Pelagic Sargassum and Its Associated Mobile Fauna in the Caribbean, Gulf of Mexico, and Sargasso

Total Page:16

File Type:pdf, Size:1020Kb

Pelagic Sargassum and Its Associated Mobile Fauna in the Caribbean, Gulf of Mexico, and Sargasso View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Texas A&M University PELAGIC SARGASSUM AND ITS ASSOCIATED MOBILE FAUNA IN THE CARIBBEAN, GULF OF MEXICO, AND SARGASSO SEA A Thesis by LINDSAY MARGARET MARTIN Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Douglas Biggs Committee Members, R.J. David Wells Anthony Knap Amy Siuda Head of Department, Deborah Thomas May 2016 Major Subject: Oceanography Copyright 2016 Lindsay M. Martin ABSTRACT There are many species of the genus Sargassum distributed in tropical and subtropical waters but only two, S. natans and S. fluitans, have an entirely pelagic life cycle and offer ecologically-supportive structures of different forms in otherwise nutrient-poor environments. Sargassum represents a keystone species supporting relatively high levels of biodiversity which is required for the maintenance of the health and resilience of a unique ecosystem currently facing many anthropogenic pressures. While studied for years, no simultaneous comparisons have been performed between the three regions in which Sargassum is most commonly found: the Gulf of Mexico, Caribbean, and Sargasso Sea. Dip-net Sargassum samples and associated macrofauna were collected from these three regions during the Spring/Summer of 2015 to examine differences in Sargassum species, structure, and faunal distribution. An unusually large abundance of the rare form S. natans VIII was seen in all three regions in addition to the more common forms of S. natans I and S. fluitans III. Isolated clumps and rows of Sargassum were equally common in all three regions while mats were comparatively rare. Sargassum from the Gulf, Caribbean, and Sargasso Sea shared five common (frequency >10%) species. Differences in the physical forms of Sargassum forms had a marked effect on fauna diversity and abundance. In all three regions, fewer individuals and species were found on the broad-leafed, less compact S. natans VIII than on the denser S. natans I and S. fluitans III. The majority of these species are benthic-like species that physically require the Sargassum substrate (unlike most fish), and therefore likely avoid loose S. natans VIII which offers less surface area and protection from ii predators. This study identifies the differences in macrofauna abundance and diversity between varieties of Sargassum and highlights the potential for dramatic community assemblage changes that could result from largescale Sargassum blooms and species shifts. iii DEDICATION To my family iv ACKNOWLEDGEMENTS I would like to thank my committee chair, Dr. Biggs, and my committee members, Dr. Knap, Dr. Wells, for their guidance and, in particular, Dr. Siuda, without whom this project would not have been possible. I would also like to thank Dr. Jeffrey Schell and Dr. Deb Goodwin for their advice and comments. Thanks also to the faculty of the Oceanography Department for making my experience at Texas A&M University an educational one. To my friends and fellow students, it is only with your help, academic and personal, that I have been able to succeed. Concerning data collection, I would like to thank the students of the Sea Education Association cruises C-257 and C-259 for their efforts. I would also like to acknowledge Dr. Steve Dimarco (TAMU), Dr. Kate Mansfield (UCF), Dr. Joshua Voss (FAU), the NOAA Flower Garden Banks National Marine Sanctuary staff, and crew of the R/V Manta for their donation of ship time and assistance in sample collection. This work was supported in part by internal grants from the Oceanography Department, NSF S-STEM (Grant Number DUE1355807), and by my family, friends, and random strangers through a crowdfunding effort on Experiment.com. v TABLE OF CONTENTS Page ABSTRACT .......................................................................................................................ii DEDICATION .................................................................................................................. iv ACKNOWLEDGEMENTS ............................................................................................... v TABLE OF CONTENTS .................................................................................................. vi LIST OF FIGURES ........................................................................................................ viii LIST OF TABLES ............................................................................................................. x I. INTRODUCTION .......................................................................................................... 1 Sargassum Species, Form, & Aggregation Patterns .............................................. 1 Sargassum Fauna ................................................................................................... 9 Threats to Sargassum ........................................................................................... 10 Hypotheses ........................................................................................................... 12 II. LITERATURE REVIEW ............................................................................................ 14 Early Descriptions of Sargassum ......................................................................... 14 Pelagic Sargassum ............................................................................................... 16 Genetic Studies ......................................................................................... 16 Sargassum Reproduction & Growth ........................................................ 17 Ecosystem Services .................................................................................. 19 Sargassum Distribution & Patterns ...................................................................... 20 Rafting Communities ........................................................................................... 23 Sargassum Macrofauna – Close Associates......................................................... 25 The Sargassum Community ..................................................................... 25 Community Variation over Time ............................................................. 27 Regional Differences ................................................................................ 28 Association with Sargassum Species ....................................................... 30 Sargassum Macrofauna – Loose Associates ........................................................ 31 Icthyofauna ............................................................................................... 31 Other Associates ....................................................................................... 34 Threats to Sargassum Communities & Conservation .......................................... 35 Conservation Measures ............................................................................ 35 Marine Pollutants ..................................................................................... 36 Atypical Blooms ....................................................................................... 38 vi III. METHODS ................................................................................................................ 40 Sargassum Collection and Processing ................................................................. 40 Data Analysis ....................................................................................................... 43 IV. RESULTS .................................................................................................................. 44 Physical Setting & Sargassum Frequency ........................................................... 44 Regional Fauna Diversity by Pelagic Sargassum Species ................................... 48 Effect of Aggregation Pattern & Regional Colony Differences .......................... 50 Fauna & Effect of Sargassum Species ................................................................. 55 V. DISCUSSION ............................................................................................................. 58 Hypothesis 1 ......................................................................................................... 58 Hypothesis 2 ......................................................................................................... 65 Hypothesis 3 ......................................................................................................... 67 VI. CONCLUSIONS & FUTURE WORK ...................................................................... 70 LITERATURE CITED .................................................................................................... 74 vii LIST OF FIGURES Page Figure 1: Specimens of S. fluitans III, S. natans I, and S. natans VIII showing large and small-scale morphological differences. ........................................................... 4 Figure 2: From Gower & King (2011) with permission, showing MERIS detected Sargassum distributions over the course of approximately one year shows large accumulations of the algae moving from the Gulf in the spring and early summer to the northern Sargasso Sea in the fall, moving towards the south in the late fall to winter. ................................................................................ 5 Figure 3: Distribution of Sargassum in the Sargasso Sea (g/m2)
Recommended publications
  • Appendix to Taxonomic Revision of Leopold and Rudolf Blaschkas' Glass Models of Invertebrates 1888 Catalogue, with Correction
    http://www.natsca.org Journal of Natural Science Collections Title: Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Author(s): Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud Source: Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud. (2020). Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities. Journal of Natural Science Collections, Volume 7, . URL: http://www.natsca.org/article/2587 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. TABLE 3 – Callaghan et al. WARD AUTHORITY TAXONOMY ORIGINAL SPECIES NAME REVISED SPECIES NAME REVISED AUTHORITY N° (Ward Catalogue 1888) Coelenterata Anthozoa Alcyonaria 1 Alcyonium digitatum Linnaeus, 1758 2 Alcyonium palmatum Pallas, 1766 3 Alcyonium stellatum Milne-Edwards [?] Sarcophyton stellatum Kükenthal, 1910 4 Anthelia glauca Savigny Lamarck, 1816 5 Corallium rubrum Lamarck Linnaeus, 1758 6 Gorgonia verrucosa Pallas, 1766 [?] Eunicella verrucosa 7 Kophobelemon (Umbellularia) stelliferum
    [Show full text]
  • Sargassum White Paper - Sargassum Outbreak in the Caribbean: Challenges, Opportunities and Regional Situation
    UNITED NATIONS EP Distr. LIMITED UNEP(DEPI)/CAR WG.40/ INF8 30 October 2018 Original: ENGLISH Eighth Meeting of the Scientific and Technical Advisory Committee (STAC) to the Protocol Concerning Specially Protected Areas and Wildlife (SPAW) in the Wider Caribbean Region Panama City, Panama, 5 ‐ 7 December 2018 Sargassum White Paper - Sargassum Outbreak in the Caribbean: Challenges, Opportunities and Regional Situation For reasons of economy and the environment, Delegates are kindly requested to bring their copies of the Working and Information documents to the Meeting, and not to request additional copies. *This document has been reproduced without formal editing. Sargassum Outbreak in the Caribbean: Challenges, Opportunities & Regional Situations by the SPAW Sub-Programme at the UN Environment CEP Secretariat Conceptual background Pelagic Sargassum is a type of brown alga or seaweed that can form large floating mats that are often referred to as “golden tides”. Field surveys and satellite maps indicate that Sargassum blossoms naturally in the Tropical South Atlantic and in the North Atlantic including the Sargasso Sea, over an area spanning 2 million square miles in the warm waters of the Atlantic Ocean. In the last few years, there have been several episodes of unusual quantities of two species of Sargassum, S. natans and S. fluitans, reaching the coasts of many of the islands of the Caribbean Sea, and countries in South, Central, and North America. What appears to have been an unprecedented quantity of pelagic Sargassum reached Caribbean islands in the spring of 20111. Anomalous amounts of Sargassum also reached the coasts of Sierra Leone and the Gulf of Guinea in June 2011.
    [Show full text]
  • The Weed That Feeds the North Atlantic
    DRIFTING PLANTS KNOWN AS SARGASSUM SUPPORT A COMPLEX AND AMAZING VARIETY OF MARINE LIFE. The Weed That Feeds the North Atlantic BY JAMES PROSEK PHOTOGRAPHS BY DAVID DOUBILET AND DAVID LIITTSCHWAGER 129 Hatchling sea turtles, like this juvenile log- gerhead, make their way from the sandy beaches where they were born toward mats of sargassum weed, finding food and refuge from predators during their first years of life. PREVIOUS PHOTO A clump of sargassum weed the size of a soccer ball drifts near Bermuda in the slow swirl of the Sargasso Sea, part of the North Atlantic gyre. A weed mass this small may shelter thousands of organisms, from larval fish to seahorses. DAVID DOUBILET (BOTH) 130 NATIONAL GEOGRAPHIC THE WEED THAT FEEDS THE NORTH ATLANTIC 131 ‘There’s nothing like it in any other ocean,’ says marine biologist Brian Lapointe. ‘There’s nowhere else on our blue planet that supports such diversity in the middle of the ocean—and it’s because of the weed.’ LAPOINTE IS TALKING about a floating seaweed known as sargassum in a region of the Atlantic called the Sargasso Sea. The boundaries of this sea are vague, defined not by landmasses but by five major currents that swirl in a clockwise embrace around Bermuda. Far from any main- land, its waters are nutrient poor and therefore exceptionally clear and stunningly blue. The Sargasso Sea, part of the vast whirlpool known as the North Atlantic gyre, often has been described as an oceanic desert—and it would appear to be, if it weren’t for the floating mats of sargassum.
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • Phylum MOLLUSCA
    285 MOLLUSCA: SOLENOGASTRES-POLYPLACOPHORA Phylum MOLLUSCA Class SOLENOGASTRES Family Lepidomeniidae NEMATOMENIA BANYULENSIS (Pruvot, 1891, p. 715, as Dondersia) Occasionally on Lafoea dumosa (R.A.T., S.P., E.J.A.): at 4 positions S.W. of Eddystone, 42-49 fm., on Lafoea dumosa (Crawshay, 1912, p. 368): Eddystone, 29 fm., 1920 (R.W.): 7, 3, 1 and 1 in 4 hauls N.E. of Eddystone, 1948 (V.F.) Breeding: gonads ripe in Aug. (R.A.T.) Family Neomeniidae NEOMENIA CARINATA Tullberg, 1875, p. 1 One specimen Rame-Eddystone Grounds, 29.12.49 (V.F.) Family Proneomeniidae PRONEOMENIA AGLAOPHENIAE Kovalevsky and Marion [Pruvot, 1891, p. 720] Common on Thecocarpus myriophyllum, generally coiled around the base of the stem of the hydroid (S.P., E.J.A.): at 4 positions S.W. of Eddystone, 43-49 fm. (Crawshay, 1912, p. 367): S. of Rame Head, 27 fm., 1920 (R.W.): N. of Eddystone, 29.3.33 (A.J.S.) Class POLYPLACOPHORA (=LORICATA) Family Lepidopleuridae LEPIDOPLEURUS ASELLUS (Gmelin) [Forbes and Hanley, 1849, II, p. 407, as Chiton; Matthews, 1953, p. 246] Abundant, 15-30 fm., especially on muddy gravel (S.P.): at 9 positions S.W. of Eddystone, 40-43 fm. (Crawshay, 1912, p. 368, as Craspedochilus onyx) SALCOMBE. Common in dredge material (Allen and Todd, 1900, p. 210) LEPIDOPLEURUS, CANCELLATUS (Sowerby) [Forbes and Hanley, 1849, II, p. 410, as Chiton; Matthews. 1953, p. 246] Wembury West Reef, three specimens at E.L.W.S.T. by J. Brady, 28.3.56 (G.M.S.) Family Lepidochitonidae TONICELLA RUBRA (L.) [Forbes and Hanley, 1849, II, p.
    [Show full text]
  • Pelagic Sargassum Community Change Over a 40-Year Period: Temporal and Spatial Variability
    Mar Biol (2014) 161:2735–2751 DOI 10.1007/s00227-014-2539-y ORIGINAL PAPER Pelagic Sargassum community change over a 40-year period: temporal and spatial variability C. L. Huffard · S. von Thun · A. D. Sherman · K. Sealey · K. L. Smith Jr. Received: 20 May 2014 / Accepted: 3 September 2014 / Published online: 14 September 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Pelagic forms of the brown algae (Phaeo- ranging across the Sargasso Sea, Gulf Stream, and south phyceae) Sargassum spp. and their conspicuous rafts are of the subtropical convergence zone. Recent samples also defining characteristics of the Sargasso Sea in the western recorded low coverage by sessile epibionts, both calcifying North Atlantic. Given rising temperatures and acidity in forms and hydroids. The diversity and species composi- the surface ocean, we hypothesized that macrofauna asso- tion of macrofauna communities associated with Sargas- ciated with Sargassum in the Sargasso Sea have changed sum might be inherently unstable. While several biological with respect to species composition, diversity, evenness, and oceanographic factors might have contributed to these and sessile epibiota coverage since studies were con- observations, including a decline in pH, increase in sum- ducted 40 years ago. Sargassum communities were sam- mer temperatures, and changes in the abundance and distri- pled along a transect through the Sargasso Sea in 2011 and bution of Sargassum seaweed in the area, it is not currently 2012 and compared to samples collected in the Sargasso possible to attribute direct causal links. Sea, Gulf Stream, and south of the subtropical conver- gence zone from 1966 to 1975.
    [Show full text]
  • First Report of the Asian Seaweed Sargassum Filicinum Harvey (Fucales) in California, USA
    First Report of the Asian Seaweed Sargassum filicinum Harvey (Fucales) in California, USA Kathy Ann Miller1, John M. Engle2, Shinya Uwai3, Hiroshi Kawai3 1University Herbarium, University of California, Berkeley, California, USA 2 Marine Science Institute, University of California, Santa Barbara, California, USA 3 Research Center for Inland Seas, Kobe University, Rokkodai, Kobe 657–8501, Japan correspondence: Kathy Ann Miller e-mail: [email protected] fax: 1-510-643-5390 telephone: 510-387-8305 1 ABSTRACT We report the occurrence of the brown seaweed Sargassum filicinum Harvey in southern California. Sargassum filicinum is native to Japan and Korea. It is monoecious, a trait that increases its chance of establishment. In October 2003, Sargassum filicinum was collected in Long Beach Harbor. In April 2006, we discovered three populations of this species on the leeward west end of Santa Catalina Island. Many of the individuals were large, reproductive and senescent; a few were small, young but precociously reproductive. We compared the sequences of the mitochondrial cox3 gene for 6 individuals from the 3 sites at Catalina with 3 samples from 3 sites in the Seto Inland Sea, Japan region. The 9 sequences (469 bp in length) were identical. Sargassum filicinum may have been introduced through shipping to Long Beach; it may have spread to Catalina via pleasure boats from the mainland. Key words: California, cox3, invasive seaweed, Japan, macroalgae, Sargassum filicinum, Sargassum horneri INTRODUCTION The brown seaweed Sargassum muticum (Yendo) Fensholt, originally from northeast Asia, was first reported on the west coast of North America in the early 20th c. (Scagel 1956), reached southern California in 1970 (Setzer & Link 1971) and has become a common component of California intertidal and subtidal communities (Ambrose and Nelson 1982, Deysher and Norton 1982, Wilson 2001, Britton-Simmons 2004).
    [Show full text]
  • The Marine and Brackish Water Mollusca of the State of Mississippi
    Gulf and Caribbean Research Volume 1 Issue 1 January 1961 The Marine and Brackish Water Mollusca of the State of Mississippi Donald R. Moore Gulf Coast Research Laboratory Follow this and additional works at: https://aquila.usm.edu/gcr Recommended Citation Moore, D. R. 1961. The Marine and Brackish Water Mollusca of the State of Mississippi. Gulf Research Reports 1 (1): 1-58. Retrieved from https://aquila.usm.edu/gcr/vol1/iss1/1 DOI: https://doi.org/10.18785/grr.0101.01 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf Research Reports Volume 1, Number 1 Ocean Springs, Mississippi April, 1961 A JOURNAL DEVOTED PRIMARILY TO PUBLICATION OF THE DATA OF THE MARINE SCIENCES, CHIEFLY OF THE GULF OF MEXICO AND ADJACENT WATERS. GORDON GUNTER, Editor Published by the GULF COAST RESEARCH LABORATORY Ocean Springs, Mississippi SHAUGHNESSY PRINTING CO.. EILOXI, MISS. 0 U c x 41 f 4 21 3 a THE MARINE AND BRACKISH WATER MOLLUSCA of the STATE OF MISSISSIPPI Donald R. Moore GULF COAST RESEARCH LABORATORY and DEPARTMENT OF BIOLOGY, MISSISSIPPI SOUTHERN COLLEGE I -1- TABLE OF CONTENTS Introduction ............................................... Page 3 Historical Account ........................................ Page 3 Procedure of Work ....................................... Page 4 Description of the Mississippi Coast ....................... Page 5 The Physical Environment ................................ Page '7 List of Mississippi Marine and Brackish Water Mollusca . Page 11 Discussion of Species ...................................... Page 17 Supplementary Note .....................................
    [Show full text]
  • Dynamic of the Sargassum Tide Holobiont in the Caribbean Islands
    From the Sea to the Land: Dynamic of the Sargassum Tide Holobiont in the Caribbean Islands Pascal Jean Lopez ( [email protected] ) CNRS Délégation Paris B https://orcid.org/0000-0002-9914-4252 Vincent Hervé Max-Planck-Institut for Terrestrial Microbiology Josie Lambourdière Centre National de la Recherche Scientique Malika René-Trouillefou Universite des Antilles et de la Guyane Damien Devault Centre National de la Recherche Scientique Research Keywords: Macroalgae, Methanogenic archaea, Sulfate-reducing bacteria, Epibiont, Microbial communities, Nematodes, Ciliates Posted Date: June 9th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-33861/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/27 Abstract Background Over the last decade, intensity and frequency of Sargassum blooms in the Caribbean Sea and central Atlantic Ocean have dramatically increased, causing growing ecological, social and economic concern throughout the entire Caribbean region. These golden-brown tides form an ecosystem that maintains life for a large number of associated species, and their circulation across the Atlantic Ocean support the displacement and maybe the settlement of various species, especially microorganisms. To comprehensively identify the micro- and meiofauna associated to Sargassum, one hundred samples were collected during the 2018 tide events that were the largest ever recorded. Results We investigated the composition and the existence of specic species in three compartments, namely, Sargassum at tide sites, in the surrounding seawater, and in inland seaweed storage sites. Metabarcoding data revealed shifts between compartments in both prokaryotic and eukaryotic communities, and large differences for eukaryotes especially bryozoans, nematodes and ciliates.
    [Show full text]
  • A List of Common and Scientific Names of Fishes from the United States And
    t a AMERICAN FISHERIES SOCIETY QL 614 .A43 V.2 .A 4-3 AMERICAN FISHERIES SOCIETY Special Publication No. 2 A List of Common and Scientific Names of Fishes -^ ru from the United States m CD and Canada (SECOND EDITION) A/^Ssrf>* '-^\ —---^ Report of the Committee on Names of Fishes, Presented at the Ei^ty-ninth Annual Meeting, Clearwater, Florida, September 16-18, 1959 Reeve M. Bailey, Chairman Ernest A. Lachner, C. C. Lindsey, C. Richard Robins Phil M. Roedel, W. B. Scott, Loren P. Woods Ann Arbor, Michigan • 1960 Copies of this publication may be purchased for $1.00 each (paper cover) or $2.00 (cloth cover). Orders, accompanied by remittance payable to the American Fisheries Society, should be addressed to E. A. Seaman, Secretary-Treasurer, American Fisheries Society, Box 483, McLean, Virginia. Copyright 1960 American Fisheries Society Printed by Waverly Press, Inc. Baltimore, Maryland lutroduction This second list of the names of fishes of The shore fishes from Greenland, eastern the United States and Canada is not sim- Canada and the United States, and the ply a reprinting with corrections, but con- northern Gulf of Mexico to the mouth of stitutes a major revision and enlargement. the Rio Grande are included, but those The earlier list, published in 1948 as Special from Iceland, Bermuda, the Bahamas, Cuba Publication No. 1 of the American Fisheries and the other West Indian islands, and Society, has been widely used and has Mexico are excluded unless they occur also contributed substantially toward its goal of in the region covered. In the Pacific, the achieving uniformity and avoiding confusion area treated includes that part of the conti- in nomenclature.
    [Show full text]
  • List of the Shells of Cuba in the . . . Museum
    £> • £!~ - ? -6 LIST / OF THE SHELLS OF CUBA THE COLLECTION OF THE BRITISH MUSEUM, & BY M. RAMON DE LA SAGRA. DESCRIBED BY Prof. ALCIDE D’ORBIGNY, In the “ Histoire de l’lle de Cuba.” LONDON: PRINTED BY ORDER OF THE TRUSTEES. 1854. PRINTED BY TAYEOR AND FRANCIS, RED LION COUkT, FLEET STREET. PREP AC E. The specimens of Shells in the following list marked B.M. were received from Professor Alcide d’Orbigny, as the type specimens described by him in the Mollusca part of the “ Histoire physique, politique et naturelle de Pile de Cuba, par M. Ramon de la Sagra, Directeur du Jardin botanique de la Havane, Correspondant de Plnstitut Royal de France.” Paris, 8 vo, with a folio Atlas. The specimens are on their original cartoons, named by M. d’Orbigny, and marked with their special habitats. JGPIN EDWARD GRAY. Sept. 1, 1854. LIST OF THE SHELLS OF CUBA. Class I. CEPHALOPODA CRYPTODIBRANCHIATA. Order I. ACETABULIEERA. Suborder I. Octopoda. Fam. 1. OCTOPID^L 1. Octopus vulgaris, Linn., Ramon de la Sagra , Moll. 11. t. l.f. 1. Sepia octopodia, Linn. Polypus octopodia, Leach, Octopus appendiculatus, Blainv. 2. Octopus tuberculatus, Blainv ., Ramon de la Sagra, Moll. 15. Octopus ruber, Rajinq.l B . 2 SHELLS OF CUBA. 3. Octopus rugosus, d’Orb., Ramon de la Sagra, Moll. 18. Sepia rugosa, Bose. Octopus granulatus, Ramie. Sepia granulosa, Bose. Octopus Bakeri, Feruss Octopus americanus, Blainv. 4. Philonexis Quoyanus, d’Orb., Ramon de la Sagra , Hist, de Cuba3 21. 5. Argonauta Argo, Linn., Sagra3 Cuba , 24. Ocythoe tuberculata, Rafinq. Ocythoe antiquorum, Leach. Octopus antiquorum, Blainv.
    [Show full text]
  • <I>Histrio Histrio</I>
    A CONTRIBUTION 'ro THE BIOLOGY AND POSTLARVAL DEVELOPMENT OF THE SA.RGASSUM FISH, HISTRIO HISTRIO (LINNAEUS), vVITH A DISCUSSION OF THE SARGilSSUM COMPLEX' JUDITH A. ADAMS The Marine Laboratory, University of Miami ABSTRACT The early development of the Sargassum fish, Histrio histrio (Linnaeus), is described, based upon a collection of 44 larval and juvenile specimens from the Florida Current. Growth, biology, feeding and relationship to the Sargassum complex are discussed. Specimens at various stages of develop- ment are illustrated. INTRODUCTION The fishes of the family Antennariidae have attracted considerable interest because of their curious form, coloration, and behavior. Reef and bank-dwelling antennariids are widely distributed throughout warm, shallow seas in the Atlantic, Pacific, and Indian Oceans, and the pelagic member of the family, Histrio histrio, occurs in floating weed over a similar area, although wind and current may at times carry these drifters far into temperate waters. Despite, however, the interest and availability of this group, its taxonomy was not clarified until quite recently (Barbour, 1942; Schultz, 1957), and many reports were buri~d in the proliferating synonomy. Histrio histrio alone, though now regarded as belonging to a monotypic genus, has seventeen synonyms as listed by Schultz (1957). Larval stages and eggs of the Antennariidae were unknown to early workers; this led several respected biologists to attribute erroneously the "nests" of flying fish to Histrio. Subsequently, non-fertile egg rafts of solitary Histrio females were observed in aquaria. In 1954 Mosher successfully paired ripe males and females in aquaria at the Lerner Marine Laboratory, Bimini, Bahamas, and recorded the spawning and fertilization of Histrio egg rafts.
    [Show full text]