Avicennia Germinans, Black Mangrove1 Michael G

Total Page:16

File Type:pdf, Size:1020Kb

Avicennia Germinans, Black Mangrove1 Michael G FOR 259 Avicennia germinans, Black Mangrove1 Michael G. Andreu, Melissa H. Friedman, Mary M. Hudson, and Heather V. Quintana2 Family mangrove forests of Florida, it generally grows between red mangroves (Rhizophora mangle), which are found in stand- Acanthaceae, bear’s breeches family. ing waters, and white mangroves (Laguncularia racemosa), which are more of an upland species. Black mangroves Genus grow best in full sun and can reach heights of 40 to 50 feet. Avicennia was named for an Iranian philosopher and Leaves are simple and opposite and grow from 2 to 3 inches physician who lived from 980 to 1037 A.D. His alias was long. The leaf is oval and pointed, and the margins are Avicenna but his real name was Abu Ali Al-Husayn Ibn entire. The leaves appear smooth, thick, and leathery with a ‘Abd Allah Ibn Sina. dark green topside and grey to white underside. The topside of the leaves may also appear white due to the formation of Species crystals from salt that is excreted from the leaves. The bark of black mangrove is dark gray or brown. When the tree is The species name, germinans, is the Latin term for young the bark is smooth and as it matures the bark takes germination. on a thick and fissured texture. The roots produce vertical “branches” called pneumatophores, which rise from the Common Name ground and grow to a height that is just above high tide. Black Mangrove This helps the tree “breathe” during water inundation. The flowers appear at the ends of the branches and are small, The origins of the term “mangrove” are disputed among white, and fragrant with yellow centers. Fruits appear both scholars and laypersons. Some assign the origin to the throughout the year and consist of large flattened capsules Malaysian term for the trees: mangi-mangi. Others believe of seeds shaped like lima beans, which germinate while still that it originates from the Spanish term mangle or “thicket,” on the tree. first used by Gonzalo Fernández de Oviedo y Valdés in 1535 A.D. to describe the tangled thicket of branches and roots mangroves form as they grow along shorelines. Storm Tolerance This coastal tree is tolerant of waterlogged conditions and Description of salt in both the air and soil. Black mangroves, like other species of mangroves, are able to withstand major storm The black mangrove is a coastal evergreen tree native to events like hurricanes. This allows them to inhabit large Florida. It is found on mudflats and coasts throughout expanses of the storm prone coastline of Florida, where tropical and sub-tropical regions in the Americas. In the 1. This document is FOR 259, one of a series of the School of Forest Resources and Conservation Department, UF/IFAS Extension. Original publication date June 2010. Reviewed June 2019. Visit the EDIS website at https://edis.ifas.ufl.edu for the currently supported version of this publication. 2. Michael G. Andreu, associate professor of forest systems, School of Forest Resources and Conservation; Melissa H. Friedman, former biological scientist, School of Forest Resources and Conservation; Mary M. Hudson, former research assistant, School of Forest Resources and Conservation; and Heather V. Quintana, former research assistant, School of Forest Resources and Conservation; UF/IFAS Extension, Gainesville, FL 32611. The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations. For more information on obtaining other UF/IFAS Extension publications, contact your county’s UF/IFAS Extension office. U.S. Department of Agriculture, UF/IFAS Extension Service, University of Florida, IFAS, Florida A & M University Cooperative Extension Program, and Boards of County Commissioners Cooperating. Nick T. Place, dean for UF/IFAS Extension. they stabilize sediments and protect the shoreline from erosion. Figure 3. Seed emerging from the fruit of Avicennia germinans. Figure 1. Leaves and buds of Avicennia germinans. Credits: Reinaldo Aguilar, CC BY-NC-SA 2.0 Credits: Wildlife Travel, CC BY-NC-ND 2.0 Horticultural As a landscape plant, black mangroves have been planted along brackish river banks or even in upland areas. It makes a nice shade tree or a screening tree due to its thick foliage. Medicinal The tannins in black mangrove have been used as an astringent, carrying antihemorhagic and antidiarrhetic properties. Wildlife Organisms on the bottom of the aquatic food chain that live along the shoreline benefit from the food and shelter provided by the black mangrove. The tangled mass of roots and branches serves as a nursery ground for many organ- isms. The fish and crabs that inhabit mangroves are not only important to the structure of mangrove ecosystems, but are important for local fisheries. Despite laws that have Figure 2. Flower of Avicennia germinans. Credits: bob in swamp, CC BY-SA 2.0 been passed to protect mangroves, large areas have been cut down to make room for human development. Applications Commercial/Practical References Though the wood of black mangrove is hard, it cracks easily. Austin, D. F. 2004. Florida ethnobotany. Boca Raton, FL: However, it has been used in a variety of ways, mainly as CRC Press. posts and flooring. In the past, it was an important source Duke, J. A. 1983. Handbook of Energy Crops. Retrieved of fuel as charcoal. The bark of the black mangrove has from http://www.hort.purdue.edu/newcrop/duke_energy/ been used in the process of tanning animal skins and as Avicennia_germinans.html a black dye. The leaves, which excrete salt crystals, have been gathered as a source of salt by indigenous people. Godfrey, R. K. 1988. Trees, shrubs, and woody vines of Black mangrove flowers are also an important source of Northern Florida and adjacent Georgia and Alabama. “mangrove honey.” Athens, GA: The University of Georgia Press. Avicennia germinans, Black Mangrove 2 Grimm, W. C. 2002. The illustrated book of trees. Mechanic- sburg, PA: Stackpole Books. Haehle, R. J. and J. Brookwell. 2004. Native Florida plants: Low-maintenance landscaping and gardening. Lanham, MD: Taylor Trade Publishing. Myers, R. L. and J. J. Ewel, Eds. 1990. Ecosystems of Florida. Orlando, FL: The University of Central Florida Press. Nelson, G. 1994. The trees of Florida: A reference and field guide. Sarasota, FL: Pineapple Press. Avicennia germinans, Black Mangrove 3.
Recommended publications
  • Avicennia Marina Mangrove Forest
    MARINE ECOLOGY PROGRESS SERIES Published June 6 Mar Ecol Prog Ser Resource competition between macrobenthic epifauna and infauna in a Kenyan Avicennia marina mangrove forest J. Schrijvers*,H. Fermon, M. Vincx University of Gent, Department of Morphology, Systematics and Ecology, Marine Biology Section, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium ABSTRACT: A cage exclusion experiment was used to examine the interaction between the eplbenthos (permanent and vls~tlng)and the macroinfauna of a high intertidal Kenyan Avicennia marina man- grove sediment. Densities of Ollgochaeta (families Tubificidae and Enchytraeidae), Amphipoda, Insecta larvae, Polychaeta and macro-Nematoda, and a broad range of environmental factors were fol- lowed over 5 mo of caging. A significant increase of amphipod and insect larvae densities in the cages indicated a positive exclusion effect, while no such effect was observed for oligochaetes (Tubificidae in particular), polychaetes or macronematodes. Resource competitive interactions were a plausible expla- nation for the status of the amphipod community. This was supported by the parallel positive exclusion effect detected for microalgal densities. It is therelore hypothesized that competition for microalgae and deposited food sources is the determining structuring force exerted by the epibenthos on the macrobenthic infauna. However, the presence of epibenthic predation cannot be excluded. KEY WORDS: Macrobenthos . Infauna . Epibenthos - Exclusion experiment . Mangroves . Kenya INTRODUCTION tioned that these areas are intensively used by epiben- thic animals as feeding grounds, nursery areas and Exclusion experiments are a valuable tool for detect- shelters (Hutchings & Saenger 1987).In order to assess ing the influence of epibenthic animals on endobenthic the importance of the endobenthic community under communities.
    [Show full text]
  • DISSERTAÇÃO Caroline Leal Rodrigues Soares.Pdf
    UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE BIOCIÊNCIAS PROGRAMA DE PÓS GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS CAROLINE LEAL RODRIGUES SOARES AVALIAÇÃO DA ATIVIDADE CICATRIZANTE IN VITRO E IN VIVO DO EXTRATO HIDROALCOÓLICO DE LAGUNCULARIA RACEMOSA (L) C.F. GAERTN Recife 2018 CAROLINE LEAL RODRIGUES SOARES AVALIAÇÃO DA ATIVIDADE CICATRIZANTE IN VITRO E IN VIVO DO EXTRATO HIDROALCOÓLICO DE LAGUNCULARIA RACEMOSA (L) C.F. GAERTN Dissertação apresentada ao Programa de Pós- Graduação em Ciências Biológicas da Universidade Federal de Pernambuco, como parte dos requisitos parciais para obtenção do título de mestre em Ciências Biológicas. Área de concentração: Biologia Química para a Saúde Orientadora: Profª. Drª. Teresinha Gonçalves da Silva Recife 2018 Dados Internacionais de Catalogação na Publicação (CIP) de acordo com ISBD Soares, Caroline Leal Rodrigues Avaliação da atividade cicatrizante in vitro e in vivo do extrato hidroalcoólico de Laguncularia racemosa (L) C.F. Gaertn / Caroline Leal Rodrigues Soares - 2018. 85 folhas: il., fig., tab. Orientadora: Teresinha Gonçalves da Silva Dissertação (Mestrado) – Universidade Federal de Pernambuco. Centro de Biociências. Programa de Pós-Graduação em Ciências Biológicas. Recife, 2018. Inclui referências e anexo 1. Plantas medicinais 2. Laguncularia racemosa 3. Cicatrização I. Silva, Teresinha Gonçalves da (orient.) II. Título 615.321 CDD (22.ed.) UFPE/CB-2018-452 Elaborado por Claudina Karla Queiroz Ribeiro CRB4/1752 CAROLINE LEAL RODRIGUES SOARES AVALIAÇÃO DA ATIVIDADE CICATRIZANTE IN VITRO E IN VIVO DO EXTRATO HIDROALCOÓLICO DE LAGUNCULARIA RACEMOSA (L) C.F. GAERTN Dissertação apresentada ao Programa de Pós- Graduação em Ciências Biológicas da Universidade Federal de Pernambuco, como parte dos requisitos parciais para obtenção do título de mestre em Ciências Biológicas.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Redalyc.Photosynthetic Performance of Mangroves Rhizophora Mangle
    Revista Árvore ISSN: 0100-6762 [email protected] Universidade Federal de Viçosa Brasil Ralph Falqueto, Antelmo; Moura Silva, Diolina; Venturim Fontes, Renata Photosynthetic performance of mangroves Rhizophora mangle and Laguncularia racemosa under field conditions Revista Árvore, vol. 32, núm. 3, mayo-junio, 2008, pp. 577-582 Universidade Federal de Viçosa Viçosa, Brasil Available in: http://www.redalyc.org/articulo.oa?id=48813382018 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Photosynthetic performance of magroves … 577 PHOTOSYNTHETIC PERFORMANCE OF MANGROVES Rhizophora mangle AND Laguncularia racemosa UNDER FIELD CONDITIONS1 Antelmo Ralph Falqueto2, Diolina Moura Silva3, Renata Venturim Fontes4 ABSTRACT – In mature mangrove plants Rhizophora mangle L. and Laguncularia racemosa Gaerth. growing under field conditions, photosystem 2 (PS2) photochemical efficiency, determined by the ratio of variable to maximum fluorescence (Fv/Fm), increased during the day in response to salinity in the rainy seasons. During the dry season, fluorescence values ( Fo) were higher than those observed in rainy season. In addition, Fo decreased during the day in both season and species, except for R. mangle during the dry season. A positive correlation among Fv/Fm and salinity values was obtained for R. mangle and L. Racemosa during the dry and rainy seasons, showing that photosynthetic performance is maintained in both species under high salinities. Carotenoid content was higher in L. Racemosa in both seasons, which represents an additional mechanism against damage to the photosynthetic machinery.
    [Show full text]
  • Influence of Propagule Flotation Longevity and Light
    Influence of Propagule Flotation Longevity and Light Availability on Establishment of Introduced Mangrove Species in Hawai‘i1 James A. Allen2,3 and Ken W. Krauss2,4,5 Abstract: Although no mangrove species are native to the Hawaiian Archipel- ago, both Rhizophora mangle and Bruguiera sexangula were introduced and have become naturalized. Rhizophora mangle has spread to almost every major Ha- waiian island, but B. sexangula has established only on O‘ahu, where it was inten- tionally introduced. To examine the possibility that differences in propagule characteristics maintain these patterns of distribution, we first reviewed the lit- erature on surface currents around the Hawaiian Islands, which suggest that propagules ought to disperse frequently from one island to another within 60 days. We then tested the ability of propagules of the two species to float for pe- riods of up to 63 days and to establish under two light intensities. On average, R. mangle propagules floated for longer periods than those of B. sexangula, but at least some propagules of both species floated for a full 60 days and then rooted and grew for 4 months under relatively dense shade. A large percentage (@83%) of R. mangle propagules would be expected to float beyond 60 days, and approx- imately 10% of B. sexangula propagules also would have remained afloat. There- fore, it seems likely that factors other than flotation ability are responsible for the failure of B. sexangula to become established on other Hawaiian islands. The Hawaiian Archipelago, located in Mangrove species were first introduced to the central Pacific Ocean between 18 and Hawai‘i in 1902, when Rhizophora mangle L.
    [Show full text]
  • TAXON:Conocarpus Erectus L. SCORE:5.0 RATING:Evaluate
    TAXON: Conocarpus erectus L. SCORE: 5.0 RATING: Evaluate Taxon: Conocarpus erectus L. Family: Combretaceae Common Name(s): button mangrove Synonym(s): Conocarpus acutifolius Willd. ex Schult. buttonwood Conocarpus procumbens L. Sea mulberry Assessor: Chuck Chimera Status: Assessor Approved End Date: 30 Jul 2018 WRA Score: 5.0 Designation: EVALUATE Rating: Evaluate Keywords: Tropical Tree, Naturalized, Coastal, Pure Stands, Water-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 n outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) n 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals 405 Toxic to animals y=1, n=0 n 406 Host for recognized pests and pathogens 407 Causes allergies or is otherwise toxic to humans y=1, n=0 n 408 Creates a fire hazard in natural ecosystems y=1, n=0 n 409 Is a shade tolerant plant at some stage of its life cycle y=1, n=0 n Creation Date: 30 Jul 2018 (Conocarpus erectus L.) Page 1 of 17 TAXON: Conocarpus erectus L.
    [Show full text]
  • Phylogenetic Relationships Among the Mangrove Species of Acanthaceae Found in Indian Sundarban, As Revealed by RAPD Analysis
    Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Advances in Applied Science Research, 2015, 6(3):179-184 ISSN: 0976-8610 CODEN (USA): AASRFC Phylogenetic relationships among the mangrove species of Acanthaceae found in Indian Sundarban, as revealed by RAPD analysis Surya Shekhar Das 1, Swati Das (Sur) 2 and Parthadeb Ghosh* 1Department of Botany, Bolpur College, Birbhum, West Bengal, India 2Department of Botany, Nabadwip Vidyasagar College, Nadia, West Bengal, India _____________________________________________________________________________________________ ABSTRACT RAPD markers were successfully used to identify and differentiate all the five species of Acanthaceae found in the mangrove forest of Indian Sundarban, to assess the extent of interspecific genetic diversity among them, to reveal their molecular phylogeny and to throw some light on the systematic position of Avicennia. The dendrogram reveals that the five species under study exhibits an overall similarity of 60.7%. Avicennia alba and A. officinalis (cluster C1) have very close relationship between them and share a common node in the dendrogram at a 73.3% level of similarity. Avicennia marina and Acanthus ilicifolius (cluster C2) also have close relationship between them as evident by a common node in the dendrogram at 71.8% level of similarity. Acanthus volubilis showed 68.1% similarity with cluster C1 and 60.7% similarity with cluster C2. Our study also supported the view of placing Avicennia under Acanthaceae. Regarding the relative position of Avicennia within Acanthaceae, it was shown to be very close to Acanthoideae. In comparison to other species, A. marina showed most genetic variability, suggesting utilization of this species over others for breeding programme and as source material in in situ conservation programmes.
    [Show full text]
  • Acanthaceae), a New Chinese Endemic Genus Segregated from Justicia (Acanthaceae)
    Plant Diversity xxx (2016) 1e10 Contents lists available at ScienceDirect Plant Diversity journal homepage: http://www.keaipublishing.com/en/journals/plant-diversity/ http://journal.kib.ac.cn Wuacanthus (Acanthaceae), a new Chinese endemic genus segregated from Justicia (Acanthaceae) * Yunfei Deng a, , Chunming Gao b, Nianhe Xia a, Hua Peng c a Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China b Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, Facultyof Life Science, Binzhou University, Binzhou, 256603, Shandong, People's Republic of China c Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China article info abstract Article history: A new genus, Wuacanthus Y.F. Deng, N.H. Xia & H. Peng (Acanthaceae), is described from the Hengduan Received 30 September 2016 Mountains, China. Wuacanthus is based on Wuacanthus microdontus (W.W.Sm.) Y.F. Deng, N.H. Xia & H. Received in revised form Peng, originally published in Justicia and then moved to Mananthes. The new genus is characterized by its 25 November 2016 shrub habit, strongly 2-lipped corolla, the 2-lobed upper lip, 3-lobed lower lip, 2 stamens, bithecous Accepted 25 November 2016 anthers, parallel thecae with two spurs at the base, 2 ovules in each locule, and the 4-seeded capsule. Available online xxx Phylogenetic analyses show that the new genus belongs to the Pseuderanthemum lineage in tribe Justi- cieae.
    [Show full text]
  • Acanthaceae and Asteraceae Family Plants Used by Folk Medicinal Practitioners for Treatment of Malaria in Chittagong and Sylhet Divisions of Bangladesh
    146 American-Eurasian Journal of Sustainable Agriculture, 6(3): 146-152, 2012 ISSN 1995-0748 ORIGINAL ARTICLE Acanthaceae and Asteraceae family plants used by folk medicinal practitioners for treatment of malaria in Chittagong and Sylhet Divisions of Bangladesh Md. Tabibul Islam, Protiva Rani Das, Mohammad Humayun Kabir, Shakila Akter, Zubaida Khatun, Md. Megbahul Haque, Md. Saiful Islam Roney, Rownak Jahan, Mohammed Rahmatullah Faculty of Life Sciences, University of Development Alternative, Dhanmondi, Dhaka-1205, Bangladesh Md. Tabibul Islam, Protiva Rani Das, Mohammad Humayun Kabir, Shakila Akter, Zubaida Khatun, Md. Megbahul Haque, Md. Saiful Islam Roney, Rownak Jahan, Mohammed Rahmatullah: Acanthaceae and Asteraceae family plants used by folk medicinal practitioners for treatment of malaria in Chittagong and Sylhet Divisions of Bangladesh ABSTRACT Malaria is a debilitating disease causing high mortality rates among men and women if not treated properly. The disease is prevalent in many countries of the world with the most prevalence noted among the sub-Saharan countries, where it is in an epidemic form. The disease is classified as hypo-endemic in Bangladesh with the southeast and the northeastern regions of the country having the most malaria-affected people. The rural people suffer most from malaria, and they rely on folk medicinal practitioners for treatment, who administer various plant species for treatment of the disease as well as associated symptoms like pain and fever. Plant species have always formed the richest sources of anti-malarial drugs, the most notable being quinine and artemisinin. However, quinine has developed drug-resistant vectors and artemisinin is considered by some to developing initial resistance, particularly in China, where it has been used for thousands of years to combat malaria.
    [Show full text]
  • Plant-Insect Interactions in a Shifting Coastal Ecosystem: Avicennia Germinans and Its Associated Arthropods
    ABSTRACT Title of Dissertation: PLANT-INSECT INTERACTIONS IN A SHIFTING COASTAL ECOSYSTEM: AVICENNIA GERMINANS AND ITS ASSOCIATED ARTHROPODS Mayda Nathan, Doctor of Philosophy, 2020 Dissertation directed by: Dr. Daniel S. Gruner, Department of Entomology The climate’s role in determining where species occur is increasingly well understood, but our ability to predict how biotic interactions both influence and respond to species’ range shifts remains poor. This is particularly important when considering climate-change-driven range shifts in habitat-forming species like mangroves, given their impact on ecosystem structure and function. In this dissertation, I consider the arthropods associated with the black mangrove, Avicennia germinans, to explore whether patterns of arthropod diversity affect the rate of a plant’s range expansion, and, in turn, how a range-expanding plant alters arthropod communities in habitats where it is invading. Among arthropods with the potential to influence plants’ range dynamics, pollinators can directly affect plant reproduction and ability to spread into new territory. Breeding system experiments reveal that A. germinans relies on pollinators for full fruit set, and surveys along the Florida coast show a substantial northward decline in the overall frequency of pollinator visits to A. germinans flowers. However, the decline in abundance of some common pollinator taxa is partly offset by an increase in the frequency of other highly effective taxa. Furthermore, range-edge A. germinans produce more flowers than southern individuals, contributing to high range-edge fecundity and enabling range expansion. As a woody plant with nectar-producing flowers, A. germinans is a novel resource for arthropods in the salt marshes where it is encroaching.
    [Show full text]
  • Downloaded and Set As out Groups Genes
    Alzahrani et al. BMC Genomics (2020) 21:393 https://doi.org/10.1186/s12864-020-06798-2 RESEARCH ARTICLE Open Access Complete chloroplast genome sequence of Barleria prionitis, comparative chloroplast genomics and phylogenetic relationships among Acanthoideae Dhafer A. Alzahrani1, Samaila S. Yaradua1,2*, Enas J. Albokhari1,3 and Abidina Abba1 Abstract Background: The plastome of medicinal and endangered species in Kingdom of Saudi Arabia, Barleria prionitis was sequenced. The plastome was compared with that of seven Acanthoideae species in order to describe the plastome, spot the microsatellite, assess the dissimilarities within the sampled plastomes and to infer their phylogenetic relationships. Results: The plastome of B. prionitis was 152,217 bp in length with Guanine-Cytosine and Adenine-Thymine content of 38.3 and 61.7% respectively. It is circular and quadripartite in structure and constitute of a large single copy (LSC, 83, 772 bp), small single copy (SSC, 17, 803 bp) and a pair of inverted repeat (IRa and IRb 25, 321 bp each). 131 genes were identified in the plastome out of which 113 are unique and 18 were repeated in IR region. The genome consists of 4 rRNA, 30 tRNA and 80 protein-coding genes. The analysis of long repeat showed all types of repeats were present in the plastome and palindromic has the highest frequency. A total number of 98 SSR were also identified of which mostly were mononucleotide Adenine-Thymine and are located at the non coding regions. Comparative genomic analysis among the plastomes revealed that the pair of the inverted repeat is more conserved than the single copy region.
    [Show full text]
  • Avicennia Marina: a Novel Convivial Phyto Medicine for Antibiotic Resistant Pathogenic Bacteria
    Open Access Journal of Biomedical Studies RESEARCH ARTICLE Avicennia Marina: A Novel Convivial Phyto Medicine for Antibiotic Resistant Pathogenic Bacteria Vibha Bhardwaj* Director Environment Laboratories, RAK Municipality, Ras Al Khaimah, United Arab Emirates *Corresponding author: Dr. Vibha Bhardwaj, Director Environment Laboratories, RAK Municipality, Ras Al Khaimah, United Arab Emirates, E-mail: [email protected] Citation: Vibha Bhardwaj (2021) Avicennia Marina: A Novel Convivial Phyto Medicine for Antibiotic Resistant Pathogenic Bacteria. J Biomed Stud 1: 101 Abstract This study investigated two different concentration of methanol extracts of the leaves of Avicennia marina against five human pathogenic bacteria, to determine their efficacy against multidrug resistant microbes. Powdered leaves of the tree were treated with two different concentration of methanol (10% w/v and 20% w/v) using hot extraction method. Crude methanol extracts of the leaves of Avicennia marina was investigated for their antibacterial activity against a wide range of bacteria (both gram-positive and gram-negative) by disc diffusion method. Multidrug resistant (MDR) strains of Bacillus subtilis (ATCC 6633), E. coli (ATCC 8739), Salmonella enterica (ATCC 14028), Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC 27853) were used in the study. Ciprofloxacin was used as standard. The antimicrobial activities of the crude extracts were increased with increasing the concentration. The methanolic leaves extracts of A. marina showed a remarkable inhibition of the microorganisms. The potency shown by these extracts recommends their use against multidrug resistant microorganisms. It is clear that n-hexane extract was the most effective extract. Additionally, Multidrug resistant (MDR) strains of E. coli, Bacillus subtilis and Staphylococcus aureus was strongly inhibited by both concentration of methanol extracts of A.
    [Show full text]