Proximate Analysis, Calorific Value and Trace Metal Analysis of Coal

Total Page:16

File Type:pdf, Size:1020Kb

Proximate Analysis, Calorific Value and Trace Metal Analysis of Coal SHORTMuhammad COMMUNICATION Akbar et al., J.Chem.Soc.Pak., Vol. 41, No. 03, 2019 555 Proximate and Trace Metal Analysis of Pakistani Coal 1Muhammad Akbar, 1Muhammad Abdul Qadir, 2Ayoub Rashid, 3Abrar Hussain, 4Khalid Bhatti and 2Ahmad Adnan* 1Institute of Chemistry, University of the Punjab, Lahore, Pakistan. 2Department of Chemistry, Government College University, Lahore, Pakistan, 3University of Education, Lahore, Pakistan. 4Government P/G College Fatepur, Layyah, Pakistan. [email protected]* (Received on 9th May 2018, accepted in revised form 7th March 2019) Summary: Pakistan is facing severe energy crisis with depleting water and gas reservoirs. Pakistan has large reserves of coal found exclusively in Sindh, Baluchistan and Punjab, but this coal is regarded as low rank (Lignite grade). Present work aimed at the determination of the quality of coal by Proximate and trace metal analysis. Three coalfields including Dukki (Baluchistan), Chamalang (Baluchistan) and Salt range (Punjab) were selected for study. Proximate analysis and calorific values of coal samples were carried out using reported protocols and trace metal analysis including Co, Cr, Ni, Pb, Zn, Cd and Cu was done by ICP employing standard procedures. Results suggested that the coal belonging to these areas is of sub-bituminous type. Chamalang coal of Baluchistan was found to be of better quality than Dukki and Salt Range coal. Keywords: Coal, Proximate analysis, Calorific value, Ultimate analysis, Trace metals. Introduction For the last couple of decades, power when fired in power generation, incineration plants, shortage has become an enduring problem around the smelting, or combustion engines produces a variety plant, particularly in developing countries like of products responsible for environmental and health Pakistan. In addition, the rapid growth in population issues [4-6]. A number of methods have been and technological revolution has further exacerbated established to measure the emission of these the energy crises. According to various official and pollutants with a high degree of accuracy. Coal private surveys, [1] the demand of electricity around contributes about 40% in power generation and in the Country is increasing by 6-8% annually and return, these coal fired power plants emit CO2, SO2, overall power shortfall has been estimated between N2O, NOx, mercury, arsenic, vanadium, 5,000-8,000 MW. To cope with energy challenges, molybdenum, cadmium, along with some other Pakistan likewise many other developing countries is hazardous gases. trying to stream in various renewable and conventional energy sources. Currently, furnace oil Some heavy metals and trace metals are and natural gas-based power station are working for essential for normal functioning of many biological the production of electricity in Pakistan. However, systems and their deficiency or excess can cause the unpredictable and extraordinary increase in oil many biological disorders [7]. However, the potential prices makes it an expensive and erratic power accumulation of these heavy metals in bio systems source. On the other hand limited reserves of natural through soil, air, and water is one of the major issues gas make it difficult to meet the energy requirement. of recent times [8-9]. In order to check the emission Hence, efforts are being made to explore other of these toxic pollutants, it would be more practical indigenous resources such as coal, hydropower, solar, to know what exactly present in coals of various wind and nuclear energy generation [2]. vicinities across the country. Coal being an important and most abundant The present study was planned to screen the fossil fuel in Pakistan can play a key role to meet coal of different mines present in Punjab and ever-increasing energy demands of industrial, Baluchistan regions of Pakistan while evaluating agricultural and domestic sectors. According to a their colorific values. The results of the present report published by Renewable and Sustainable investigation may help the extent and nature of Energy Reviews [3], Pakistan ranks 7th in the world pretreatment the coal should undergo before its with around 186 billion tons of coal reserves. Coal application as fuel. Moreover, trace metal analysis being an extremely heterogeneous matrix containing will decide which type of heavy metal exposures organic (C, H, O, and N), inorganic and volatiles miners and engineers can undergo while working *To whom all correspondence should be addressed. Muhammad Akbar et al., J.Chem.Soc.Pak., Vol. 41, No. 03, 2019 556 with coals of these origins. Total coal reserves of being mined. Investigations show that total coal Pakistan stand at 185.175 billion tonnes with Sindh reserves of Duki-Anambar stands at 80.4 mt. having maximum share of approximately 184.623 Chamalang Coalfields include Mari Bijar, Surghari, billion tonnes. Lunda, Bala Dhaka, Nosham, Bahlol and Kali Chapri areas. Chamalang coalfield includes Kohlu, Barkhan, Experimental and Loralai districts and expands over an area of 500 square miles. Total coal reserves in Chamalang are Study Area estimated to be 100 mt. Coalfield area in Salt Range include Chakwal, Khushab, Jhelum and Mianwali Three areas were selected for coal analysis districts (260 Km2/100.36 miles2). Total coal including Duki, Chamalang and Salt Range. Duki is estimated in this area is 213 mt. Coal samples were located in Loralai District (Zhob Division, randomly taken from different coal mines of Duki, Baluchistan), out of 17 coal seams 15 coal seams are Chamalang and Salt Range (Map 1). Map 1: Map of Pakistan showing coal sampling areas of Dukki, Chamalang and Salt Range. Muhammad Akbar et al., J.Chem.Soc.Pak., Vol. 41, No. 03, 2019 557 The coal (ten random samples) collected Accurately weighed 1.0 g of the coal sample was from mining areas Duki (Baluchistan), Chamlang taken in a pre-weighed clean crucible and placed in a (Baluchistan) and Salt Range (Punjab) of Pakistan cold muffle furnace. The sample temperature was were homogenized, desiccated then pulverized into initially raised to 500°C in 1 h then to 750°C in the fine powder and sieved through 250 µm mesh sieve. next hour. Then it was cooled to room temperature in The samples were stored in airtight bags of a desiccator and weighed again to estimate the ash polyethylene before analysis. Analytical grade content. reagents including Copper Sulphate (CuSO4), Potassium Sulphate (K2SO4), Sodium Hydroxide Fixed carbon (NaOH), Barium Chloride (BaCl2), Sulphuric Acid (H2SO4), Nitric Acid (HNO3), Hydrochloric Acid The leftover weight after moisture, volatile (HCl) and Hydrofluoric Acid (HF) were purchased matter and ash was taken as fixed carbon whose from Merck and were used as such without any percentage was calculated by the method of further purification. difference. Methods Calorific value American Society for Testing Materials (ASTM) guidelines were followed to perform ASTM D5865 standard was followed for the proximate and ultimate analyses of the coal, whereas estimation of calorific value of all coal samples. Ballistic bomb calorimeter was used to investigate Benzoic acid with known calorific value (6.32 kcal/g) calorific value. was used as standard to calibrate Ballistic bomb calorimeter [17]. A known mass (0.5 g) of each Proximate Analysis: Proximate analysis of sample taken in the crucible was placed in the bomb coal includes moisture, ash, volatile matter and fixed calorimeter. Oxygen was filled up to pressure of 25 carbon. Proximate analysis was accomplished bar and the sample was ignited. Heat released as a following the official standard of ASTM D3172, result of combustion reaction was noted by the D3173, D3175, D3176 and D3174 with slight maximum deflection of galvanometer. The energy modifications [10-11]. The fixed carbon was value of the sample material was estimated by quantified by difference method [12-14]. comparing galvanometer deflections for the sample and that for the standard (benzoic acid) and is given Moisture content in the equation: The moisture contents of all the coal G. meter deflection calibration samples were quantified by following ASTM-D3173 Q standard [15]. In this assay, accurately weighed 1.00 Original weight of sample g of coal was taken in a pre-weighed crucible and placed in a cold muffle furnace. The sample was Its mathematical form is shown in equation 1: heated to 104°C for 1 h to remove the moisture. Then the crucible was cooled to room temperature in a desiccator and weighed again. The %age moisture Q31 kcal/ g (1) content was calculated as percentage weight loss. Z Volatile matter where Q is heat released from sample, θ1 is the The volatile matter of each coal sample was galvanometer deflection without sample, θ3 is the determined using ASTM-D3175 standard [15]. galvanometer deflection with sample, Z is the mass of Accurately weighed amount (1.0 g) of moisture free sample in g and γ is the calibration constant. sample was taken in a pre-weighed crucible with lid Ultimate analysis and heated to 925°C for 7 min in a muffle furnace. The sample was removed before reaching the ignition The Ultimate analysis (carbon, hydrogen, temperature then cooled to room temperature in a nitrogen, sulphur, and Oxygen) of the coal samples desiccator. The volatile matter was calculated as the was conducted according to the ASTM methods percentage weight loss. D3178, D3179 and D3177 [15]. Ash content Carbon and Hydrogen ASTM- D3174 standard was followed to The carbon and hydrogen contents of coal determine the ash content of each coal sample [16]. samples were determined by Liebig method Muhammad Akbar et al., J.Chem.Soc.Pak., Vol. 41, No. 03, 2019 558 following ASTM- D3178 standards [17]. In this resultant solution was then filtered by decantation method, accurately weighed amount (2.0 g) of coal method while flushing with hot water. Methyl orange sample was taken in a platinum crucible and indicator was added (2-3 drops) into the filtrate combusted in plenty of oxygen at 1300°C in followed by the addition of HCl to neutralize it then combustion train.
Recommended publications
  • Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela
    Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela Open-File Report 2008-1230 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Dirk A. Kempthorne, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Hackley, P.C., Kolak, J.J., 2008, Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela: U.S. Geological Survey Open-File Report 2008-1230, 36 p., http://pubs.usgs.gov/of/2008/1230. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Introduction ........................................................................................................................................................................1 Methods ..............................................................................................................................................................................1
    [Show full text]
  • Update on Lignite Firing
    Update on lignite firing Qian Zhu CCC/201 ISBN 978-92-9029-521-1 June 2012 copyright © IEA Clean Coal Centre Abstract Low rank coals have gained increasing importance in recent years and the long-term future of coal -derived energy supplies will have to include the greater use of low rank coal. However, the relatively low economic value due to the high moisture content and low calorific value, and other undesirable properties of lignite coals limited their use mainly to power generation at, or, close to, the mining site. Another important issue regarding the use of lignite is its environmental impact. A range of advanced combustion technologies has been developed to improve the efficiency of lignite-fired power generation. With modern technologies it is now possible to produce electricity economically from lignite while addressing environmental concerns. This report reviews the advanced technologies used in modern lignite-fired power plants with a focus on pulverised lignite combustion technologies. CFBC combustion processes are also reviewed in brief and they are compared with pulverised lignite combustion technologies. Acronyms and abbreviations CFB circulating fluidised bed CFBC circulating fluidised bed combustion CFD computational fluid dynamics CV calorific value EHE external heat exchanger GRE Great River Energy GWe gigawatts electric kJ/kg kilojoules per kilogram kWh kilowatts hour Gt billion tonnes FBC fluidised bed combustion FBHE fluidised bed heat exchanger FEGT furnace exit gas temperature FGD flue gas desulphurisation GJ
    [Show full text]
  • Seasonal Assessment of Groundwater Contamination in Coal Mining Areas of Balochistan
    sustainability Article Seasonal Assessment of Groundwater Contamination in Coal Mining Areas of Balochistan Ayesha Ayub and Sheikh Saeed Ahmad * Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi 46000, Pakistan; [email protected] * Correspondence: [email protected]; Tel.: +923215167726 Received: 11 July 2020; Accepted: 18 August 2020; Published: 25 August 2020 Abstract: Balochistan is a semi-arid region. The assessment of water quality is very important, as the majority of people depend on groundwater for drinking purposes. The present study involves the quality assessment and mapping of drinking water in the five selected major coal mining sites in the four districts of Balochistan. A total of 50 samples were collected from these five coal mining sites in two seasons: i.e., summer and winter. A physicochemical analysis was carried out for groundwater - - 2+ samples: i.e., pH, electrical conductivity (EC), total dissolved solid (TDS), CO3, HCO3 , Cl , Ca , Mg2+, Na+,K+, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Ni, and Zn. Thematic maps were used to depict the spatial distribution of significant variables and were compared with WHO standards (2011) during both seasons. The majority of parameters crossed the safe permissible limit of WHO standards. The water quality index (WQI) was calculated for the whole monitoring data obtained from both seasons from the perspective of drinking water in each of the selected sites. Moreover, a principle component analysis (PCA) and correlation matrix was carried out for the data analysis in order to identify the source of pollution and correlation among the variables. The results suggested that the overall quality of water from the selected coal mining sites deteriorated due to the overexploitation of coal mines and mining activity.
    [Show full text]
  • Development and Evaluation of Performance of a Bench Scale Gasifier for Sub-Bituminous Coal Stellamaris Nduku Nzove Master of Sc
    DEVELOPMENT AND EVALUATION OF PERFORMANCE OF A BENCH SCALE GASIFIER FOR SUB-BITUMINOUS COAL STELLAMARIS NDUKU NZOVE MASTER OF SCIENCE (Mechanical Engineering) JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY 2021 Development and Evaluation of Performance of a Bench Scale Gasifier for Sub-Bituminous Coal Stellamaris Nduku Nzove A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in Mechanical Engineering in the Jomo Kenyatta University of Agriculture and Technology 2021 DECLARATION This thesis is my original work and has not been presented for a degree in any other university. Signature: ........................................ Date .............................................. Stellamaris Nduku Nzove This thesis has been submitted for examination with our approval as the Univer- sity Supervisors: Signature: ...................................... Date ............................................. Dr. Eng. Hiram M. Ndiritu (Phd.) JKUAT, Kenya Signature: ......................................... Date ........................................... Dr. Benson Gathitu (Phd.) JKUAT, Kenya ii DEDICATION I dedicate this work to my loving family. A special feeling of gratitude to my dear husband Victor, our children Adrian and Talia. They have been a great source of inspiration throughout my entire research period. iii ACKNOWLEDGEMENTS The author wishes to sincerely appreciate a number of individuals for their vital roles in the realization of this thesis. First and foremost is the Almighty God, the giver and sustainer of life, for giving me the opportunity to do this research. Special appreciation is due to Dr. Eng. Hiram Ndiritu and Dr. Benson Gath- itu, my two very able and highly knowledgeable project supervisors for guiding and supporting me throughout this research. My sincere gratitude also goes to Bernard Owiti, Obadiah Maswai and John Ng'ethe, for their positive criticism which helped to keep me going.
    [Show full text]
  • CSA), Session Law 2002-4 (Aka Senate Bill 1078), Was Passed and Signed Into Law in June 2002
    CO2 Emission Reduction Options For Coal-fired Electrical Utility Boilers and Other Stationary Sources September 1, 2004 Second Interim Report Pursuant to Clean Smokestacks Act Source: CCSP/Meehl North Carolina Department of Environment and Natural Resources Division of Air Quality The Requirement: Excerpted from the Act [Title: An Act to Improve Air Quality in the State by Imposing Limits on the Emission of Certain Pollutants from Certain Facilities that Burn Coal to Generate Electricity and to Provide for Recovery by Electric Utilities of the Costs of Achieving Compliance with Those Limits] SECTION 13. The Division of Air Quality of the Department of Environment and Natural Resources shall study issues related to the development and implementation of standards and plans to implement programs to control emissions of carbon dioxide (CO2) from coal-fired generating units and other stationary sources of air pollution. The Division shall evaluate available control technologies and shall estimate the benefits and costs of alternative strategies to reduce emissions of carbon dioxide (CO2). The Division shall annually report its interim findings and recommendations to the Environmental Management Commission and the Environmental Review Commission beginning 1 September 2003. The Division shall report its final findings and recommendations to the Environmental Management Commission and the Environmental Review Commission no later than 1 September 2005. The costs of implementing any air quality standards and plans to reduce the emission of carbon dioxide (CO2) from coal-fired generating units below the standards in effect on the date this act becomes effective, except to the extent that the emission of carbon dioxide (CO2) is reduced as a result of the reductions in the emissions of oxides of nitrogen (NOx) and sulfur dioxide (SO2) required to achieve the emissions limitations set out in G.S.
    [Show full text]
  • CARBONIZATION STUDY of NON COKING COALS and CHARACTERISATION of THEIR PROPERTIES for APPLICATION in SPONGE IRON MAKING a Thesis Submitted By
    CARBONIZATION STUDY OF NON COKING COALS AND CHARACTERISATION OF THEIR PROPERTIES FOR APPLICATION IN SPONGE IRON MAKING A Thesis Submitted by RAKESH KUMAR A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS For the award of master of technology In Steel technology Roll No.-212MM2339 M. Tech. Department of Metallurgical and Materials Engineering National Institute of Technology, Rourkela – 769008 i CARBONIZATION STUDY OF NON COKING COALS AND CHARACTERISATION OF THEIR PROPERTIES FOR APPLICATION IN SPONGE IRON MAKING A Thesis Submitted by RAKESH KUMAR A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS For the award of master of technology In Mechanical Engineering {Steel technology} Roll No.-212MM2339 M. Tech. Under Supervision of Prof. Dr. M. Kumar Department of Metallurgical and Materials Engineering National Institute of Technology, Rourkela – 769008 ii Department of Metallurgical and Materials Engineering National Institute of Technology, Rourkela CERTIFICATE The research titled “carbonization study of non-coking coals and characterization of their properties for application in sponge iron making”, submitted by Rakesh Kumar for the award of degree of Master of Technology in steel technology, has been carried out under my supervision at the department of Metallurgy and material science of National Institute of Technology, Rourkela. The work is comprehensive, complete and fit for evaluation. Prof. M. Kumar Metallurgical & Materials Engineering National Institute of technology Rourkela – 769008 iii ACKNOWLEDGEMENT I would like to wish my heartiest gratitude for inspirable and valuable guidance to prof. M. Kumar, Department of metallurgy and material engineering NIT Rourkela for the study of project work. With his valuable suggestion and supervision, I would able to present my project work.
    [Show full text]
  • On the Fundamental Difference Between Coal Rank and Coal Type
    International Journal of Coal Geology 118 (2013) 58–87 Contents lists available at ScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo Review article On the fundamental difference between coal rank and coal type Jennifer M.K. O'Keefe a,⁎, Achim Bechtel b,KimonChristanisc, Shifeng Dai d, William A. DiMichele e, Cortland F. Eble f,JoanS.Esterleg, Maria Mastalerz h,AnneL.Raymondi, Bruno V. Valentim j,NicolaJ.Wagnerk, Colin R. Ward l, James C. Hower m a Department of Earth and Space Sciences, Morehead State University, Morehead, KY 40351, USA b Department of Applied Geosciences and Geophysics, Montan Universität, Leoben, Austria c Department of Geology, University of Patras, 265.04 Rio-Patras, Greece d State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China e Department of Paleobiology, Smithsonian Institution, Washington, DC 20013-7012, USA f Kentucky Geological Survey, University of Kentucky, Lexington, KY 40506, USA g School of Earth Sciences, The University of Queensland, QLD 4072, Australia h Indiana Geological Survey, Indiana University, 611 North Walnut Grove, Bloomington, IN 47405-2208, USA i Department of Geology and Geophysics, College Station, TX 77843, USA j Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences, University of Porto and Geology Centre of the University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal k School Chemical & Metallurgical Engineering, University of Witwatersrand, 2050, WITS, South Africa l School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia m University of Kentucky, Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511, USA article info abstract Article history: This article addresses the fundamental difference between coal rank and coal type.
    [Show full text]
  • Maceral Types and Quality of Coal in the Tuli Coalfield: a Case
    applied sciences Article Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of Coal in the Madzaringwe Formation in the Vele Colliery, Limpopo Province, South Africa Elelwani Denge * and Christopher Baiyegunhi Department of Geology and Mining, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa; [email protected] * Correspondence: [email protected] Featured Application: Authors are encouraged to provide a concise description of the specific application or a potential application of the work. This section is not mandatory. Abstract: The Madzaringwe Formation in the Vele colliery is one of the coal-bearing Late Palaeozoic units of the Karoo Supergroup, consisting of shale with thin coal seams and sandstones. Maceral group analysis was conducted on seven representative coal samples collected from three existing boreholes—OV125149, OV125156, and OV125160—in the Vele colliery to determine the coal rank and other intrinsic characteristics of the coal. The petrographic characterization revealed that vitrinite is the dominant maceral group in the coals, representing up to 81–92 vol.% (mmf) of the total sample. Collotellinite is the dominant vitrinite maceral, with a total count varying between 52.4 vol.% (mmf) and 74.9 vol.% (mmf), followed by corpogelinite, collodetrinite, tellinite, and pseudovitrinite with a Citation: Denge, E.; Baiyegunhi, C. count ranging between 0.8 and 19.4 vol.% (mmf), 1.5 and 17.5 vol.% (mmf), 0.8 and 6.5 vol.% (mmf) Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of and 0.3 and 5.9 vol.% (mmf), respectively. The dominance of collotellinite gives a clear indication Coal in the Madzaringwe Formation that the coals are derived from the parenchymatous and woody tissues of roots, stems, and leaves.
    [Show full text]
  • Uk Coal Resources and New Exploitation Technologies
    CAN NEW TECHNOLOGIES BE USED TO EXPLOIT THE COAL RESOURCES IN THE YORKSHIRE-NOTTINGHAMSHIRE COALFIELD? S Holloway1, N S Jones1, D P Creedy2 and K Garner2 1British Geological Survey, Keyworth, Nottingham, NG12 5GG 2Wardell Armstrong, Lancaster Building High Street, Newcastle-under-Lyme, Staffordshire SP1 1PQ ABSTRACT Coal mining in the Yorkshire-Nottinghamshire Coalfield has been one of the region's most important industries over the last 150 years. The number of working mines peaked at over 400 in the late 19th and early part of the 20th Century. However, many have closed over the last few years and now there are only 10 large working mines still open. Three of these, Ricall/Whitemoor, Stillingfleet and Wistow, in the Selby complex, are due to close in April 2004. Although there are significant untouched coal resources east of the current deep mines, the prospects for opening new mines in the Yorkshire-Nottinghamshire coalfield appear very poor. Consequently, there has been a revival of interest in the potential for releasing some of the energy value of the remaining coal resources via alternative technologies such as coalbed methane production and underground coal gasification. Methane is already being drained from the few remaining deep mines and, in some cases, utilised as fuel for boilers or for electricity generation. The production of methane from abandoned mines is also taking place, but recent low electricity and gas prices have adversely affected its economics. There has not been any exploratory drilling for coalbed methane in the Yorkshire-Nottinghamshire coalfield, perhaps because the average seam methane content is somewhat lower than in some of the major coalfields on the west side of the country.
    [Show full text]
  • Coal Sludge and Their Mixtures As Prospective Energy Resources
    POLITYKA ENERGETYCZNA – ENERGY POLICY JOURNAL 2018 Volume 21 Issue 3 137–150 DOI: 10.24425/124499 Beata KLOJZY-KARCZMARCZYK1, Janusz MAZUREK1, Marek WIENCEK2 Coal sludge and their mixtures as prospective energy resources ABSTRACT: The new legislative provisions, regulating the solid fuel trade in Poland, and the resolutions of provincial assemblies assume, inter alia, a ban on the household use of lignite fuels and solid fuels produced with its use; this also applies to coal sludge, coal flotation concentrates, and mixtures produced with their use. These changes will force the producers of these materials to find new ways and methods of their development, including their modification (mixing with other products or waste) in order to increase their attractiveness for the commercial power industry. The presented paper focuses on the analysis of coal sludge, classified as waste (codes 01 04 12 and 01 04 81) or as a by-product in the production of coals of different types. A preliminary analysis aimed at presenting changes in quality parameters and based on the mixtures of hard coal sludge (PG SILE- SIA) with coal dusts from lignite (pulverized lignite) (LEAG) has been carried out. The analysis of quality parameters of the discussed mixtures included the determination of the calorific value, ash content, volatile matter content, moisture content, heavy metal content (Cd, Tl, Hg, Sb, As, Pb, Cr, Co, Cu, Mn, Ni, and W), and sulfur content. The preliminary analysis has shown that mixing coal sludge with coal dust from lignite and their granulation allows a product with the desired qu- ality and physical parameters to be obtained, which is attractive to the commercial power industry.
    [Show full text]
  • April 17, 2019 Andrew Wheeler, Administrator U.S. Environmental
    April 17, 2019 Andrew Wheeler, Administrator U.S. Environmental Protection Agency 1200 Pennsylvania Avenue, NW Washington, DC 20460 Attention: Docket ID No. EPA–HQ–OAR–2018–0794 Re: National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units—Reconsideration of Supplemental Finding and Residual Risk and Technology Review Dear Administrator Wheeler: The Northeast States for Coordinated Air Use Management (NESCAUM) offer the following comments on the U.S. Environmental Protection Agency’s (EPA’s) Proposed Rule “National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units—Reconsideration of Supplemental Finding and Residual Risk and Technology Review” [84 Fed. Reg. 2670-2704 (February 7, 2019)] (hereinafter the “Reconsideration Proposal”). NESCAUM is the regional association of air pollution control agencies representing Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont. Overview The EPA’s Reconsideration Proposal to find that it is not “appropriate and necessary” to regulate hazardous air pollutant (HAP) emissions from coal- and oil-fired Electric Utility Steam Generating Units (EGUs) is seriously flawed because it does not provide a full and fair accounting of the benefits associated with implementation of the original Mercury and Air Toxics Standards (MATS) rule. It also grossly overstates the rule’s actual costs, which are now of historical record. In the Reconsideration Proposal, EPA has employed a cost-benefit methodology that is incapable of fully considering the benefits of controlling HAPs from coal- and oil-fired EGUs. In applying this methodology, EPA implicitly and without foundation assigns a value of zero to difficult-to- monetize benefits from reductions in air toxics.
    [Show full text]
  • Overview of the South African Coal Value Chain
    SOUTH AFRICAN COAL ROADMAP OVERVIEW OF THE SOUTH AFRICAN COAL VALUE CHAIN PREPARED AS A BASIS FOR THE DEVELOPMENT OF THE SOUTH AFRICAN COAL ROADMAP OCTOBER 2011 Overview of the South African Coal Value Chain | I Disclaimer: The statements and views of the South African Coal Roadmap are a consensus view of the participants in the development of the roadmap and do not necessarily represent the views of the participating members in their individual capacity. An extensive as reasonably possible range of information was used in compiling the roadmap; all judgments and views expressed in the roadmap are based upon the information available at the time and remain subject to further review. The South African Coal Roadmap does not guarantee the correctness, reliability or completeness of any information, judgments or views included in the roadmap. All forecasts made in this document have been referenced where possible and the use and interpretation of these forecasts and any information, judgments or views contained in the roadmap is entirely the risk of the user. The participants in the compiling of this roadmap will not accept any liability whatsoever in respect of any information contained in the roadmap or any statements, judgments or views expressed as part of the South African Coal Roadmap. SYNTHESIS enables a wide range of stakeholders to discuss the future of the industry. The fact that at this stage in the process Phase The South African Coal Roadmap (SACRM) process I does not provide any clarity on the outlook for the South African coal industry is o"set by the constructive process The need for a Coal Roadmap for South Africa was identi!ed which has been initiated, which augurs well for the successful in 2007 by key role players in the industry, under the auspices development of a South African Coal Roadmap in Phase II.
    [Show full text]