Germany’s FIT Program ................................................................... 9 III. The impact of the German solar PV generation on retail prices ............................................ 11 A. Renewable Support Represents a Moderate Portion of Rates ....................................... 11 B. Renewable Support Not Equally Split Across Rate Classes ........................................... 15 C. Renewable Support Increase Not Linear And Will Begin to Decline Soon .................. 19 D. Renewable Energy Contributes to Declining Wholesale Prices ................................... 22 IV. The impact -
Investigation of Innovative Rotor Concepts for the Big Adaptive Rotor
Investigation of Innovative Rotor Concepts for the Big Adaptive Rotor Project Nick Johnson,1 Pietro Bortolotti,1 Katherine Dykes,1 Garrett Barter,1 Patrick Moriarty,1 Scott Carron,1 Fabian Wendt,1 Paul Veers,1 Josh Paquette,2 Chris Kelly,2 2 and Brandon Ennis 1 National Renewable Energy Laboratory 2 Sandia National Laboratories NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5000-73605 Operated by the Alliance for Sustainable Energy, LLC September 2019 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 Investigation of Innovative Rotor Concepts for the Big Adaptive Rotor Project Nick Johnson,1 Pietro Bortolotti,1 Katherine Dykes,1 Garrett Barter,1 Patrick Moriarty,1 Scott Carron,1 1 1 2 2 Fabian Wendt, Paul Veers, Josh Paquette, Chris Kelly, 2 and Brandon Ennis 1 National Renewable Energy Laboratory 2 Sandia National Laboratories Suggested Citation Johnson, Nick, Pietro Bortolotti, Katherine Dykes, Garrett Barter, Patrick Moriarty, Scott Carron, Fabian Wendt, Paul Veers, Josh Paquette, Chris Kelly, and Brandon Ennis. 2019. Investigation of Innovative Rotor Concepts for the Big Adaptive Rotor Project. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5000-73605. https://www.nrel.gov/docs/fy19osti/73605.pdf. NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5000-73605 Operated by the Alliance for Sustainable Energy, LLC September 2019 This report is available at no cost from the National Renewable Energy National Renewable Energy Laboratory Laboratory (NREL) at www.nrel.gov/publications. -
Case Study Report: Energiewende – Mission-Oriented R&I Policies
Mission-oriented R&I policies: In-depth case studies Case Study Report Energiewende Hanna Kuittinen, Daniela Velte January 2018 Mission-oriented R&I policies: In-depth case studies European Commission Directorate-General for Research and Innovation Directorate A – Policy Development and coordination Unit A6 – Open Data Policy and Science Cloud Contact Arnold Weiszenbacher E-mail [email protected] [email protected] [email protected] European Commission B-1049 Brussels Manuscript completed in January 2018. This document has been prepared for the European Commission however it reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. More information on the European Union is available on the internet (http://europa.eu). Luxembourg: Publications Office of the European Union, 2018 PDF ISBN 978-92-79-80159-4 doi: 10.2777/835267 KI-01-18-150-EN-N © European Union, 2018. Reuse is authorised provided the source is acknowledged. The reuse policy of European Commission documents is regulated by Decision 2011/833/EU (OJ L 330, 14.12.2011, p. 39). For any use or reproduction of photos or other material that is not under the EU copyright, permission must be sought directly from the copyright holders EUROPEAN COMMISSION Mission-oriented R&I policies: In-depth case studies Case Study Report: Energiewende Hanna Kuittinen Daniela Velte 2018 Directorate-General for Research and Innovation Table of Contents 1 Summary of the case study ................................................................................... 3 2 Context and objectives of the initiative ................................................................... 5 2.1 Origins of initiative and the main contextual factors ........................................ -
“PROSPECTS for OFFSHORE WIND ENERGY” a Report Written For
“PROSPECTS FOR OFFSHORE WIND ENERGY” A report written for the EU (Altener contract XVII/4.1030/Z/98-395) by The British Wind Energy Association (BWEA). Views or opinions contained within the report are not necessarily those of BWEA, EWEA or the Commission. Permission to reproduce any part of this document must be gained in writing from BWEA. Comments on the paper are welcomed by email to [email protected] 1 EXECUTIVE SUMMARY Of all renewable energy technologies, offshore wind energy has possibly the most favourable combination of the key attributes of resource, energy cost and risk. The European offshore wind resource is extremely large, energy costs are cheaper than those of many other renewable technologies (but more expensive than onshore wind), and the risks are low, as the technology has already entered the demonstration phase. Studies of offshore wind energy have been in progress for around 20 years. As a result the key issues associated with the resource, the offshore environment and the necessary adaptations of wind turbine technology are all well understood. Early studies focused on the use of MW size wind turbines, frequently in large arrays, whereas early demonstration wind farms used modest numbers of specially adapted versions of commercial machines around the 500 kW mark. Although these have operated successfully and some have delivered energy in excess of expectations, they are mostly installed in relatively sheltered waters. The conditions in some of the windier regions, for example the North Sea, will be more hostile. Several studies of European resources have confirmed that most states have accessible offshore wind energy resources equal to at least 20 % of current consumption, and most have considerably more. -
Wind Energy Turbines
thyssenkrupp rothe erde USA Inc. dba ROTEK Incorporated Wind 1400 South Chillicothe Road Aftermarket Aurora, OH 44202 Tel: 330.562.4000 rothe erde slewing bearings Fax: 330.562.4620 rothe erde rings psl rolling bearings Authorized distributor for rothe erde @ slewing bearings for the Wind Aftermarket rothe erde @ slewing bearings for the Wind Aftermarket rothe erde @ slewing bearings for the Wind Aftermarket This is us Upgrades Standard Upgrades Through Operational Excellence thyssenkrupp Specifically the Wind Energy Market has been driving significant continuous improvement measures over the last 10 years. All of our bearing products are manufactured according to the latest state of the art technology: rothe erde • Cleanliness requirements in forged rings • Inspection services and failure analysis • Improved quality in rolling elements thyssenkrupp rothe erde with its global presence is developing and • Improved ultrasonic and other non-destructive delivering specific bearings to the wind industry since the first turbine has testing methods and frequencies been built in the 80's. In North America we have been supplying these • Process improvements products under the Rotek brand name. Rotek, now thyssenkrupp rothe erde • Validation in world’s largest R&D facility for blade bearings USA Inc. continues to be your partner for the wind aftermarket slewing • World’s longest track record for blade bearings within the bearings and will supply slewing bearing products under the globally Service and aligned brand name rothe erde. sentire wind -
ENERCON Wind Energy Converters Technology & Service
ENERCON wind energy converters Technology & Service PAGE 2 ENERCON U¾QOHUH*HQHO%DNóġTechnology & Service Yeniliklerle gelen avantaj PAGE 3 1 ENERCON turbine technology 6 Rotor blades 8 Direct drive 9 Annular generator technology 10 Tower construction 12 Precast concrete towers 13 Steel towers 14 Foundation construction 15 2 ENERCON WEC control system 16 Sensor system 18 ENERCON ice detection system 18 Rotor blade de-icing system 19 ENERCON storm control 19 3 ENERCON grid integration and wind farm management 20 Optimum grid integration 22 P/Q diagram/voltage stability 24 Power-frequency control 25 Inertia Emulation 26 Fault ride-through - option 27 Generation management system – power regulation for maximum yield 28 Bottleneck management – maximum output during bottlenecks 28 ENERCON SCADA RTU 29 ENERCON FCU 29 4 ENERCON remote monitoring 30 ENERCON SCADA system 32 ENERCON Service Info Portal 35 ENERCON PartnerKonzept 36 5 6 ENERCON product overview 40 PAGE 4 Technology & Service PAGE 5 Introduction ENERCON has been among the top producers is performed with 3D CAD systems which assist of wind energy converters for nearly 30 years the developers in verifying overstress and criti- now. Two of the key contributing factors to the FDODUHDVE\PHDQVRIWKHʖQLWHHOHPHQWPHWKRG company´s success are innovation and quality. Production processes are not launched until com- Both highly developed vertical integration and a prehensive quality tests have been completed – a comprehensive quality management system play strategy which has been successfully adopted by D VLJQLʖFDQW UROH LQ VHFXULQJ (1(5&21vV KLJK (1(5&21vV H[FOXVLYH SURGXFWLRQ SODQWV VLQFH quality standards. 2009. The company is therefore distinguished by outstanding quality and a high degree of vertical Through constant product enhancement and integration. -
ENERCON Magazine for Wind Energy 01/14
WINDBLATT ENERCON Magazine for wind energy 01/14 ENERCON installs E-115 prototype New two part blade concept passes practial test during installation at Lengerich site (Lower Saxony). ENERCON launches new blade test station Ultra modern testing facilities enables static and dynamic tests on rotor blades of up to 70m. ENERCON announces new WECs for strong wind sites E-82/2,3 MW and E-101/3 MW series also to be available for Wind Class I sites. 4 ENERCON News 21 ENERCON Fairs 23 ENERCON Adresses 12 18 Imprint Publisher: 14 New ENERCON wind energy converters ENERCON GmbH ENERCON announces E-82 and E-101 for strong wind sites. Dreekamp 5 D-26605 Aurich Tel. +49 (0) 49 41 927 0 Fax +49 (0) 49 41 927 109 www.enercon.de Politics Editorial office: Felix Rehwald 15 Interview with Matthias Groote, Member of the European Parliament Printed by: Chairmann of Committee on the Environment comments on EU energy policy. Beisner Druck GmbH & Co. KG, 8 Buchholz/Nordheide Copyright: 16 ENERCON Comment on EEG Reform All photos, illustrations, texts, images, WINDBLATT 01/14 graphic representations, insofar as this The Government's plans are excessive inflict a major blow on the onshore industry. is not expressly stated to the contrary, are the property of ENERCON GmbH and may not be reproduced, changed, transmitted or used otherwise without the prior written consent of Practice ENERCON GmbH. Cover Frequency: The WINDBLATT is published four 18 Replacing old machines times a year and is regularly enclosed 8 Installation of E-115 prototype to the «neue energie», magazine for Clean-up along coast: Near Neuharlingersiel ENERCON replaces 17 old turbines with 4 modern E-126. -
Wind Power: Energy of the Future It’S Worth Thinking About
Wind power: energy of the future It’s worth thinking about. »Energy appears to me to be the first and unique virtue of man.« Wilhelm von Humboldt 2 3 »With methods from the past, there will be no future.« Dr. Bodo Wilkens Wind power on the increase »Environmental protection is an opportunity and not a burden we have to carry.« Helmut Sihler When will the oil run out? Even if experts cannot agree on an exact date, one thing is certain: the era of fossil fuels is coming to an end. In the long term we depend on renewable sources of energy. This is an irrefutable fact, which has culminated in a growing ecological awareness in industry as well as in politics: whereas renewable sources of energy accounted for 4.2 percent of the total consumption of electricity in 1996, the year 2006 registered a proportion of 12 per- cent. And by 2020 this is to be pushed up to 30 percent. The growth of recent years has largely been due to the use of wind power. The speed of technical development over the past 15 years has brought a 20-fold rise in efficiency and right now wind power is the most economical regenerat- ive form there is to produce electricity. In this respect, Germany leads the world: since 1991 more than 19.460 wind power plants have been installed with a wind power capacity of 22.247 MW*. And there is more still planned for the future: away from the coastline, the offshore plants out at sea will secure future electricity supplies. -
Capital Dynamics Acquires 13 MW Sorbie Wind Project from Energiekontor AG
Capital Dynamics Acquires 13 MW Sorbie Wind Project from Energiekontor AG Second transaction of 2021 highlights successful, growing partnership between Capital Dynamics and Energiekontor Project estimated to reduce greenhouse emissions by over 0.7 million metric tons during its lifetime and contribute to Scotland’s pursuit of net-zero carbon targets London, 15 April 2021 - Capital Dynamics, an independent global private asset management firm, announced the acquisition of a 100 percent equity stake in the Sorbie onshore wind project from Energiekontor AG., a 13 MW shovel-ready, subsidy-free onshore wind project located in North Ayrshire, Scotland. Sorbie represents Capital Dynamics’ second acquisition of 2021 under its partnership with Energiekontor and follows the 50 MW Longhill wind transaction in March. Sorbie is estimated to reduce greenhouse emissions by over 0.7 million metric tons during its lifetime – the equivalent of emissions produced by over 150,000 passenger vehicles driven for a year or the electricity to power over 110,000 homes for a year. The project will commence construction in July 2021 and is expected to achieve commercial operations in the second half of 2022. Once operational, the project will benefit from Capital Dynamics' Clean Energy Infrastructure affiliate platform, Arevon Energy, and Energiekontor's longstanding operations management experience and optimisation support. “We are delighted that our multi-discipline collaboration with Energiekontor has yielded a second successful transaction in 2021, and together we look forward to bringing this critical UK infrastructure to fruition,” said Barney Coles, Managing Director, Clean Energy Infrastructure at Capital Dynamics. “In the year Scotland plays host to the COP 26 UN Climate Change Conference, we are proud to contribute to the region’s pursuit of meeting ambitious net-zero carbon targets and to support the UK’s post-pandemic ‘green recovery’ plan.” “We have always considered our Scottish pipeline, which we have built up over the last few years, to be of great value.