The Honolulu Declaration on Ocean Acidification and Reef Management

Total Page:16

File Type:pdf, Size:1020Kb

The Honolulu Declaration on Ocean Acidification and Reef Management The Honolulu Declaration on Ocean Acidification and Reef Management ! ! Prepared and adopted by participants of the Ocean Acidification Workshop, convened by The Nature Conservancy, 12-14 August 2008, Hawaii 1 IUCN Global Marine Programme Founded in 1948, The World Conservation Union brings together States, government agencies and a diverse range of non-governmental organizations in a unique world partnership: over 1000 members in all, spread across some 140 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable. The IUCN Global Marine Programme provides vital linkages for the Union and its members to all the IUCN activities that deal with marine issues, including projects and initiatives of the Regional offices and the 6 IUCN Commissions. The IUCN Global Marine Programme works on issues such as integrated coastal and marine management, fisheries, marine protected areas, large marine ecosystems, coral reefs, marine invasives and protection of high and deep seas. The Nature Conservancy The mission of The Nature Conservancy is to preserve the plants, animals and natural communities that represent the diversity of life on Earth by protecting the lands and waters they need to survive. The Conservancy launched the Global Marine Initiative in 2002 to protect and restore the most resilient examples of ocean and coastal ecosystems in ways that benefit marine life, local communities and economies. The Conservancy operates over 100 marine conservation projects in more than 21 countries and 22 U.S. states; we work with partners across seascapes and landscapes through transformative strategies and integrated planning and action. The focus is on: (1) Setting priorities for marine conservation using ecoregional assessments and tools for ecosystem based management; (2) Ensuring coral reef survival by creating resilient networks of marine protected areas; (3) Restoring and conserving coastal habitats by utilizing innovative new methods; (4) Building support for marine conservation through strategic partnerships and working to shape global and national policies. Marine conservation in The Nature Conservancy builds upon the organization’s core strengths: achieving demonstrable results; working with a wide range of partners, including nontraditional partners; science-based, robust conservation planning methodologies; our experience with transactions; and, perhaps most importantly, our ability and commitment to back up our strategies with human, financial and political capital. For more information e- mail [email protected] or go to www.nature.org/marine. IUCN Climate Change and Coral Reefs Working Group The IUCN Climate Change and Coral Reefs Working Group on coral bleaching, resilience, and climate change was established in 2006 by the Global Marine Programme of IUCN, The World Conservation Union, on a 3-year grant from the John D. and Catherine T. MacArthur Foundation. The goal of the working group is to draw on leading practitioners in coral reef science and management to streamline the identification and testing of management interventions to mitigate the impacts of climate change on coral reefs. The working group will consult and engage with experts in three key areas: climate change and coral bleaching research to incorporate the latest knowledge; management to identify key needs and capabilities on the ground; and ecological resilience to promote and develop the framework provided by resilience theory as a bridge between bleaching research and management implementation. Acknowledgements The participants would like to thank the Nature Conservancy’s Global Marine and Climate Change Teams, the Commonwealth Bank of Australia, the Marine Conservation Biology Institute, and Janice Larkin for their contributions to this workshop. We would like to thank the staff at IUCN, in particular James Oliver, for his hard work and dedication in design and layout. Finally, we would like to thank IUCN’s Global Marine Programme, and the John D. and Catherine T. MacArthur Foundation for supporting the publication of this document. Cover Photography Front cover: Luxuriant Indo-Pacific coral reef; Copyright: Paul Marshall Workshop Photography Copyright: Naomi Sodetani 2 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of The World Conservation Union (IUCN) or The Nature Conservancy concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or The Nature Conservancy, nor does citing of trade names or commercial processes constitute endorsement. Published by: The World Conservation Union (IUCN), Gland, Switzerland Copyright: © 2008 The International Union for the Conservation of Nature and Natural Resources / The Nature Conservancy Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holders. Citation: McLeod, E., R.V. Salm, , K. Anthony, B. Causey, E. Conklin, A. Cros, R. Feely, J. Guinotte, G. Hofmann, J. Hoffman, P. Jokiel, J. Kleypas, P. Marshall, and C. Veron. 2008. The Honolulu Declaration on Ocean Acidification and Reef Management. The Nature Conservancy, U.S.A., and IUCN, Gland, Switzerland. Available from: IUCN Global Marine Programme, The World Conservation Union (IUCN), Rue Mauverney 28, 1196 Gland, Switzerland. Tel: +41 22 999 02 17 Fax: +41 22 999 00 25 E-mail: [email protected] A catalogue of IUCN publications is also available. Printed in Switzerland on chlorine-free paper from FSC-certified forests. 3 Table of Contents Background......................................................................................................................... 5 Policy Recommendations.................................................................................................... 7 Management Recommendations......................................................................................... 8 Workshop Participants and Signatories to the Declaration: ............................................. 11 Appendix A: Text to support policy recommendations.................................................... 12 Appendix B: Text to support management recommendations.......................................... 17 Appendix C: Impacts of ocean acidification on coral reef ecosystems ............................ 26 Appendix D: References................................................................................................... 28 4 The Honolulu Declaration on Ocean Acidification and Reef Management Resilient coral garden at Halmahera, Indonesia. Copyright: Emre Turak continue, the ocean will continue to Background undergo acidification, to an extent and at Ocean acidification is the change in rates that have not occurred for tens of ocean chemistry driven by the oceanic millions of years. A doubling of the uptake of chemical inputs to the concentration of atmospheric carbon atmosphere, including carbon, nitrogen dioxide, which could occur in as little as and sulfur compounds (Doney et al. 50 years, could cause major changes in 2007; Guinotte and Fabry 2008). The the marine environment, specifically ocean absorbs about one-third of the impacting calcium carbonate organisms carbon dioxide added to the atmosphere (Orr et al. 2005). Such changes by human activities each year (Sabine et compromise the long-term viability of al. 2004); and the pH of the ocean coral reef ecosystems and the associated surface waters has decreased by about benefits that they provide. 0.1 units since the beginning of the industrial revolution (Feely et al. 2004). Coral reefs systems provide economic If current carbon dioxide emission trends and environmental services to millions 5 of people as coastal protection from 2008. The workshop participants waves and storms, and as sources of included oceanographers, climate food, pharmaceuticals, livelihoods, and experts, marine scientists, and coral reef revenues (Best and Bornbusch 2001). managers from around the world. Coral reefs also support multi-billion dollar industries, such as tourism and fisheries. For example, in Hawaii, reef- related tourism and fishing generate $360 million per year, and their overall worth has been estimated at close to $10 billion (Cesar et al. 2002). Coral reefs and the services that they provide are threatened by the impacts of human stresses such as coastal development, pollution, overexploitation, and destructive fishing, in addition to climate change impacts. Climate change impacts, specifically increases in sea temperature, sea level, and ocean acidity, jeopardize the biodiversity of the ocean and threaten the food security of dependent coastal communities. Scientific evidence suggests that by 2050, we may lose more coral reef area to erosion than can be rebuilt naturally if urgent steps are not taken to reduce atmospheric CO2 (Hoegh-Guldberg et al. 2007). Scaled-up management actions on global emissions and on reef recovery are required if the loss of coral-dominated
Recommended publications
  • Slow-Onset Processes and Resulting Loss and Damage
    Publication Series ADDRESSING LOSS AND DAMAGE FROM SLOW-ONSET PROCESSES Slow-onset Processes and Resulting Loss and Damage – An introduction Table of contents L 4 22 ist of a bbre Summary of Loss and damage via tio key facts and due to slow-onset ns definitions processes AR4 IPCC Fourth Assessment Report 6 22 What is loss and damage? Introduction AR5 IPCC Fifth Assessment Report COP Conference of the Parties to the 23 United Nations Framework Convention on 9 What losses and damages IMPRINT Climate Change can result from slow-onset Slow-onset ENDA Environment Development Action Energy, processes? Authors Environment and Development Programme processes and their Laura Schäfer, Pia Jorks, Emmanuel Seck, Energy key characteristics 26 Oumou Koulibaly, Aliou Diouf ESL Extreme Sea Level What losses and damages Contributors GDP Gross Domestic Product 9 can result from sea level rise? Idy Niang, Bounama Dieye, Omar Sow, Vera GMSL Global mean sea level What is a slow-onset process? Künzel, Rixa Schwarz, Erin Roberts, Roxana 31 Baldrich, Nathalie Koffi Nguessan GMSLR Global mean sea level rise 10 IOM International Organization on Migration What are key characteristics Loss and damage Editing Adam Goulston – Scize Group LLC of slow-onset processes? in Senegal due to IPCC Intergovernmental Panel on Climate Change sea level rise Layout and graphics LECZ Low-elevation coastal zone 14 Karin Roth – Wissen in Worten OCHA Office for the Coordination of Humanitarian Affairs What are other relevant January 2021 terms for the terminology on 35 RCP Representative
    [Show full text]
  • The Coral Reef Environmental "Crisis": Negotiating Knowledge in Scientific Uncertainty and Geographic Difference Ba#Rbel G
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2010 The Coral Reef Environmental "Crisis": Negotiating Knowledge in Scientific Uncertainty and Geographic Difference Ba#rbel G. Bischof Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF SOCIAL SCIENCES & PUBLIC POLICY THE CORAL REEF ENVIRONMENTAL “CRISIS”: NEGOTIATING KNOWLEDGE IN SCIENTIFIC UNCERTAINTY AND GEOGRAPHIC DIFFERENCE By BÄRBEL G. BISCHOF A Dissertation submitted to the Department of Geography in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Summer Semester, 2010 i The members of the committee approve the dissertation of Bärbel G. Bischof, defended on May 7, 2010. !!!!!!_____________________________________________ !!!!!!Philip E. Steinberg !!!!!! Professor Directing Dissertation !!!!!!_____________________________________________ !!!!!!Ronald E. Doel !!!!!! University Representative !!! !!!!!!_____________________________________________ !!!!!!James B. Elsner !!!!!! Committee Member !!!!!!_____________________________________________ !!!!!!Xiaojun Yang !!!!!! Committee Member !!!!!! Approved: ______________________________________________________________ Victor Mesev, Chair, Department of Geography ______________________________________________________________ David W. Rasmussen, Dean, College of Social Sciences & Public Policy The Graduate School has verified and approved the
    [Show full text]
  • Ocean Acidification in Washington State
    University of Washington • Washington Sea Grant Ocean Acidification in Washington State What is Ocean Acidification? OA in Washington State cean Acidification (or ‘OA’) is a long-term decrease ur region is experiencing ocean acidification sooner Oin seawater pH that is primarily caused by the Oand more severely than expected, due to a combina- ocean’s uptake of carbon dioxide (CO2 ) from the atmo- tion of human and natural causes. In the spring and sum- sphere. CO2 generated by humans’ use of fossil fuels and mer, acidification along our coast is compounded by up- deforestation has been accumulating in the atmosphere welling, which mixes deep, naturally low-pH seawater into since the industrial revolution. About one quarter of this the already acidified surface layer. In Puget Sound, nutri- CO2 is absorbed by the oceans, pH describes the acidity of a liquid ents generated by human activities (mostly where it reacts with water to form nitrogen and phosphorus from sewage, carbonic acid. As a result, the aver- fertilizers and manure) fuel processes that age pH of seawater at the ocean add even more CO2 to this ‘doubly-acidified’ surface has already dropped by ~0.1 seawater. The combination can be deadly units, a 30% increase in acidity. If to vulnerable organisms. pH levels as low atmospheric CO2 levels continue as 7.4 have been recorded in Hood Canal, to climb at the present rate, ocean an important shellfish-growing region. acidity will double by the end of this State and federal agencies, scientists, tribes, century. shellfish growers and NGOs are working together to address OA in our region.
    [Show full text]
  • Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide
    Ocean acidification due to increasing atmospheric carbon dioxide Policy document 12/05 June 2005 ISBN 0 85403 617 2 This report can be found at www.royalsoc.ac.uk ISBN 0 85403 617 2 © The Royal Society 2005 Requests to reproduce all or part of this document should be submitted to: Science Policy Section The Royal Society 6-9 Carlton House Terrace London SW1Y 5AG email [email protected] Copy edited and typeset by The Clyvedon Press Ltd, Cardiff, UK ii | June 2005 | The Royal Society Ocean acidification due to increasing atmospheric carbon dioxide Ocean acidification due to increasing atmospheric carbon dioxide Contents Page Summary vi 1 Introduction 1 1.1 Background to the report 1 1.2 The oceans and carbon dioxide: acidification 1 1.3 Acidification and the surface oceans 2 1.4 Ocean life and acidification 2 1.5 Interaction with the Earth systems 2 1.6 Adaptation to and mitigation of ocean acidification 2 1.7 Artificial deep ocean storage of carbon dioxide 3 1.8 Conduct of the study 3 2 Effects of atmospheric CO2 enhancement on ocean chemistry 5 2.1 Introduction 5 2.2 The impact of increasing CO2 on the chemistry of ocean waters 5 2.2.1 The oceans and the carbon cycle 5 2.2.2 The oceans and carbon dioxide 6 2.2.3 The oceans as a carbonate buffer 6 2.3 Natural variation in pH of the oceans 6 2.4 Factors affecting CO2 uptake by the oceans 7 2.5 How oceans have responded to changes in atmospheric CO2 in the past 7 2.6 Change in ocean chemistry due to increases in atmospheric CO2 from human activities 9 2.6.1 Change to the oceans
    [Show full text]
  • 9. AM Ecocide
    Amendments to draft resolution On the crime of Ecocide № Party Line Action Current Text Proposed Amendment Explanation 1 Bündnis 90/ 1 replace On an international recognition of the Tackle environmental destruction: Die Grünen crime of ecocide: 2 Bündnis 90/ 25 replace that global warming must be limited to agreed to holding the increase in the global Die Grünen 1,5°C. average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels, recognising that this would significantly reduce the risks and impacts of climate change. Amendments on Draft Resolution on an international recognition of the crime of ecocide European Green Party - 5th Congress, Liverpool, UK, 30 March-2 April 2017 1 № Party Line Action Current Text Proposed Amendment Explanation 3 Vihreät - De 30-36 delete According to environmental scientists Not necessary for making the point, Gröna Johan Rockström (Stockholm Resilience the chapter draws the attention Centre) and Will Steffen (Australian away from the point of the National University), these are two among resolution making it unnecessarily four “planetary boundaries” that have long. 4 Strana 30-36 replace already been exceeded. These “planetary These present two out of nine “planetary The original text presents the zelenych boundaries” involve nine thresholds on boundaries”, or nine thresholds on core concept of "planetary boundaries" (Czech core environmental issues (greenhouse gas environmental issues, beyond which human only as an opinion of Rockstrom Greens) amount in atmosphere, biodiversity, but existence would be threatened. The concept and Steffen and, moreover, it does also ocean acidification, land use for crop, has been introduced by a group of not state any source, that this consumption of freshwater...) beyond international scientists, led by Johan opinion is based on.
    [Show full text]
  • Ocean Acidification and the Permo- Triassic Mass Extinction: Process and Manifestation
    Goldschmidt2015 Abstracts Ocean acidification and the permo- Triassic mass extinction: Process and manifestation S. A. KASEMANN1, R. WOOD2*, M. O. CLARKSON3, T. M. LENTON4, S. J. DAINES4, S. RICHOZ5, F. OHNEMUELLER1, A. MEIXNER1, S. W. POULTON6 AND E. T. TIPPER7 1Department of Geosciences & MARUM-Center for Marine Environmental Sciences, Univ. of Bremen, Germany 2School of GeoSciences, University of Edinburgh, UK (*[email protected]) 3Department of Chemistry, Univ. of Otago, New Zealand 4College of Life and Environmental Sciences, Univ. of Exeter 5Institute of Earth Sciences, University of Graz, Austria 6School of Earth and Environment, University of Leeds, UK 7Dept. of Earth Sciences, University of Cambridge, UK Ocean acidification triggered by Siberian Trap volcanism was a possible kill mechanism for the Permian-Triassic Boundary (PTB) mass extinction, but direct evidence for an acidification event is lacking. We present a high resolution seawater pH record across this interval, utilizing boron isotope data (δ11B) combined with petrographic analysis and a quantitative modeling approach. Through this integration we are able to produce an envelope that encompasses the most realistic range in pH, which then allows us to resolve three distinct chronological phases of carbon cycle perturbation, each with very different environmental consequences for the Late Permian-Early Triassic Earth system. In the latest Permian, increased ocean alkalinity, primed the Earth system with a low level of atmospheric CO2 and a high ocean buffering capacity. The first phase of extinction was coincident with a slow injection of carbon into the atmosphere and ocean pH remained stable. During the second extinction pulse, however, a rapid and large injection of carbon caused an abrupt acidification event that drove the preferential loss of heavily calcified marine biota.
    [Show full text]
  • Ocean Acidification During the Early Toarcian
    https://doi.org/10.1130/G47781.1 Manuscript received 20 April 2020 Revised manuscript received 29 June 2020 Manuscript accepted 6 July 2020 © 2020 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 13 August 2020 Ocean acidification during the early Toarcian extinction event: Evidence from boron isotopes in brachiopods Tamás Müller1*, Hana Jurikova2,3, Marcus Gutjahr2, Adam Tomašových1, Jan Schlögl4, Volker Liebetrau2, Luís v. Duarte5, Rastislav Milovský1, Guillaume Suan6, Emanuela Mattioli6,7, Bernard Pittet6 and Anton Eisenhauer2 1 Earth Science Institute, Slovak Academy of Sciences, Dˇ umbierska 1, 974 01 Banská Bystrica, Slovakia 2 GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany 3 GFZ Deutsches GeoForschungsZentrum–Helmholtz-Zentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany 4 Department of Geology and Paleontology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovicˇova 6, SK-842 15 Bratislava, Slovakia 5 University of Coimbra, MARE–Marine and Environmental Sciences Centre–Department of Earth Sciences, Polo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal 6 Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, F-69622, Villeurbanne, France 7 Institut Universitaire de France (IUF), 75231 Paris Cedex 05, France ABSTRACT methane, have also been postulated (Hesselbo The loss of carbonate production during the Toarcian Oceanic Anoxic Event (T-OAE, ca. et al., 2000; Them et al., 2017). 183 Ma) is hypothesized to have been at least partly triggered by ocean acidification linked The changes in the carbon cycle are globally to magmatism from the Karoo-Ferrar large igneous province (southern Africa and Antarc- expressed as a short negative shift in the car- tica).
    [Show full text]
  • Ocean Acidification and Climate Change: Synergies and Challenges
    n synthesis 5 Ocean acidification and climate change: synergies and challenges of addressing both under the UNFCCC ELLYCIA R. HARROULD-KOLIEB1, DOROTHE´E HERR2* 1 10 School of Land and Environment, University of Melbourne, Melbourne, VIC 3010, Australia 2 Global Marine and Polar Programme, International Union for Conservation of Nature (IUCN), Suite 300, 1630 Connecticut Avenue NW, Washington, DC 20001, USA 15 Ocean acidification and climate change are linked by their common driver: CO2. Climate change is the consequence of a range of GHG emissions, but ocean acidification on a global scale is caused solely by increased concentrations of atmospheric CO2. Reducing CO2 emissions is therefore the most effective way to mitigate ocean acidification. Acting to prevent further ocean acidification by reducing CO2 emissions will also provide simultaneous benefits by alleviating future climate change. Although it is possible that reducing CO2 emissions to a level low enough to address ocean acidification will simultaneously address climate change, the reverse is unfortunately not necessarily true. Despite the ocean’s integral role in the climate system and the 20 potentially wide-ranging impacts on marine life and humans, the problem of ocean acidification is largely absent from most policy discussions pertaining to CO2 emissions. The linkages between ocean acidification, climate change and the United Nations Framework Convention on Climate Change (UNFCCC) are identified and possible scenarios for developing common solutions to reduce and adapt to ocean acidification and climate change are offered. Areas where the UNFCCC is currently lacking capacity to effectively tackle rising ocean acidity are also highlighted. 25 Keywords: climate change; climate policy; ocean acidification; oceans; UNFCCC L’acidification des oce´ans et le changement climatique sont lie´s par leur cause commune : le CO2.
    [Show full text]
  • Ocean Acidification Summary for Policymakers – Third
    O A Summary for Policymakers Third Symposium on the Ocean in a High-CO2 World Scientific sponsors: The International Geosphere-Biosphere Programme (IGBP) was launched in 1987 to coordinate international research on global-scale and regional-scale interactions between Earth’s biological, chemical and physical processes and their interactions with human systems. IGBP’s international core projects Integrated Marine Biogeochemistry and Ecosystem Research (IMBER), Surface Ocean–Lower Atmosphere Study (SOLAS), Past Global Changes (PAGES) and Land–Ocean Interactions in the Coastal Zone (LOICZ) study ocean acidification. The Intergovernmental Oceanographic Commission (IOC-UNESCO) was established by the United Nations Educational, Scientific and Cultural Organization (UNESCO) in 1960 to provide Member States of the United Nations with an essential mechanism for global cooperation in the study of the ocean. The Scientific Committee on Oceanic Research (SCOR) was established by the International Council for Science (ICSU) in 1957 and is a co-sponsor of the international projects IMBER and SOLAS. Citation: IGBP, IOC, SCOR (2013). Ocean Acidification Summary for Policymakers – Third Symposium on the Ocean in a High-CO2 World. International Geosphere-Biosphere Programme, Stockholm, Sweden. Editors: Wendy Broadgate (IGBP), Owen Gaffney (IGBP), Kirsten Isensee (IOC-UNESCO), Ulf Riebesell (GEOMAR), Ed Urban (SCOR) and Luis Valdés (IOC-UNESCO). Authors: Wendy Broadgate, IGBP; Ulf Riebesell, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany; Claire
    [Show full text]
  • Science Supporting Marine Protected Areas
    Letter coordinators: Professor Hugh Possingham, University of Queensland, phone 0434 079 061. Dr Jon Nevill, PO Box 106 Hampton Victoria 3188; phone 0422 926 515. Monday 16th August 2010 The Hon Julia Gillard Prime Minister Parliament House Canberra ACT 2600 The Hon Tony Abbott Leader of the Opposition Parliament House Canberra ACT 2600 OPEN LETTER TO THE PRIME MINISTER AND LEADER OF THE OPPOSITION SCIENCE SUPPORTING MARINE PROTECTED AREAS Dear Ms Gillard and Mr Abbott Recently articles have appeared in State and national press suggesting that there is little or no scientific evidence to support the creation of systems of marine protected areas. This is false. In this letter we briefly discuss the scientific evidence that shows marine protected areas have very positive impacts on biodiversity, and in many cases fisheries as well. Some reserve systems also produce substantial economic benefits through tourism1, as well as providing important educational, inspirational and research opportunities. Here we use the definition of marine protected areas of the Australian Marine Science Association (AMSA): areas of the ocean or coastal seas, securely reserved and effectively protected from at least some threats2. In the discussion below, we look briefly at threats to the marine environment, the history of marine protected areas, the development of networks of MPAs in Australia (against a background of bioregional planning), and their importance to Australia in an uncertain future. The marine environment faces five general threats: climate change and ocean acidification 3 resulting from rising CO2 levels , overfishing, habitat damage, pollution, and the effects of alien organisms4. On the global scene, modern fishing activities constitute the most important threat to marine biodiversity at the present time, although this will change in the 5 near future as rising CO2 levels affect ocean chemistry, temperatures and sea levels .
    [Show full text]
  • The Honolulu Declaration on Ocean Acidification and Reef Management
    The Honolulu Declaration on Ocean Acidification and Reef Management Prepared and adopted by participants of the Ocean Acidification Workshop, convened by The Nature Conservancy, 12-14 August 2008, Hawaii 1 IUCN Global Marine Programme Founded in 1948, The World Conservation Union brings together States, government agencies and a diverse range of non-governmental organizations in a unique world partnership: over 1000 members in all, spread across some 140 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable. The IUCN Global Marine Programme provides vital linkages for the Union and its members to all the IUCN activities that deal with marine issues, including projects and initiatives of the Regional offices and the 6 IUCN Commissions. The IUCN Global Marine Programme works on issues such as integrated coastal and marine management, fisheries, marine protected areas, large marine ecosystems, coral reefs, marine invasives and protection of high and deep seas. The Nature Conservancy The mission of The Nature Conservancy is to preserve the plants, animals and natural communities that represent the diversity of life on Earth by protecting the lands and waters they need to survive. The Conservancy launched the Global Marine Initiative in 2002 to protect and restore the most resilient examples of ocean and coastal ecosystems in ways that benefit marine life, local communities and economies. The Conservancy operates over 100 marine conservation projects in more than 21 countries and 22 U.S.
    [Show full text]
  • Submission from Dr Gideon Polya to the Senate Inquiry Into Australia's Faunal Extinction Crisis (12 August 2019). Credentials
    Submission from Dr Gideon Polya to the Senate Inquiry into Australia’s Faunal Extinction Crisis (12 August 2019). Credentials. BSc (Zoology and Chemistry majors, University of Tasmania, 1965), BSc Honours (First Class, University of Tasmania, 1966), PhD (Biochemistry, Flinders University of South Australia, 1969), Postdoctoral research fellow, Cornell University, New York (1969-1971), Queen Elizabeth II research fellow (Research School of Biological Sciences, Australian National University, 1971-1972), variously as a fulltime Lecturer to Reader (Associate Professor) (La Trobe University, 1972-2003), part-time lecturer (School of Traditional Chinese Medicine, 2004-2006, and at La Trobe University, 2007-2013). I have published about 100 scientific research papers, 19 chapters of books [1] and 3 substantial books, namely “Biochemical Targets of Plant Bioactive Compounds. A pharmacological reference guide to sites of action and biological effects” (2003) [1], “Jane Austen and the Black Hole of British History. Colonial rapacity, holocaust denial and the crisis in biological sustainability” (1998, 2008) [2], and “Body Count. Global avoidable mortality since 1950” (2007) [3]. I write and publish extensively overseas about the horrendous impact on Humanity and the Biosphere of violently-backed resource exploitation [1]. Growing up in Tasmania I was aware of the extraordinary beauty of the Tasmanian environment and after reading “Silent Spring” by Dr Rachel Carson [5] at the beginning of my zoological and chemical studies was horrified by the impact of chemical industry on animal life and became convinced that Man has no right to destroy any species, let alone complex ecosystems containing numerous plant, animal and microbial species. This view was reinforced by the likely extinction of the Tasmania tiger (Thylacinus cynocephalus) [6, 7], the biocidal pollution of the environs of Queenstown, and the drowning of numerous ecosystems by the Tasmanian Hydroelectric Commission (HEC).
    [Show full text]