Npgrj Nbt 1312 1..3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Retention Indices for Frequently Reported Compounds of Plant Essential Oils
Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5. -
Effect of Alkali Carbonate/Bicarbonate on Citral Hydrogenation Over Pd/Carbon Molecular Sieves Catalysts in Aqueous Media
Modern Research in Catalysis, 2016, 5, 1-10 Published Online January 2016 in SciRes. http://www.scirp.org/journal/mrc http://dx.doi.org/10.4236/mrc.2016.51001 Effect of Alkali Carbonate/Bicarbonate on Citral Hydrogenation over Pd/Carbon Molecular Sieves Catalysts in Aqueous Media Racharla Krishna, Chowdam Ramakrishna, Keshav Soni, Thakkallapalli Gopi, Gujarathi Swetha, Bijendra Saini, S. Chandra Shekar* Defense R & D Establishment, Gwalior, India Received 18 November 2015; accepted 5 January 2016; published 8 January 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The efficient citral hydrogenation was achieved in aqueous media using Pd/CMS and alkali addi- tives like K2CO3. The alkali concentrations, reaction temperature and the Pd metal content were optimized to enhance the citral hydrogenation under aqueous media. In the absence of alkali, ci- tral hydrogenation was low and addition of alkali promoted to ~92% hydrogenation without re- duction in the selectivity to citronellal. The alkali addition appears to be altered the palladium sites. The pore size distribution reveals that the pore size of these catalysts is in the range of 0.96 to 0.7 nm. The palladium active sites are also quite uniform based on the TPR data. The catalytic parameters are correlated well with the activity data. *Corresponding author. How to cite this paper: Krishna, R., Ramakrishna, C., Soni, K., Gopi, T., Swetha, G., Saini, B. and Shekar, S.C. (2016) Effect of Alkali Carbonate/Bicarbonate on Citral Hydrogenation over Pd/Carbon Molecular Sieves Catalysts in Aqueous Media. -
(12) Patent Application Publication (10) Pub. No.: US 2016/0279073 A1 Donsky Et Al
US 20160279073A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0279073 A1 Donsky et al. (43) Pub. Date: Sep. 29, 2016 (54) TERPENE AND CANNABINOID Publication Classification FORMULATIONS (51) Int. Cl. A63L/01 (2006.01) (71) Applicant: FULL SPECTRUM A63L/05 (2006.01) LABORATORIES, LTD., Dublin 2 A636/85 (2006.01) (IE) A63L/352 (2006.01) A63L/05 (2006.01) (72) Inventors: Marc Donsky, Denver, CO (US); A6II 47/36 (2006.01) Robert Winnicki, Denver, CO (US) A 6LX 9/27 (2006.01) A63L/045 (2006.01) (21) Appl. No.: 15/033,023 (52) U.S. Cl. CPC ............... A6 IK3I/01 (2013.01); A61K 9/127 (22) PCT Fed: Oct. 31, 2014 (2013.01); A61 K3I/015 (2013.01); A61 K 31/045 (2013.01); A61K 31/352 (2013.01); (86) PCT No.: PCT/B2O14/OO3156 A61 K3I/05 (2013.01); A61K 47/36 (2013.01); A61K 36/185 (2013.01) S 371 (c)(1), (2) Date: Apr. 28, 2016 (57) ABSTRACT The present invention provides stable, fast-acting liposome and micelle formulations of terpenes, hemp oil, cannabi Related U.S. Application Data noids, or mixtures of a cannabinoid and terpenes or hemp oil and cannabinoids that are Suitable for pharmaceutical and (60) Provisional application No. 61/898,024, filed on Oct. nutraceutical applications. Also provided are methods for 31, 2013. the manufacture of micelle and liposomal formulations. US 2016/0279.073 A1 Sep. 29, 2016 TERPENE AND CANNABINOID medical conditions, including glaucoma, AIDS wasting, FORMULATIONS neuropathic pain, treatment of spasticity associated with multiple Sclerosis, fibromyalgia and chemotherapy-induced PRIORAPPLICATION INFORMATION nausea. -
Redalyc.Degradation of Citronellol, Citronellal and Citronellyl Acetate By
Electronic Journal of Biotechnology E-ISSN: 0717-3458 [email protected] Pontificia Universidad Católica de Valparaíso Chile Tozoni, Daniela; Zacaria, Jucimar; Vanderlinde, Regina; Longaray Delamare, Ana Paula; Echeverrigaray, Sergio Degradation of citronellol, citronellal and citronellyl acetate by Pseudomonas mendocina IBPse 105 Electronic Journal of Biotechnology, vol. 13, núm. 2, marzo, 2010, pp. 1-7 Pontificia Universidad Católica de Valparaíso Valparaíso, Chile Available in: http://www.redalyc.org/articulo.oa?id=173313806002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Electronic Journal of Biotechnology ISSN: 0717-3458 Vol.13 No.2, Issue of March 15, 2010 © 2010 by Pontificia Universidad Católica de Valparaíso -- Chile Received April 24, 2009 / Accepted November 6, 2009 DOI: 10.2225/vol13-issue2-fulltext-8 RESEARCH ARTICLE Degradation of citronellol, citronellal and citronellyl acetate by Pseudomonas mendocina IBPse 105 Daniela Tozoni Instituto de Biotecnologia Universidade de Caxias do Sul R. Francisco G. Vargas 1130 Caxias do Sul, RS, Brazil Jucimar Zacaria Instituto de Biotecnologia Universidade de Caxias do Sul R. Francisco G. Vargas 1130 Caxias do Sul, RS, Brazil Regina Vanderlinde Instituto de Biotecnologia Universidade de Caxias do Sul R. Francisco G. Vargas 1130 Caxias do Sul, RS, Brazil Ana Paula Longaray Delamare Universidade de Caxias do Sul R. Francisco G. Vargas 1130 Caxias do Sul, RS, Brazil Sergio Echeverrigaray* Universidade de Caxias do Sul R. Francisco G. Vargas 1130 Caxias do Sul, RS, Brazil E-mail: [email protected] Financial support: COREDES/FAPERGS, and D. -
ISOLATION of GERANIOL from RHODINOL by USING PDC REAGENT Nahso3 and Nabh4
The 2nd International Conference on Chemical Sciences Proceeding ISSN NO. 1410-8313 Yogyakarta, October 14-16th, 2010 ISOLATION OF GERANIOL FROM RHODINOL BY USING PDC REAGENT NaHSO3 AND NaBH4 Zaina Mukhia Bintan, Priatmoko1,*), and Hardono Sastrohamidjojo*) 1 Department of Chemistry, Universitas Gadjah Mada, Yogyakarta, Indonesia * Corresponding author, tel/fax : +62274545188 ABSTRACT Isolation geraniol from the rhodinol have been coducted by using PDC (pyridinium dichromate) reagent, NaHSO3 and NaBH4. The prosses consits of four steps : first step was rhodinol to get the high grade (it are compare between citronella oil from sample A, sample B and sample C, second step was the oxidation of rhodinol by using PDC, third step was separation of citral from citronellol by using sodium bisulfit, and the last step was reduction of citral to geraiol by using NaBH4 in etanol. The higher grade rhodinol was isolated from citronella oil of sample with purity 29.03%. The rhodinol wich used in this research was product of the third fraction redistillation of distillate the second fraction citronella oil, with grade of rhodinol was 90.55%. The oxidation of rhodinol by using PDC, could selectively oxidize geraniol become citral, whereas nothing change with citronellol. The product of oxidation was mixture of citral and citronellol, yellow liquid with fragnance odor, weight : 0.8 g. The geraniol can be obtained from reduction geraniol by using NaBH4 in ethanol. Product of reduction was colourless liquid, with fragnance odor, weight : 0.4 g. The product was analyzed by using GC and infrared spectrometer. Keywords: geraniol, citral, pyridinium dichromate INTRODUCTION Schmidts (1979 have also made the reagent to oxidase alcohol (primary, secondary and so he essential oil is a natural product that on) become the carbonyl compound. -
Effect of Thidiazuron on Terpene Volatile Constituents And
molecules Article Effect of Thidiazuron on Terpene Volatile Constituents and Terpenoid Biosynthesis Pathway Gene Expression of Shine Muscat (Vitis labrusca × V. vinifera) Grape Berries 1, 1, 1 2 Wu Wang y, Muhammad Khalil-Ur-Rehman y, Ling-Ling Wei , Niels J. Nieuwenhuizen , Huan Zheng 1,* and Jian-Min Tao 1,* 1 College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; [email protected] (W.W.); [email protected] (M.K.-U.-R.); [email protected] (L.-L.W.) 2 The New Zealand Institute for Plant and Food Research Ltd. (PFR), Private Bag 92169, Auckland 1142, New Zealand; [email protected] * Correspondence: [email protected] (H.Z.); [email protected] (J.-M.T.); Tel.: +86-150-7784-8993 (H.Z.); +86-139-0516-0976 (J.-M.T.) These authors contributed equally in this work. y Received: 14 April 2020; Accepted: 26 May 2020; Published: 2 June 2020 Abstract: Volatile compounds are considered to be essential for the flavor and aroma quality of grapes. Thidiazuron (TDZ) is a commonly used growth regulator in grape cultivation that stimulates larger berries and prevents fruit drop. This study was conducted to investigate the effect of TDZ on the production of aroma volatiles and to identify the key genes involved in the terpene biosynthesis pathways that are affected by this compound. Treatment with TDZ had a negative effect on the concentration of volatile compounds, especially on monoterpenes, which likely impacts the sensory characteristics of the fruit. The expression analysis of genes related to the monoterpenoid biosynthesis pathways confirmed that treatment with TDZ negatively regulated the key genes DXS1, DXS3, DXR, HDR, VvPNGer and VvPNlinNer1. -
Vape Cart Disclosure (Verified® Cartridges) This Product
Vape Cart Disclosure (Verified® Cartridges) This product was produced using terpenes derived from sources other than cannabis. This product has been tested for contaminants, including Vitamin E Acetate, with no adverse findings. WARNING: Vaporizer Products may contain ingredients harmful to health when inhaled. The cartridge holding the vape concentrate is manufactured by Verified® and comprised of the following components: glass fluid holder; glass mouthpiece; SnCo-plated brass atomizer shell, base and airway tube; nichrome heating element; ceramic wick; cellulose atomizer retaining wrap; and silicone seals. If you wish to inspect a copy of the associated testing results of this vape cart at Triple M’s dispensary, please let your dispensary agent know and they will be happy to review them with you. Triple M does not use any Polyethlyne glycol (PEG) or medium chain triglycerides (MCT) in producing its vape carts. If you wish to inspect a copy of the associated testing results of the product you are purchasing, please let your Triple M dispensary agent know and they will be happy to review them with you. Charlottes Web Vape Cart Ingredients: Cannabis distillate oil (.475g/95%) and botanically derived Charlottes Web terpene blend manufactured by True Terpenes (0.025g/5%), comprised of the following terpenes: Ingredient MG Per Cart % Of Total Myrcene 11.075 2.22% α-Pinene 5.1 1.02% β-Caryophyllene 2.125 0.43% β-Pinene 1.55 0.31% Limonene 1.1 0.22% α-Bisabolol 1.025 0.21% Guaiol 0.975 0.20% Humulene 0.675 0.14% Linalool 0.275 0.06% Fenchol -
Citronellol Cas No
SUMMARY OF DATA FOR CHEMICAL SELECTION -CITRONELLOL CAS NO. 106-22-9 BASIS OF NOMINATION TO THE CSWG The nomination of citronellol to the CSWG is based on high production volume, widespread human exposure, and an unknown potential for adverse health effects from long-term administration. Citronellol came to the attention of the CSPG because of information supplied by the Food and Drug Administration (FDA) from a review of “GRAS” substances used as spices and food additives. According to the FDA data, citronellol is found in 17 different spices. It is also a common flavoring in beverages and foods and is one of the most widely used fragrance materials, having the sweet aroma of rose. Occupational exposure to citronellol in the United States is significant, estimated to be over 160,000 workers in 62 industries. Citronellol is present in high concentrations in citronella, geranium, and rose oils, accounting for additional human exposure. It is also closely related to citronellal and seven esters also having “GRAS” status. SELECTION STATUS ACTION BY CSWG : 7/16/97 Studies requested : - Metabolism studies - Mechanistic studies to include examination of the role of α 2u -globulin in transport - Carcinogenicity - In vitro cytogenetic analysis - In vivo micronucleus assay Priority : Moderate Rationale/Remarks : - High production levels - Widespread exposure as an ingredient in natural products - Lack of chronic toxicity data - Test in parallel with linalool INPUT FROM GOVERNMENT AGENCIES/INDUSTRY Dr. Dan Benz, Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA) and Dr. Ed Matthews (formerly with CFSAN) provided information on citronellol from FDA’s Priority-Based Assessment of Food Additives (PAFA) database. -
Predicting Sorbent-Air Partition Coefficients for Terpenoids at Multiple Temperatures
Ind. Eng. Chem. Res. 2020, 59, 37, 16473–16482 Predicting Sorbent-Air Partition Coefficients for Terpenoids at Multiple Temperatures Kavita M. Jeerage* and Elijah N. Holland Applied Chemicals and Materials Division, Material Measurement Laboratory, National Institute of Standards and Technology (NIST) 325 Broadway, Boulder, CO 80305 *[email protected] Abstract Partition coefficients describe the relative concentration of a chemical equilibrated between two phases. In the design of air samplers, the sorbent-air partition coefficient is a critical parameter, as is the ability to extrapolate or predict partitioning at a variety of temperatures. Our specific interest is the partitioning of plant-derived terpenes (hydrocarbons formed from isoprene building blocks) and terpenoids (with oxygen-containing functional groups) in polydimethylsiloxane (PDMS) sorbents. To predict 퐾푃퐷푀푆⁄퐴퐼푅 as a function of temperature for compounds containing carbon, hydrogen, and oxygen, we developed a group contribution model that explicitly incorporates the van’t Hoff equation. For the 360 training compounds, predicted 퐾푃퐷푀푆⁄퐴퐼푅 values strongly 2 correlate (R > 0.987) with 퐾푃퐷푀푆⁄퐴퐼푅 values measured at temperatures from 60 °C to 200 °C. To validate the model with available literature data, we compared predictions for 50 additional C10 compounds, including 6 terpenes and 22 terpenoids, with 퐾푃퐷푀푆⁄퐴퐼푅 values measured at 100 °C and determined an average relative error of 3.1 %. We also compared predictions with 퐾푃퐷푀푆⁄퐴퐼푅 values measured at 25 °C. The modeling approach developed here is advantageous for properties with limited experimental values at a single temperature. Introduction Passive air sampling is an important technique for characterizing exposure to hazardous chemicals in indoor and outdoor environments.1-3 Commercially-available personal exposure badges utilize activated carbon sorbents and are generally intended to capture industrial chemicals such as benzene, toluene, ethylbenzene, and xylenes (BTEX). -
(12) Patent Application Publication (10) Pub. No.: US 2009/0285919 A1 Alberte Et Al
US 20090285919A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0285919 A1 Alberte et al. (43) Pub. Date: Nov. 19, 2009 (54) RCE BRAN EXTRACTS FOR filed on Sep. 30, 2008, provisional application No. NFLAMMATION AND METHODS OF USE 61/147,305, filed on Jan. 26, 2009. THEREOF Publication Classification (76) Inventors: Randall S. Alberte, Estero, FL (51) Int. Cl. (US); William P. Roschek, JR., A 6LX 36/899 (2006.01) Naples, FL (US) A2.3L I/28 (2006.01) Correspondence Address: A6IP 29/00 (2006.01) FOLEY HOAG, LLP A6IP 25/00 (2006.01) PATENT GROUP, WORLD TRADE CENTER A6IP35/00 (2006.01) WEST (52) U.S. Cl. ......................................... 424/750; 426/655 155 SEAPORT BLVD BOSTON, MA 02110 (US) (57) ABSTRACT The present invention relates in part to stabilized rice bran (21) Appl. No.: 12/467,835 extracts enriched in compounds that have inhibitory activity against certain anti-inflammatory therapeutic endpoints, such (22) Filed: May 18, 2009 as the COX-1, COX-2 and 5-LOX enzymes. Another aspect of the invention relates to pharmaceutical compositions com Related U.S. Application Data prising the extracts and to methods of treating inflammatory (60) Provisional application No. 61/054,151, filed on May diseases comprising administering the aforementioned 18, 2008, provisional application No. 61/101.475, eXtractS. Patent Application Publication Nov. 19, 2009 Sheet 1 of 6 US 2009/0285919 A1 Figure l Arachidonic Acid NSAIDs inhibition Prostaglandins PRO-NFLAMMATORY Arthritis (OA & RA) Patent Application Publication Nov. 19, 2009 Sheet 2 of 6 US 2009/0285919 A1 S.---------------Sssssssssss &s asy xxx s -Yvxxxxxxxxxxxxxxxxxxxx xxxx-xxxxxxxxxx:x O SSSSS i Patent Application Publication Nov. -
Biochemistry of Terpenes and Recent Advances in Plant Protection
International Journal of Molecular Sciences Review Biochemistry of Terpenes and Recent Advances in Plant Protection Vincent Ninkuu , Lin Zhang, Jianpei Yan, Zhenchao Fu, Tengfeng Yang and Hongmei Zeng * State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (IPP_CAAS), Beijing 100193, China; [email protected] (V.N.); [email protected] (L.Z.); [email protected] (J.Y.); [email protected] (Z.F.); [email protected] (T.Y.) * Correspondence: [email protected]; Tel.: +86-10-82109562 Abstract: Biodiversity is adversely affected by the growing levels of synthetic chemicals released into the environment due to agricultural activities. This has been the driving force for embracing sustainable agriculture. Plant secondary metabolites offer promising alternatives for protecting plants against microbes, feeding herbivores, and weeds. Terpenes are the largest among PSMs and have been extensively studied for their potential as antimicrobial, insecticidal, and weed control agents. They also attract natural enemies of pests and beneficial insects, such as pollinators and dispersers. However, most of these research findings are shelved and fail to pass beyond the laboratory and greenhouse stages. This review provides an overview of terpenes, types, biosynthesis, and their roles in protecting plants against microbial pathogens, insect pests, and weeds to rekindle the debate on using terpenes for the development of environmentally friendly biopesticides and herbicides. Keywords: terpenes; biosynthesis; phytoalexin; insecticidal; allelopathy Citation: Ninkuu, V.; Zhang, L.; Yan, J.; Fu, Z.; Yang, T.; Zeng, H. Biochemistry of Terpenes and Recent 1. Introduction Advances in Plant Protection. Int. J. Plants and a multitude of pathogenic microbes are in a constant battle for supremacy. -
An Abstract of the Thesis Of
AN ABSTRACT OF THE DISSERTATION OF Mei Song for the degree of Doctor of Philosophy in Food Science and Technology presented on June 8, 2017. Title: Free Monoterpene Isomer Profiles in White Wine: Effect of Grape Variety, Region and Style and Impact on Odor Perception Abstract approved: _____________________________________________________________________ Elizabeth Tomasino Monoterpenes are important volatile compounds to the aroma of many white wines. Many monoterpenes are chiral and found in wine as different isomers. These isomers (also known as enantiomers) are non-superimposable mirror images of each other, maintain the same molecular structure and in many instances possess different sensory characteristics. Much research in wine has investigated the contents of monoterpenes, but has largely overlooked the monoterpene enantiomer profiles and important roles of the different monoterpene enantiomers in wine. Monoterpene enantiomer profiles in grapes and final wine are due to many factors, including genotype (grape variety), climate, temperature, soil type and winemaking technique. These compounds are of great interest to wine as they are related to the unique sensory identity of varietal wine. The aim of the project was to: firstly develop a robust and valid method for monoterpene enantiomer identification and quantitation, secondly investigate the effect of grape variety, growing region and wine style on the profiles of monoterpene enantiomers, thirdly determine the important role of monoterpene isomer profiles in wine matrix and evaluate