1

LossAversioninDecisionsunderandtheofaSymmetric

SimplificationofProspectTheory

ByEyalErtandIdoErev

MaxWertheimerMinervaCenterforCognitiveStudies,Technion,Israel

Abstract

Threestudiesarepresentedthatexaminealternativeinterpretationsofthelossaversion assertion(KahnemanandTversky(1979)).Thefirsttwostudiesrejecta"strong" interpretation:Inviolationsofthisinterpretationthechoicerateoftheriskyoptionwashigher givenprospectswithmixedpayoffs(gainandlosses)thangivenprospectswithnonnegative payoffs.Thethirdstudyrejectsa"moderate"interpretationoflossaversion:Itshowsthatthe eliminationofthelossaversionassumptionfromprospecttheoryincreasesthetheory's predictivevalue.Theresultsdemonstratethevalueofasimplifiedversionofprospecttheory thatassumesasymmetricvaluefunction(withdiminishingsensitivityrelativetothereference point),asymmetricprobabilityweightingfunction(thatimpliesacertainty/possibilityeffect) andastochasticresponserule.

Keywords:Stochasticmodels,Cumulativeprospecttheory,Predictivevalue.

JELClassification:C91,D01.

2

1. INTRODUCTION Thelossaversionassertion,oneoftheassumptionsthatunderlieprospecttheory(Kahneman andTversky(1979)),impliesthatlossesloomlargerthangains.Thatis,theabsolute subjectivevalueofaspecificlossislargerthantheabsolutesubjectivevalueofanequivalent gain.Thisassertionwasshowntoprovideanelegantexplanationtoawidesetofimportant behavioralphenomena.Famousexamplesaretheendowmenteffect(Kahneman,Knetschand

Thaler(1990)),thestatusquobias(SamuelsonandZeckhauser(1988)),andtheequity premiumpuzzle(BenartziandThaler(1995)).Thesignificanceoflossaversionis highlightedinCamerer’s(2000)reviewofthepracticalimplicationsofprospecttheory:seven ofthe10examplesaredirectderivationsofthelossaversionhypothesis.

However,directempiricalevidence forlossaversionis surprisinglyhardtofind.In ordertoclarifytheuniquestatusofthelossaversionassertionitisconstructivetoreturnto

KahnemanandTversky’s(1979)classicalpaper.Prospecttheoryisdesignedtocapturethree

(main)behavioralassertions:Thecertainty/possibilityeffect(overweightingoflow probabilityoutcomes),diminishingsensitivity(riskaversioninthegaindomainandrisk seekinginthelossdomain),andlossaversion.Thefirsttwoassertionsaredescribedbefore thepresentationofthetheory,andaremotivatedwithsimpleexperiments.Moreover,itis shownthattheseassumptionsarenecessarytocapturerobustdeviationsfromthecommon implementationsofexpectedtheory(thatassumesriskaversion,seee.g.,Pratt(1964)).

Thethirdassertion,lossaversion,isaddedduringpresentationofthetheory,andisnot supportedbyexperimentaldata.KahnemanandTverskynotethat“…mostpeoplefind symmetricalbetsoftheform(x,.50;x,.50)distinctlyunattractive”(KahnemanandTversky

(1979),p.279),butnoneoftheirexperimentalproblemsincludebetsthatinvolvebothgains andlosses(hereafter,referredtoas“mixedgambles”). 3

Inordertoevaluatemorerecentexaminationsoflossaversionitisconstructiveto distinguishbetweenthreeinterpretationsofthisassertion.Thestrongestinterpretationasserts that“anindividualwiththepreferencesdescribedbycumulativeprospecttheoryisonly mildlyriskaverseforgamblesinvolvingonlygains,butstronglyriskaverseforgamblesthat entailpotentiallosses.”(Thaler,Tversky,Kahneman,andSchwartz(1997),p.651).This interpretationimpliesthattheimplicationsoflossaversionarestrongerthantheimplications ofdiminishingsensitivity(thatimplyriskaversioninthegaindomain).

Asecondinterpretation,referredtoasthe"moderateinterpretation,"impliesthatthe lossaversionassertionimproves(onaverage)thepredictivepowerofprospecttheory.This interpretationisweakerthanthepreviousoneasitallowsforthepossibilitythatlossaversion canbelessinfluential,atleastinsomesettings,thandiminishingsensitivity.

Theweakestinterpretationimpliesthattherearesettingsinwhichobservedbehavior cannotbecapturedwithprospecttheorywithoutthelossaversionassertion.Forexample,it hasbeennotedthatwhenindividualshavetochooseoncebetweenpairsofmixedgambles withthesameexpectedvalueandrelativelylargestakestheytendtopreferthesaferones

(e.g.,BrooksandZank(2005)).Thistrendcannotbecapturedbyprospecttheorywithoutthe requirementofasymmetryaroundthereferencepoint.

Mostrecentstudiesoflossaversionhavefocusedontheweakinterpretation.

Theoreticalanalysesofthisissuehighlightelegantmethodsthatcanbeusedtoseparatethe lossaversionparameterfromotherparametersintheprospecttheorymodel(e.g.,Kobberling andWakker(2005),SchmidtandZank(2005)).Empiricalstudiesthatusethesemethods showclearevidenceforlossaversion(Bleichrodt,Pinto,andWakker(2001),Abdellaoui,

Bleichrodt,andParaschiv(inpress)).Whereasthesestudiesareelegantandimportant,their implicationsarelimitedtothis“weak”interpretation.Specifically,theydonotimplythatthe lossaversionassertionimproves(onaverage)thepredictivepowerofprospecttheory. 4

Rather,theyimplythatundercertainconditionsandassumptionsthelossaversionassertion cannotberejected. 1

Thestrongandmoderateinterpretationsoflossaversionhavebeenrarelyaddressed withdirectempiricalresearch.Weknowofonlytwoexperimentalstudiesthathavetriedto evaluatethe"strong"interpretationofthelossaversionassertion.Thefirstoneisdescribedin

TverskyandKahneman(1992).Inordertoevaluatelossaversion,TverskyandKahneman triedtoextractthepremiumthatpeopleaskforplayingtheriskiergambleintwoproblems thatincludedpairsofmixedgambles. 2Theythencomparedtheriskpremiumofthetwo mixedgambleswiththepremiumthatparticipantsaskedforalinearpositivetranslationof thesegamblestostrictlypositiveones.Theriskpremiumformixedgambleswasabouttwo timeslargerthantheriskpremiumforgambleswithnonnegativeoutcomes.

ThesecondexaminationofstronglossaversionisdescribedinThaleretal.(1997).In thisstudy,twoconditionswerecompared:thebasiccondition,referredtohereas“Mixed”, included200independenttrials.Ineachtrial,theparticipantswereaskedtoallocate100 tokensbetweentwo“assets”:Asafebondandarisky.inthebondalways resultedinanonnegativeoutcome.Investmentinthestockincreasedtheexpectedreturnby afactoroffour,butwasassociatedwithhighvariabilityandfrequentlosses.Theparticipants didnotreceiveadescriptionoftherelevantpayoffdistributions,andhadtorelyontheir feedbackthatwaspresentedaftereachtrial.Theresultsrevealthatthe(highexpectedvalue) stockattractedonly40%ofthe.Toconfirmthattheunattractivenessofthestock reflectedlossaversion(ratherthanriskaversion),Thaleretal.addedthe“Gain”condition.

1Noticethatthesignificanceofthedistinctionbetweenthemoderateandweakerinterpretationsdependsonthe assumptionsmadeaboutthe“accuracy”ofthemodel.Undertheassumptionthatthemodelisaccurate,support fortheweakinterpretation(theobservationthatthelossaversionisnecessarytocapturebehaviorinonesetting), impliesthatthemoderateinterpretationissupportedtoo.However,ifthemodelisonlya“potentiallyuseful approximation”thensupportfortheweakinterpretationdoesnotimplysupportforthemoderateinterpretation. Itispossiblethatacertainassumptionisnecessarytocapturebehaviorinonecase,butitimpairspredictive valueinawidersetofsituations.Wereturntothisissueinthediscussion. 2Theriskpremiumwasevaluatedbyestimatingthevalueofxthatmakestheprospect($a,0.5;$b,0.5)as attractiveas($c,0.5;$x,0.5)wherec<a<b,seeTverskyandKahneman(1992)p.312. 5

Thisconditionwasidenticaltothemixedcondition,exceptthataconstantwasaddedtoall payoffstoeliminatethepossibilityoflosses.Insupportofthelossaversionhypothesis,this additionincreasedtheattractivenessofthestock.

Thaleretal.’sstudyhasmanyattractivefeatures.Theresultsaresurprising,replicable

(seereplicationinBarronandErev(2003);andrelatedfindingsinGneezyandPotters

(1997)),andcloselyrelatedtoanextremelyimportantempiricalphenomenon.However,two featuresofthatstudyquestiontheimplicationoftheresultstothestronglossaversion assertion.Thefirstfeatureinvolvesthedistinctionbetweendecisionsunderrisk(thefocusof prospecttheory),anddecisionsfromexperience.Thaleretal.studieddecisionsfrom experience;theparticipantsintheirstudydidnotreceiveadescriptionofthepayoff .Rather,theexperimentlasted200trials,andthedecisionmakersreceived feedbackaftereachtrial.

Asecondrelevantfeatureinvolvesthepayoffdistributions.AsnotedinErev,Ertand

Yechiam(2007)thelossaversionhypothesisisonlyoneoftwopropertiesofprospecttheory thatcanbeusedtocapturetheexperimentalresultswithsuchpayoffs.Thesecondpropertyis thediminishingsensitivityhypothesis.Thus,theobservedresultsofThaleretal.canbe capturedwithprospecttheorywithoutassuminglossaversion.Moreover,theexperiment conductedbyErevetal.favorsthediminishingsensitivityhypothesisoverthelossaversion hypothesisindecisionsfromexperience.

Themaingoalofthecurrentresearchistoextendthesearchforthecorrect interpretationofthelossaversionassertion.Westartwithtwostudiesthatexaminethestrong interpretationoflossaversionindecisionsunderrisk.Thesestudiesshowclearviolationsof thisinterpretation.Whenthepayoffsarerelativelylow,thetypicaldecisionmakerexhibits riskneutralityinchoiceamongmixedgambles.Thispatternisobservedindecisionswith hypotheticalpayoffs(Study1)andindecisionswithrealpayoffs(Study2).Moreover,the 6 additionofaconstanttoallpayoffsthattransformstheproblemstothegaindomainincreases riskaversionincontrasttothestronglossaversioninterpretation.

Study3exploreswiderdatasetsinordertoevaluatethemoderateinterpretationof lossaversion.Recallthatunderthisinterpretationthelossaversionassumptionincreasesthe predictivepowerofprospecttheory.Estimationoftheprospecttheorymodelrejectsthis hypothesis:Theanalysisdemonstratesthatasimplified3parameterversionofprospect theorythatassumessymmetrybetweengainandlossesisabetterpredictorofthe experimentaldatathanthefullmodelthatincludesthelossaversionparameters.

2. EVALUATIONOFTHESTRONGINTERPRETATIONOFLOSS AVERSION

Westartouranalysiswithanevaluationofthestronginterpretationoflossaversion assertion.Theevaluationisbasedontwostudiesthatcomparebehaviorinproblemsthat involvemixedgamblesandinpositivelineartransformationsoftheseproblems(createdby anadditionofaconstanttoallpayoffs)thatinvolvenolosses.Study1isfocusedon hypotheticalgamblesandStudy2studiestherobustnessoftheresultstoreal(lowstakes) payoffs.

2.1Study1–HypotheticalChoicebetweenSimpleProspects

Study1isfocusedonthefollowingfourproblems:(Theoutcomesrepresentpayoffsin

Sheqels($1=4.2Sheqel).TheP(R)valuespresentedontherightsummarizethemainresults andwillbediscussedbelow)

7

Problem S 0withcertainty

Mixed1

R +1000withprobability0.5 P(R)=0.50

1000otherwise

Problem S 1000withcertainty

Gain1

R 2000withprobability0.5 P(R)=0.24

0otherwise

Problem S 1000withprobability0.5

Mixed2 1000otherwise

R 4000withprobability0.5 P(R)=0.37

4000otherwise

Problem S 5000withprobability0.5

Gain2 3000otherwise

R 8000withprobability0.5 P(R)=0.13

0otherwise

NotethatProblemGain1wascreatedbyadding1000toallthepayoffsinProblemMixed1 andGain2wascreatedbyadding4000toallthepayoffsinProblemMixed2. 8

ExperimentalDesign

Thefourproblemswerepresentedtotheparticipantsinashortonepage questionnaire.Theyweresimplyaskedtocircletheprospecttheypreferineachofthe problems.Theorderofthefourproblemswasbalancedoverparticipants.

SeventyTechnionstudentsservedasparticipantsinthecurrentstudy.Thirtyfourof themwereaskedtofillintheexperimentalquestionnaireduringthefirstclassofthecourse

“DecisionMaking.”Theremainingparticipantswereaskedtofillintheexperimental questionnaireaftertheycompletedanexperimentonsocialchoice(areplicationofChareness andGrosskopf(2001)).Therewasnosignificantdifferencebetweenthesetwogroups’ responses.

Results

Thechoiceratesoftheriskyoptionsarepresentedtotherightofthefourproblems.

Thefirstpairofproblemsrevealshigherproportionofrisktaking(50%)inProblemMixed1 thaninProblemGain1(24%).Asimilarpatternwasobservedinthesecondpair.The proportionsofriskychoiceswere37%inProblemMixed2,andonly13%inProblemGain2.

Thesedifferencesaresignificant( t(69)=3.09, p<.003; t(69)=3.89, p<.0003;forthe differencesinfirstandsecondpairrespectively).

Overthetwopairs,theproportionofchoicesintheriskieroptionincreasedfrom18% onaverageto44%( t(69)=4.49, p<.0001)whentheriskieroptionwasassociatedwith losses,insharpcontrasttothestronglossaversioninterpretation.Theparticipantsbehavedas iftheriskyoptionwasmoreattractivewhenitwasassociatedwithpossiblelosses.

9

2.2Study2–Choosingbetweensimpleprospectsforreal

ThesecondstudyisdesignedtoevaluatetherobustnessoftheresultsofStudy1tothe experimentalparadigm.Specifically,itfocusesondecisionsforrealmoneybyusinga variantofProblemsMixed2andGain2asfollows(theoutcomesrepresentpayoffsin

Sheqels):

Problem S 10withprobability0.5

Mixed3 10otherwise

R 20withprobability0.5 P(R)=0.58

20otherwise

Problem S 30withprobability0.5

Gain3 10otherwise

R 40withprobability0.5 P(R)=0.31

0otherwise

ExperimentalDesign

SeventytwoTechnionstudentsservedaspaidparticipantsinthecurrentstudy.The experimentusedawithinparticipantdesign.Eachparticipantwasseatedinfrontofa computerscreenandwasthenpresentedwitheachofthetwoproblemsshownabove.Ineach problem,participantswereaskedtomarktheprospecttheyprefertoplay.Theorderofthe problemswasbalancedoverparticipants.Attheendoftheexperimentoneproblemwas 10 randomlyselectedandplayed.Theparticipants’payoffwasdeterminedaccordingtotheir choiceintheselectedproblem.

Inordertofacilitatethegenerationofreallosses,participantswererecruitedfortwo experiments:theonethatisreportedhere,andanotheronethatinvolvesrepeatedchoicein foursimplifiedpartiallyobservableMarkovdecisionproblems.Werefertothecurrent experimentasthe“target”experimentandtheotheroneas“filler.”Theearningfromthe fillerexperimentwasatleast20Sheqels,butnomorethan32Sheqels.Theorderofthe experimentswascounterbalanced:36participantswerepresentedwiththetargetexperiment beforethefiller;theother36werepresentedwiththetargetexperimentafterthefiller.

Participantsweretoldthatinacasetheyloseinthetargetexperiment,theirlosswouldbe subtractedfromtheirearningsinthefillerexperiment.Webelievethatthismethodof studyingreallossesismorenaturalthanpayingparticipantsafixedamountfromwhichthey canwinorlose. 3Thatis,whenparticipantactually“work”fortheirmoneythereisahigher possibilitythattheyintegratethestakesmorequicklytotheircurrentwealth(seealsoHolt andLaury(2002)forasimilarargument)therebydecreasingthepossibilityofa“house money”effect(ThalerandJohnson(1990)).FinalPayoffsofthetargetexperimentranged betweenalossof20Sheqelsandawinof40Sheqels($4.8and+$9.5).

Results

Thechoiceratesoftheriskyoptionsarepresentedtotherightofthetwoproblems.

TheresultsreplicatethepatternobservedinExperiment1.Again,theproportionsofrisky choicesweremuchhigherinthemixedproblem(0.58)thaninthegaindomain(0.31). 4This

3Thefixedamountapproachis,nevertheless,acommonmethodinstudiesthatinvolvelosses(e.g.,Battalio, Kagel,andJiranyakul(1990),BrooksandZank(2005),Harless(1992)). 4Wealsocheckedforpossibleordereffects:neithertheorderingofthetwoproblems,northeorderingofthe twoexperimentshadaneffectonthecurrentresults.InallfourorderstheproportionofriskychoiceinProblem Mixed3wasextensivelyhigherthaninProblemGain3.Itisalsoworthnoticingthattheproportionofrisk takinginConditionMixed3isnotsignificantlydifferentthan50%( t(71)=1.42,NS). 11 reversalofthepredictionofthestronglossaversioninterpretationissignificant( t(71)=3.6, p

<.001).ThesimilarityofthecurrentresultstotheseobservedinStudy1suggeststhatthe reversalofthestronglossaversionhypothesisisrobusttodecisionswithreal(smallstakes) incentives.

3. THEPREDICTIVEVALUEOFASYMMETRICSIMPLIFICATIONOF PROSPECTTHEORY Theresultspresentedaboverejectthestronginterpretationofthelossaversionassertion;they highlightaclearreversalofthepredictionsofthisinterpretation.TheimplicationsofStudy1 and2totheweakerinterpretationsofthelossaversionhypothesisarelessobvious.For example,underastochasticvariantofprospecttheory,strongdiminishingsensitivitycan masktheeffectoflossaversioninsomecases.Theobjectiveofthecurrentstudyisto examinethemoderateinterpretationoflossaversion:itevaluatestheusefulnessoftheloss aversionassumptiontothepredictionofbehavioraldatabyusingthreedifferentdatasetsthat summarizechoicebehaviorbetweenriskyprospects.Forthispurpose,thecurrent examinationcomparesdifferentvariantsofprospecttheoryusingBusemeyerandWang

(2000)generalizationcriteria.Twoofthedatasetswerecollectedinthestudiesdescribed below.ThethirddatasetwascollectedbyWuandMarkle(2005).

3.1 Study3a:39interestingproblems Inordertoclarifytherelationshipofthecurrentanalysistotheanalysisperformedby

KahnemanandTversky(1979),wechosetocollectdataonproblemsthataresimilartothe problemstheyanalyzed.Specificallywefocusedon13(ofthe18)problemsstudiedinthe

12

1979paper, 5andontwovariantsofeachoftheseproblems.Table1presentsthe39 problems.Problems113arereplicationsoftheproblemsusedbyKahnemanandTversky

(1979).Eachoftheseproblemsincludesahypotheticalchoicebetweenasafeandarisky prospectwithonenonzerooutcome.Problems1426werecreatedbysubtractingthevalue ofthesaferpayofffrombothprospectsinProblems113respectively.Forexample,Problem

1focusesonchoicesbetweenS(2,400,.34;0)andR(2500,.33;0). 6Subtractingthesafer payoffof2400frombothprospectscreatesanewdecisionproblem(Problem14)withmixed gamblesS(0,.34;2400)andR(100,.33;2400).Problems2739werecreatedbyanother subtractionofthesaferpayofffromtheoriginalproblems(113).Inthecurrentexample,

Problem27involvesachoicebetweenS(2400,.34;4800)andR(2300,.33;4800).

<InsertTable1>

ExperimentalDesign

ThirtyTechnionstudentsparticipatedinthecurrentstudyandwerepaid20Sheqels

($4.8)forshowingup.Theexperimentusedawithinparticipantdesign.Eachparticipant wasseatedinfrontofacomputerscreenandwasthenpresentedwitheachofthe39problems presentedinTable1.Theproblemswerepresentedinrandomorder.

Results

TherightmostcolumnofTable1presentstheproportionofRchoicesthatwere observedinKahnemanandTversky(1979).Thesecondrightmostcolumnpresentsthe proportionsofRchoicesinthecurrentstudy.Acomparisonofthesetwocolumnsreveals 5TheproblemsthatwerestudiedinKahnemanandTversky(1979)andwereexcludedfromthecurrentanalysis areProblems1,13,and13’whichincludemorethantwopossibleoutcomesinoneofthegambles,and Problems5and6thatreferredtochoicebetweenhypotheticaltours. 6Thenotation(x,p;y)referstoaprospectthatyieldsoutcomexwithprobabilityofp,andyotherwise.The outcomesrefertoIsraeliasinKahnemanandTversky(1979). 13 thatallthetrends,observedinthe13problemsoftheKahnemanandTversky’s(1979)study, werereplicated.Thecorrelationbetweenthetwostudiesis r=0.84( p<.0001).

3.2 Study3b:200mostlyrandomlyselectedProblems Theseconddatasetconsideredherewascomposedoftwoparts.Thefirst,“basic”, partincludesProblemMixed1andGain1, 7and98randomlyselectedproblems.Therandom

problemswereoftheform:(Swithcertainty)or( R1 withprobabilityofp,and R2 otherwise).

Thefourparameterswereselectedusingthefollowingalgorithm:

Thevaluesof R1 and R2 weredeterminedbydrawsfromtheuniformset[10000,

10000]androundingtothenearestintegerdivisibleby100.Thevalueofpwasrandomly selectedfromtheset{.001,.01,.1,.2,.3,.4,.5,.6,.7,.8,.9,.99,.999}.ThevalueofSwas

determinedbyadrawfrom[ EVR 1000, EVR +1000]where EVR = pR1 + 1( − p)R2 and roundingtothenearestintegerdivisibleby5. 8

Thisselectionmethodresultedwith28problemsinthegaindomain,17problemsin thelossdomain,and55problemswithmixedgambles.Thesecondpart,referredtoasthe

“reflectedpart,”wascreatedbymultiplyingeachofthepayoffsofthefirst100problemsby

1.Forexample,the“reflected”versionofProblem1(presentedinTable2)includeda choicebetweenasureoutcomeof5580,andariskyprospectthatpromised4900with probabilityof0.60,and9100otherwise.Together,thetwopartsensurethatthefulldatasetis balancedwithregardtotheexpectedvalueassociatedwithoptionsSandR.Thefulldataset ispresentedinTable2.

7ProblemMixed1andGain1wereaddedtothedatasetascontrolproblemsinordertoassesstherobustnessof thebehavioraltrendstothesizeofthedatasetofproblems.Thesimilaritybetweentheresultsintheseproblems andtheresultsofstudies1and2suggeststhattheeffectofthesizeofthedatasetisnotlarge. 8Wechosetofocusonrandomlyselectedproblemsinordertodecreasetheriskofaselectionbias(i.e., producingmodelsthatcaptureinterestingproblemsasinKahnemanandTversky(1979)butfailtocapture problemsthatarelessinterestingbutmightbemorecommon). 14

ExperimentalDesign

FortyTechnionstudentsparticipatedinthecurrentstudyandwerepaid20Sheqels

($4.8)forshowingup.Eachparticipantwasseatedinfrontofapersonalcomputerandwas thenpresentedwith100problems.Twentyparticipantswereassignedtothe“100basic” problemspresentedinTable2.Theother20participantswereassignedtothe“100reflected” problems.ParticipantsineachconditionwereaskedtochooseoncebetweenSandRineach ofthe100problemsthatwererandomlyordered.

<InsertTable2>

Results

Theproportionsofriskychoicesinthe“100basic”problemsarepresentedinColumn

“Priskbasic”inTable2.Theproportionsofriskychoicesinthe“100relected”problemsare presentedinColumn“Priskreflect”inthistable.Asonemightexpect,theproportionsofR choiceinthe100basicproblemsarenegativelycorrelated( r=.82)withtheproportionsofR choiceinthe“reflected”problems.

3.3 ThePredictivevalueofCumulativeProspectTheory

Thecurrentanalysisfocusesontwovariantsofcumulativeprospecttheory(Tversky andKahneman(1992),TverskyandWakker(1995),WakkerandTversky(1993)):The original5parameterabstraction,andastochasticgeneralizationofthisabstraction.

15

Cumulativeprospecttheory

Accordingtocumulativeprospecttheory,decisionmakersareassumedtoselectthe prospectwiththehighestweightedvalue.TheweightedvalueofProspectXthatpaysx 1with probabilityp 1andx 2otherwiseis:

WV(X)= V (x1)π ( p1) +V (x2 )π ( p2 ) (1)

whereV(x i)isthesubjectivevalueofoutcomex i,andπ ( pi ) isthesubjectiveweightof outcomex i.

Thesubjectivevaluesaregivenbyavaluefunctionthatcanbedescribedasfollows:

 α  xi if xi ≥ 0 V (xi ) =  β (2) − λ0 xi if xi < 0

Theparameters0<α<1and0<β<1capturetheassumptionofdiminishingsensitivityin thegainandthelossdomainrespectively.Theparameterλ 0 (λintheoriginalnotations) capturesthebasicideaofthelossaversionassertion;whenλ 0>1lossesloomlargerthangains

(asexplainedbelow,twoadditionalfeaturesofthemodelaffecttheabstractionofloss aversion).

Thesubjectiveweightsareassumedtodependontheoutcomes'rank,sign,andona cumulativeweightingfunction.Whenthetwooutcomesareofdifferentsign,theweightof outcome iis:

γ  pi  γ γ /1 γ if xi ≥ 0 ( pi + 1( − pi ) ) π ( pi ) =  (3) p δ  i if x < 0  δ δ /1 δ i ( pi + 1( − pi ) )

16

Theparameters0<γ<1and0<δ<1capturethetendencytooverweightlow probabilityoutcomes.

Whentheoutcomesareofthesamesign,theweightofthemostextremeoutcome

(largestabsolutevalue)iscomputedwithequation(3)(asifitisthesoleoutcomeofthat sign),andtheweightofthelessextremeoutcomeisthedifferencebetweenthatvalueand1.

Inordertoclarifytheabstractionoflossaversionundercumulativeprospecttheoryit isconvenienttosetβ=α(λ 1),andδ=γ(λ 2).Underthisabstraction,cumulativeprospect theoryhasthreefreeparametersthatabstractlossaversionλ 0, λ1, andλ 2,andonefree parameterforeachoftheothermainpsychologicalassumptions:Diminishingsensitivityis capturedbyα,andoverweightingofrareoutcomesiscapturedbyγ. 9

Cumulativeprospecttheorywithastochasticresponserule.

Thesecondmodelconsideredhereisageneralizationofcumulativeprospecttheory thatassumesastochasticresponserule.Themotivationtoconsiderthisgeneralizationcomes fromexperimentalstudiesthatexaminesituationsinwhichpeoplewerefacedwiththesame problemmorethanonce.Thesestudiesshowalargevariationbetweenrepeatedchoicesthat cannotbeexplainedwiththeassertionofachangeinthedecisionmakerstateand/or information.Forexample,Wakker,ErevandWeber(1994)foundthatwhenthegamblesare ofsimilarexpectedvalue,theaveragedecisionmakerchangesherin34%ofthe cases.

WeusetheresponseruleproposedbyErev,Roth,SlonimandBarron((2005)andsee asimilarideainBusemeyer(1985)).Whenthedecisionmakerisaskedtoselectbetween

ProspectR(r1withprobabilityp(r);r2otherwise)andProspectS(s1withprobabilityp(s);s2 otherwise),thisruleimpliesthattheprobabilitythatRwillbeselectedis

9Overweightingofrareoutcomescanbealsoexplainedbydiminishingsensitivityundertheassumptionthatthe twoendpointsoftheprobabilityfunction(0and1)serveasreferencepoints(e.g.,GonzalezandWu(1999)). 17

eWV (R)( / D) Pr(R) = (4) eWV (R)( / D) + eWV (S )( / D)

Theparametercapturespayoffsensitivity,andDistheabsolutedistancebetweenthe cumulativefunctionsimpliedbythetwoprospects.ThecomputationofDrequiresa normalizationoftheweightsofthedifferentoutcomes.Thenormalizedweightofoutcomex 1 is

π (x1 ) π n (x1 ) = (5) π (x1 ) +π (x2 )

Assumingx 1>x 2,thecumulativenormalvalueofgambleXatpointz(0<z<1)is

V (x1) if z ≤π n(x1) CNP(X , z) =  (6) V (x2 ) if z >π n(x1)

Distheabsolutedistancebetweenthecumulativenormalpayoffsofthetwoprospects.A representationofthisvaluecomputationispresentedinFigure1.

<InsertFigure1>

3.3.1 Estimation and equivalent number of observations Inthefirststageofthecurrentanalysisweestimatedtheparametersofthetwomodels forthedatasetsdescribedabove.Theestimationwasbasedonasimplexoptimization method(NedlerandMead(1965))usingameanssquarederrorcriteria. 10 Thatis,we searchedfortheparametersthatminimizethesquareddistancebetweentheobservedresults

10 Toreducetheriskofprogrammingerrorstheanalysiswasconductedindependentlywithtwoprograms.One inSAS(version9.1)andtheotherinMATLAB(version7.1). 18

(1iftheparticipantselectedtheriskyprospect,0otherwise)andthepredictionofthemodel oftheprobabilitythattheriskygamblewillbeselected(1or0inthecaseoftheoriginal model,andanumberbetween0and1inthecaseofthestochasticmodel).Theestimation wasobtainedundertheconstraintofasinglesetofparametersforalltheparticipants,andall theproblemsintherelevantdataset.

Atthesecondstageoftheanalysisweestimatedsimplifiedversionsofthetwomodels thatincludeconstraintsonthevalueofthelossaversionrelatedparameters(λ 0, λ1, andλ 2).

Thethirdstageoftheanalysisfocusedontwogeneralizationtasks.Weusedtheestimated modelstopredictbehaviorintwodifferentdatasetsthatwerenotusedduringtheestimation.

OneofthetwogeneralizationdatasetswascollectedandanalyzedbyWuandMarkle(2005; seeTable1,p.8).ThesecondgeneralizationdatasetwasoneofthetwopresentedinStudy3; theonethatwasnotusedduringtherelevantestimation.

Asintheestimationstage,thegeneralizationanalysisfocusedonMSEscores.To clarifytheinterpretationofthesescorestheywerealsoconvertedtothemodel’sEquivalent

NumberofObservation(ENO,seeErev,Roth,SlonimandBarron(inpress)).TheENOofa modelisanestimationofthesizeoftheexperimentthathastoberuntoobtainpredictions thataremoreaccuratethanthemodel’sprediction.Forexample,ifamodelhasanENOof

10,itspredictionoftheprobabilityofRchoiceinaparticularproblem,isexpectedtobeas accurateasthepredictionthatisbasedontheobservedproportionofRchoicesinan experimentalstudyofthatproblemwith10participants.ThisscoreiscomputedasENO=

S2/(MSES2)whereS 2isthepooledoverproblems.Thatis,S 2istheestimateofthe

MSEscoreofanaccuratemodel,andENOincreaseswhentheMSEdecreasestowardits minimalvalue.

Table3presentsthemainresults.Itshowsthattheconstraints(settingλ 0, λ1, and/orλ 2 toequal1)increasetheMSEofthemodelinthefitteddata.Thisincreaseisnotlargeandnot 19 surprising(theadditionoffreeparametercanonlyimprovethefit).Moreinterestingisthe observationthattheconstraintsimprovethemodels’predictivepower.Indeed,the eliminationofthelossaversionassertion(settingλ 0 =1 , λ1=1,andλ 2 =1)maximizesthe models’ENOinallthecomparisons!

<InsertTable3>

Underoneexplanationofthenegativeeffectofthelossaversionparameter,itreflects dataoverfitting.Whereaswecannotruleoutthispossibility,wetookfewstepstoreduce thisrisk.Themostimportantstepinvolvesthecomparisonofthe4parameterandthe3 parametermodels.Whena4parametermodelisestimatedbasedon200randomlyselected problems(and20decisionmakersperproblem),theriskofoverfittingshouldnotbelarge

(unlessthecontributionoftherelevantfactorissmall).

Theresultsalsohighlightthevalueofthestochasticgeneralizationofcumulative prospecttheory.This1parameteradditionincreasestheENOfromlessthan2,tomorethan

10inmostcomparisons.

Webelievethatthecurrentresultsquestionthevalueofthemoderateinterpretationof thelossaversionassertion.Theadditionoflossaversionimpairedthepredictivevalue(the

ENO)ofthevariantsofcumulativeprospecttheoryweexamined.Itseemsthatasimplified symmetricvariantofthemodel,thatavoidsthelossaversionassertion,maximizesthe model’spredictivevalue.

4. DISCUSSION Thelossaversionassertionisoneofthebestknownimplicationsofbehavioral decisionresearch.Manystudiesdemonstratethatthisassertioncanbeusedtoexplain importanteconomicphenomena(e.g.,BenartziandThaler(1995),Camerer(2000),Rabin 20

(1998)).Yet,directtestsofthisassertionaresurprisinglyscarce.Thecurrentresearchtries toaddressthisgap.Thefirsttwostudiestestastronginterpretationoflossaversion.This interpretation,assumedinmanyoftheapplicationsofthelossaversionassertion,implies lowerrisktakinginproblemsthatinvolveonlygainsthaninproblemsthatinvolvepossible losses(e.g.,Thaleretal.(1997)).Theresultsrejectthisprediction.Infact,theopposite patternwasobserved.Theparticipantsexhibitstrongerriskaversiontendencywhile choosingbetweennonnegativeprospectsthanwhilechoosingbetweenmixedprospects.

Thethirdstudyevaluatesaweakerinterpretationofthelossaversionassertion.Under thisinterpretation,referredtoasthemoderateinterpretation,thequantificationofloss aversioninprospecttheoryimprovesthetheory'spredictivevalue.Theresultsrejectthis hypothesistoo;analysisofthreewidedatasetsdemonstratesthattheabstractionoftheloss aversionhypothesisimpairsthepredictivevalueofprospecttheory.

Atfirstglace,thecurrentresultsappeartoquestionthevalueofbehavioraldecision research.Thatis,theysuggestthattherelianceon"descriptive"modelscreatesanillusionof

"descriptive"conclusions.However,webelievethatamorecarefulevaluationofthecurrent resultssupportstheoppositeconclusion;ithighlightsthepotentialofbehavioraldecision research.Ouroptimisticconclusionisbasedontheobservationthatthedatadonotimply thatthebehavioralmodelsweconsidered(variantsofcumulativeprospecttheory)fail.On thecontrary,theysuggestthatcumulativeprospecttheorycanbemoreelegantthanwe originallythought.Asimplified3parametervariantofthismodelthatassumessymmetry betweengainandlossesprovidessurprisinglygoodpredictionsofchoicebehavior.

Thevariantofcumulativeprospecttheory,supportedhere,capturesthreebehavioral regularities.Thefirsttworegularitiesaretheonesthathavemotivatedtheoriginalversionof prospecttheory:Diminishingsensitivity,andoverweightingoflowprobabilityevents.The thirdregularity,stochasticchoice,appearslessinteresting,butitisnotlessimportant.The 21 abstractionofthisregularityincreasestheENOofthemodelfromlessthan2tomorethan10 inmostofthecomparisonsweanalyzed.

Weakerinterpretationsofthelossaversionassertion

Itisimportanttoemphasizethatthecurrentresultsdonotrejecttheweak interpretationofthelossaversionassertion.Specifically,wedonotquestiontherobustness oftheobservationthatincertainsettingschoicebehaviorcannotbecapturedwithprospect theorywithouttheabstractionoflossaversion(e.g.,Abdellaouietal.(inpress)).Inaddition, wedonotquestionthepossibilitythatcertainindividualsbehaveasiftheyarelossaverse

(SchmidtandTraub(2002),BrooksandZank(2005)).Thecurrentanalysisonlysuggests thatthese"lossaversioninducingsituations"and"lossaverseindividuals"maynotbevery common(inthespaceofsituationsweconsidered). 11 Thissuggestionissupportedbytwo observations.First,itiseasytofindsituationsinwhichpeopleexhibitthereversalofthe stronglossaversionassertion.Second,theadditionofthelossaversionabstractionto cumulativeprospecttheoryimpairsthetheorypredictionsoftheaggregatebehaviorinawide setofsituations.

Webelievethatthemaindifferencebetweenthecurrentresearchandpreviousstudies ofthelossaversionhypothesisinvolvestheworkingassumptionconcerningtheroleofthe relevantmodels.Mostpreviousstudiesexaminedthelossaversionassertionunderthe workingassumptionthataparticulartheoryisaccurate.Underthisworkingassumption,a singleexperimentalresultcanbeusedtorejectaparticularmodel(likethesimplifiedvariant ofcumulativeprospecttheorysupportedhere).Thecurrentanalysis,incontrast,treats descriptivemodelsaspotentiallyusefulapproximationsthatcanbeusedtopredictbehavior 11 Inarecentexperimentaltestoflossaversion,SchmidtandTraub(2002)arrivedtoasimilarconclusion. Whentryingtoclassifyindividualsbytheirlossattitude,33%oftheparticipantswereclassifiedas“lossaverse”, 24%as“lossseeking”andmostparticipants(42%)exhibited“lossneutrality.”Theauthorsconcluded:“our resultssuggestthatthisconclusion( i.e. , that is a good description of decision behavior in general ) shouldbetakenwithsomecautious”(SchmidtandTraub(2002),p.246). 22 inaparticularsetofsituations.Underthisworkingassumption,asingleobservationhas limitedimplication.Thevalueofamodeliscapturedbyitspredictivevalue(andcanbe quantifiedbyitsENO). 12

Summary

Thecurrentanalysisleadstoasetofnegativeandasetofpositiveconclusions.The negativeconclusionsarerelatedtothelossaversionassertion.Theresultshighlightclear reversalsofthepredictionsoftwointerpretationsofthisassertion.Inviolationofthestrong interpretation,riskaversioninchoiceamongmixedprospects(thatinvolvegainsandlosses) isweakerthaninachoiceamongprospectswithnonnegativepayoffs.Inaddition,the abstractionoflossaversionimpairsthepredictivevalueofprospecttheory.Thepositive conclusionsarerelatedtothevalueofthebehavioralregularitiesthatmotivatedtheoriginal presentationofprospecttheory:diminishingsensitivityrelativetothestatusquo,and overweightingoflowprobabilityoutcomes.Theresultsshowthatasimplifiedsymmetric versionofprospecttheorythatcapturestheseregularitiesandassumestochasticchoicehas surprisinglyhighpredictivevalue.

12 Thecurrentapproachdoesnotimplythattheviolationsofthemodelshouldbeignored.Ratherittriesto avoidcomplexmodelsthatcaptureinterestingviolationsbutimpairpredictivevalue.Inafollowupresearch (ErtandErev(2007))weexploretheconditionsunderwhichlossaversion,andreversedlossaversion,arelikely toemerge.Ourresultssuggestthatthecriticalconditionsinvolvecontextualvariablesthatareignoredby prospecttheory.Forexample,manypeoplerejectthebet(1000,.5;+1000)whentheyareaskedtoselect between“Accept”or“Reject”,butpreferthisbetover(0withcertainty).Similarcontextualvariablescan accounttothedifferencebetweenthecurrentresultsandTverskyandKahneman’s(1992)evaluationofloss aversion. 23

REFERENCES ABDELLAOUI, M.,H.B LEICHRODT , AND C.P ARASCHIV (inpress):“LossAversionunder

ProspectTheory:AParameterFreeMeasurement,” Management Science .

BARRON ,G., AND I.E REV (2003):“SmallFeedbackBasedDecisionsandTheirLimited

CorrespondencetoDescriptionBasedDecisions,” Journal of Behavioral Decision

Making, 16 , 215233.

BATTALIO, R.C.,J.H.K AGEL , ANDK.J IRANYAKUL (1990):“TestingBetweenAlternative

ModelsofChoiceunder:SomeInitialResults,” Journal of Risk and

Uncertainty ,3,2550.

BENARTZI ,S., AND R.H.T HALER (1995):“MyopicLossAversionandtheEquityPremium

Puzzle,” Quarterly Journal of , 110,7392.

BLEICHRODT ,H.,J.L.P INTO , AND P.P.W AKKER (2001):“MakingDescriptiveUseof

ProspectTheorytoImprovethePrescriptiveUseofExpectedUtility,” Management

Science ,47,14981514.

BROOKS ,P., AND H.Z ANK (2005):“LossAverseBehavior,” Journal of Risk and

Uncertainty ,31,301325.

BUSEMEYER ,J.R.,(1985):“Decisionmakingunderuncertainty:Acomparisonofsimple scalability,fixedsample,andsequentialsamplingmodels.” Journal of Experimental Psychology ,11,538564. BUSEMEYER ,J.R., AND Y.M.W ANG (2000):“ModelComparisonsandModelSelections

BasedontheGeneralizationCriterionMethodology,” Journal of Mathematical

Psychology ,44,171189.

CAMERER ,C.F.(2000):“ProspectTheoryintheWild:EvidencefromtheField,”InD.

Kahneman,&A.Tversky, Choices, Values, and Frames (pp288300).Cambridge,U.K:

Cambridge,UniversityPress. 24

CHARNESS, G., AND B.G ROSSKOPF (2001):“RelativePayoffsandHappiness:An

ExperimentalStudy,” Journal of Economic Behavior and Organization ,45,301328.

EREV ,I.,E.E RT , AND E.Y ECHIAM (2007):“LossAversion,DiminishingSensitivity,andthe

EffectofExperienceinRepeatedDecisions,”Technion,Workingpaper.

EREV ,I.,A.E.R OTH, R.L.S LONIM,AND G.B ARRON (inpress):“LearningandEquilibrium

asUsefulApproximations:AccuracyofPredictiononRandomlySelectedConstantSum

Games,” Economic Theory .

(2005):“DescriptiveModelsasGeneratorsofPriorBeliefswithKnown

EquivalentNumberofObservations(ENO),”Technion,WorkingPaper.

ERT, E., AND I.E REV (2007):“TheRejectionofAttractiveGamblesandtheHeuristic

InterpretationofLossAversion,”Technion,WorkingPaper.

GNEEZY, U., AND J.P OTTERS (1997):“AnExperimentonRiskTakingandEvaluation

Periods,” Quarterly Journal of Economics ,112,631645.

GONZALEZ, R., AND G.W U(1999):“OntheShapeoftheProbabilityWeightingFunction,”

Cognitive Psychology ,38,129166.

HARLESS, D.W.(1992):“PredictionsaboutIndifferenceCurvesInsidetheUnitTriangle:A

TestofVariantsofExpectedUtilityTheory,” Journal of Economic Behavior and

Organization ,18,391414.

HOLT, C.A, AND S.K.L AURY (2002):“RiskAversionandIncentiveEffects,”American

EconomicReview,92,16441655.

KAHNEMAN ,D., AND A.T VERSKY (1979):“ProspectTheory:AnAnalysisofDecisionunder

Risk,” , 47, 263291.

KAHNEMAN ,D.,J.L.K NETSCH , AND T HALER ,R.H.(1990):“ExperimentalTestsofthe

EndowmentEffectandtheCoaseTheorem,” Journal of , 98,1325

1348. 25

KOBBERLING ,V., AND P.P.W AKKER (2005):“AnofLossAversion,” Journal of

Economic Theory ,122,119131

NEDLER ,J.A., AND R.M EAD (1965):“ASimplexMethodforFunctionMinimization,”

Computer Journal , 7,308313.

PRATT ,J.W.(1964):“RiskAversionintheSmallandintheLarge,” Econometrica ,32,122

136.

RABIN, M.(1998):“PsychologyandEconomics,” Journal of Economic Literature ,36,1146.

SAMUELSON ,W., AND R.Z ECKHAUSER (1988):“StatusQuoBiasinDecisionMaking,”

Journal of Risk and Uncertainty, 1,759.

SCHMIDT, U., AND S.T RAUB (2002):“AnExperimentalTestofLossAversion,” Journal of

Risk and Uncertainty, 25,233249.

SCHMIDT, U., AND H.Z ANK (2005):“WhatisLossAversion?” Journal of Risk and

Uncertainty, 30,157167.

THALER ,R.H., AND E.J.J OHNSON (1990):“GamblingwiththeHouseMoneyandTryingto

BreakEven:TheEffectsofPriorOutcomesonRiskyChoice,” Management Science ,36,

643660.

THALER ,R.H.,A.T VERSKY ,D.K AHNEMAN , AND A.S CHWARTZ (1997):“TheEffectof

MyopiaandLossAversiononRiskTaking:AnExperimentalTest,” Quarterly Journal of

Economics, 112, 647661.

TVERSKY ,A., AND D.K AHNEMAN (1992):“AdvancesinProspectTheory:Cumulative

RepresentationofUncertainty,” Journal of Risk and Uncertainty ,5,297323.

TVERSKY ,A., AND P.P.W AKKER (1995):“RiskAttitudesandDecisionWeights,”

Econometrica ,63,12551280. 26

WAKKER ,P.P.,I.E REV,AND E.U.W EBER (1994):“ComonotonicIndependence:The

CriticalTestBetweenClassicalandRankDependentUtilityTheories,” Journal of Risk

and Uncertainty ,9,195230.

WAKKER ,P.P., AND A.T VERSKY (1993):“AnAxiomatizationofCumulativeProspect

Theory,” Journal of Risk and Uncertainty ,7,147176.

WU,G., AND A.M ARKLE (2005):“AnEmpiricalTestofGainLossSeparabilityinProspect Theory,”ChicagoGSB,Workingpaper. 27

TABLE1 THE39PROBLEMSTHATWEREEVALUATEDINSTUDY3a

S1 P(s) S2 R1 P(r) R2 Prisk Prisk (KT79) 1 2400 0.34 0 2500 0.33 0 0.72 0.83 2 3000 1 0 4000 0.8 0 0.28 0.20 3 3000 0.25 0 4000 0.2 0 0.76 0.65 4 3000 0.9 0 6000 0.45 0 0.38 0.14 5 3000 0.002 0 6000 0.001 0 0.69 0.73 6 500 1 0 1000 0.5 0 0.38 0.16 7 -3000 1 0 -4000 0.8 0 0.79 0.92 8 -3000 0.25 0 -4000 0.2 0 0.38 0.42 9 -3000 0.9 0 -6000 0.45 0 0.59 0.92 10 -3000 0.002 0 -6000 0.001 0 0.24 0.30 11 -500 1 0 -1000 0.5 0 0.72 0.69 12 5 1 0 5000 0.001 0 0.72 0.72 13 -5 1 0 -5000 0.001 0 0.48 0.17 14 0 0.34 -2400 100 0.33 -2400 0.9 . 15 0 1 0 1000 0.8 -3000 0.66 . 16 0 0.25 -3000 1000 0.2 -3000 0.9 . 17 0 0.9 -3000 3000 0.45 -3000 0.66 . 18 0 0.002 -3000 3000 0.001 -3000 0.76 . 19 0 1 0 500 0.5 -500 0.38 . 20 0 1 0 -1000 0.8 3000 0.41 . 21 0 0.25 3000 -1000 0.2 3000 0.21 . 22 0 0.9 3000 -3000 0.45 3000 0.48 . 23 0 0.002 3000 -3000 0.001 3000 0.14 . 24 0 1 0 -500 0.5 500 0.45 . 25 . 0 1 0 4995 0.001 -5 0.59 26 0 1 0 -4995 0.001 5 0.31 . 27 -2400 0.34 -4800 -2300 0.33 -4800 0.62 . 28 -3000 1 0 -2000 0.8 -6000 0.76 . 29 -3000 0.25 -6000 -2000 0.2 -6000 0.55 . 30 -3000 0.9 -6000 0 0.45 -6000 0.79 . 31 -3000 0.002 -6000 0 0.001 -6000 0.93 . 32 -500 1 0 0 0.5 -1000 0.76 . 33 3000 1 0 2000 0.8 6000 0.48 . 34 3000 0.25 6000 2000 0.2 6000 0.34 . 35 3000 0.9 6000 0 0.45 6000 0.21 . 36 3000 0.002 6000 0 0.001 6000 0.21 . 37 500 1 500 0 0.5 1000 0.41 . 38 . -5 1 -5 4990 0.001 -10 0.69 39 5 1 5 -4990 0.001 10 0.31 . Note:eachrawrepresentadecisionproblembetweenprospectS(S1,P(s);S2)andprospectR (R1,P(r);R2).ColumnPriskpresentstheproportionofRchoicesineachproblem.Column Prisk(KT79)presentstheproportionofriskychoicesobservedinKahnemanandTversky (1979). 28

TABLE2 THE200PROBLEMSTHATWEREEVALUATEDINSTUDY3b

1-50 “BASIC” PROBLEMS 51-100 “BASIC” PROBLEMS Prisk Prisk Prisk Prisk S R1 Pr R2 S R1 Pr R2 basic reflect basic reflect 1 -5580 -4900 0.6 -9100 0.2 0.95 51 8500 9300 0.3 7300 0.3 0.9 2 -9075 5000 0.001 -9100 0.8 0.35 52 3625 5000 0.01 3600 0.8 0.5 3 -2300 -2000 0.9 -6400 0.3 0.75 53 -2500 -2500 0.7 -2600 0.15 0.75 4 4560 4900 0.9 -8500 0.15 0.95 54 -4400 8200 0.2 -8800 0.5 0.5 5 2700 3200 0.9 -1600 0.2 0.65 55 5700 9900 0.6 -3100 0.3 0.7 6 2080 5200 0.1 1300 0.4 0.85 56 3495 3500 0.99 2800 0.3 0.8 7 900 900 0.7 500 0.15 0.95 57 -6255 -3900 0.01 -6300 0.7 0.45 8 8600 8700 0.999 -3100 0.3 0.9 58 2100 2100 0.6 1800 0 0.95 9 3300 3300 0.5 1800 0.1 0.95 59 7450 7500 0.999 -7400 0.3 1 10 8000 8000 0.6 6900 0.2 0.9 60 4100 8900 0.5 -2700 0.35 0.75 11 2280 5000 0.1 1600 0.55 0.75 61 -1840 3700 0.4 -7200 0.5 0.5 12 2450 2500 0.99 -3600 0.15 0.95 62 -5800 -5600 0.9 -8400 0.35 0.9 13 3700 6300 0.6 -2700 0.3 0.75 63 -6260 -6100 0.4 -6900 0.35 0.85 14 -5220 8900 0.1 -7900 0.65 0.35 64 2050 3700 0.5 -1600 0.15 1 15 7450 8600 0.5 4300 0.3 1 65 -2380 3600 0.01 -2500 0.8 0.35 16 -3000 -2900 0.7 -4700 0.2 0.95 66 -120 3200 0.4 -4000 0.5 0.55 17 -7075 7300 0.001 -7100 0.8 0.25 67 5400 5500 0.99 -2600 0.3 0.85 18 3005 3900 0.001 3000 0.75 0.55 68 3850 8200 0.5 -2500 0.25 0.7 19 -3350 9600 0.1 -5900 0.55 0.4 69 -8080 2600 0.001 -8100 0.8 0.25 20 2970 3000 0.99 -800 0.3 0.9 70 -4420 4300 0.01 -4600 0.6 0.35 21 9550 9600 0.99 5400 0.3 1 71 -695 4600 0.01 -800 0.8 0.1 22 900 7300 0.5 -7500 0.3 0.45 72 7140 9000 0.8 -5300 0.25 1 23 7980 8300 0.3 7500 0.35 0.9 73 220 6500 0.3 -3900 0.3 0.6 24 8885 8900 0.999 -6000 0.3 0.95 74 1660 3300 0.6 -3300 0.3 0.8 25 -7280 2300 0.001 -7300 0.85 0.2 75 -200 2400 0.7 -9600 0.35 0.45 26 -5740 -5500 0.6 -8600 0.1 0.85 76 4340 4800 0.4 2500 0.35 0.9 27 5000 5100 0.8 -400 0.05 0.9 77 3495 3500 0.99 3000 0.45 0.9 28 -4295 -500 0.001 -4300 0.8 0.4 78 -6240 600 0.2 -9200 0.45 0.45 29 -4200 2200 0.1 -5800 0.45 0.45 79 8850 8900 0.99 6000 0.35 0.7 30 -7340 300 0.01 -7500 0.7 0.5 80 -4800 -4800 0.8 -5900 0.15 0.8 31 -610 6300 0.3 -5000 0.4 0.5 81 -4995 -1100 0.001 -5000 0.8 0.3 32 3250 5600 0.5 -1100 0.15 0.95 82 -5250 5900 0.1 -7600 0.75 0.35 33 -3050 -3000 0.7 -3800 0.3 0.9 83 -3405 6100 0.01 -3600 0.8 0.4 34 1580 1600 0.4 1500 0.45 0.85 84 -2940 -1300 0.4 -5700 0.45 0.75 35 6275 9900 0.01 6200 0.65 0.4 85 -4530 5900 0.1 -6800 0.6 0.3 36 6420 7100 0.7 1500 0.25 0.95 86 2040 6000 0.6 -6400 0.15 0.6 37 1190 1200 0.99 -2400 0.1 0.95 87 -7300 1600 0.1 -9400 0.65 0.4 38 1590 1600 0.999 -4800 0.25 0.85 88 -4300 -900 0.5 -9700 0.5 0.45 39 -1395 -1400 0.99 -2900 0.15 0.8 89 6760 7400 0.1 6600 0.6 0.45 40 3420 5300 0.8 -9100 0.15 0.8 90 9195 9200 0.999 -5900 0.2 0.95 41 -3860 6900 0.3 -9900 0.55 0.45 91 4180 6100 0.2 2900 0.25 0.95 42 4650 4700 0.7 1200 0.25 0.9 92 4350 10000 0.5 -3300 0.55 0.9 43 -3270 -1900 0.7 -9800 0.45 0.7 93 5960 8000 0.6 400 0.2 0.95 44 9340 9600 0.7 5400 0.3 0.95 94 4900 4900 0.6 4000 0.25 0.95 45 5400 5500 0.99 -3600 0.35 0.85 95 700 9300 0.4 -6700 0.45 0.4 46 -20 3900 0.6 -8400 0.4 0.45 96 -2080 8700 0.01 -2300 0.7 0.4 47 -5295 4800 0.01 -5500 0.65 0.15 97 -2485 3500 0.001 -2500 0.85 0.4 48 4560 4800 0.2 4400 0.5 0.65 98 -9610 -9600 0.9 -9800 0.35 0.85 49 120 8800 0.001 100 0.7 0.35 99 0 1000 0.5 -1000 0.7 0.45 50 -320 3300 0.4 -4400 0.4 0.55 100 1000 2000 0.5 0 0.3 0.7 29

TABLE3 THEPREDICTIVEPOWEROFTHEDIFFERENTVERSIONSOFCUMULATIVE PROSPECTTHEORY Generalization tests

λ0 α λ1 γ λ2 Fit 200 W&M β=α(λ1) δ=γ(λ2) MSE MSE MSE ENO ENO Estimated CPT .98 .86 1 .85 .98 .306 .309 .396 onstudy3a 1.31 1.24 (39prob.) 1.02 .86 [1] .84 [1] .306 .310 .396 1.30 1.24 [1] .85 [1] .8 [1] .308 .285 .396 1.61 1.61 SCPT 1.53 .85 .92 .79 .98 4.52 .215 .202 .238 6.51 11.65 1.01 .81 [1] .78 [1] 4.23 .216 .199 .237 7.37 12.11 [1] .81 [1] .78 [1] 4.20 .216 .199 .237 7.43 12.16 39 MSE ENO Estimated CPT 0.95 .75 1 .68 1.1 .272 .343 .391 onstudy3b 1.42 1.27 (200prob.) 1 .86 [1] .5 [1] .274 .335 .420 1.49 1.07 SCPT 1.68 .78 .95 .75 .90 2 .188 .223 .237 9.18 11.72 1.09 .75 1 .71 1 1.98 .188 .221 .237 10.02 11.63 [1] .77 [1] .71 [1] 2.04 .188 .220 .237 10.33 12.04 Note:CPTreferstothedeterministicversionofcumulativeprospecttheoryandSCPTrefers tothestochasticversion.Thefirstsectionofthetablepresentsthepredictionsofthemodels thatwereestimatedonthedataofstudy3a(39problems).Thesecondsectionpresentsthe predictionestimatedonthedataofstudy3b(200problems).Acellwith[1]referstoa parameterthatwasrestrictedtobe1.ThethirdrightmostcolumnpresentstheMSEofthe fittedmodelontheestimateddata.ThetworighthandcolumnspresenttheMSEandENOof themodelontwopredictiontasks:Predicting3aor3b(theonenotusedduringthe estimation),andpredictingthe34problemsstudiedbyWuandMarkle(W&M,2005). 30

FIGURE1 Thecumulativeutilityfunctionsofthetwoprospects:(r1,p(r);r2)and(s1,p(s);s2).The normalizationfactorDistheaveragedistancebetweenthetwofunctions. V(x) (r1,p(r);r2) V(r1) (s1,p(s);s2) V(s1) V(s2) V(r2) 1 π n (r1 ) π n (s1 )