Identification of Indian Spiders Through DNA Barcoding
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparative Functional Morphology of Attachment Devices in Arachnida
Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas. -
The Spiders Diversity from Different Habitats Around Biosciences, Vallabh Vidyanagar
International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 The Spiders Diversity from Different Habitats around Biosciences, Vallabh Vidyanagar B. M. Parmar Zoology Department, Sheth M.N. Science College, Patan, Gujarat-384 265 Abstract: A preliminary study of spiders was carried out in June 2012 to July 2013 from five sites around Biosciences, Vallabh Vidyanagar. As the results of collected spiders, total 90 species belonging to 66 genera spread over 24 families are recorded from five sites of Vallabhvidyanagar. The dominant family Araneidae had the highest number of species (18); followed by Salticidae (13), Thomisidae (10) and Tetragnathidae (7), Oxyopidae (5). Most of the other families had less than 5 species. This small region has detected more than 5% of Indian spiders. Keywords: Spiders, diversity, Anand, Gujarat 1. Introduction spiders with 12 species (13.33%) and irregular web builder 12 species (13.33%), Ambusher spiders with 11 (12.22%) Spiders of Gujarat from all regions have been studied earlier species each. The funnel web spiders with 7 species (7.77%) by several researchers; viz. Patel, B. H. [16], Patel, B. H. and and foliage hunter/ runner spiders with 3 species (3.33%). R.V.Vyas. [17], Manju Saliwal et. al., [6], Nikunj Bhatt, [10], Patel et. al., [18], Vachhani et. al., [26], Parmar Bharat Table 1: Sites Descriptions N. et. al., [15], Parmar, B.M. and K.B.Patel [12], Parmar, No. Site Geographic Habitat description B.M. et. al., [13], Parmar, B.M. and A.V.R.L.N. -
Diversity of Simonid Spiders (Araneae: Salticidae: Salticinae) in India
IJBI 2 (2), (DECEMBER 2020) 247-276 International Journal of Biological Innovations Available online: http://ijbi.org.in | http://www.gesa.org.in/journals.php DOI: https://doi.org/10.46505/IJBI.2020.2223 Review Article E-ISSN: 2582-1032 DIVERSITY OF SIMONID SPIDERS (ARANEAE: SALTICIDAE: SALTICINAE) IN INDIA Rajendra Singh1*, Garima Singh2, Bindra Bihari Singh3 1Department of Zoology, Deendayal Upadhyay University of Gorakhpur (U.P.), India 2Department of Zoology, University of Rajasthan, Jaipur (Rajasthan), India 3Department of Agricultural Entomology, Janta Mahavidyalaya, Ajitmal, Auraiya (U.P.), India *Corresponding author: [email protected] Received: 01.09.2020 Accepted: 30.09.2020 Published: 09.10.2020 Abstract: Distribution of spiders belonging to 4 tribes of clade Simonida (Salticinae: Salticidae: Araneae) reported in India is dealt. The tribe Aelurillini (7 genera, 27 species) is represented in 16 states and in 2 union territories, Euophryini (10 genera, 16 species) in 14 states and in 4 union territories, Leptorchestini (2 genera, 3 species) only in 2 union territories, Plexippini (22 genera, 73 species) in all states except Mizoram and in 3 union territories, and Salticini (3 genera, 11 species) in 15 states and in 4 union terrioties. West Bengal harbours maximum number of species, followed by Tamil Nadu and Maharashtra. Out of 129 species of the spiders listed, 70 species (54.3%) are endemic to India. Keywords: Aelurillini, Euophryini, India, Leptorchestini, Plexippini, Salticidae, Simonida. INTRODUCTION Hisponinae, Lyssomaninae, Onomastinae, Spiders are chelicerate arthropods belonging to Salticinae and Spartaeinae. Out of all the order Araneae of class Arachnida. Till to date subfamilies, Salticinae comprises 93.7% of the 48,804 described species under 4,180 genera and species (5818 species, 576 genera, including few 128 families (WSC, 2020). -
Sexual Selection Research on Spiders: Progress and Biases
Biol. Rev. (2005), 80, pp. 363–385. f Cambridge Philosophical Society 363 doi:10.1017/S1464793104006700 Printed in the United Kingdom Sexual selection research on spiders: progress and biases Bernhard A. Huber* Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany (Received 7 June 2004; revised 25 November 2004; accepted 29 November 2004) ABSTRACT The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morpho- logical and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters. -
The Life Cycle of Heteropoda Venatoria (Linnaeus) (Araneae: Heteropodidae)I, by John Ross 3, David B
THE LIFE CYCLE OF HETEROPODA VENATORIA (LINNAEUS) (ARANEAE: HETEROPODIDAE)I, BY JOHN ROSS 3, DAVID B. RICHMAN 3, FADEL MANSOUR4, ANNE TRAMBARULO3, AND W. H. WHITCOMB The giant crab spider, Heteropoda venatoria (L.), is known to occur throughout much of the tropics and subtropics of the world where it is valued as a predator of cockroaches (Guthrie and Tindall 1968, Hughes 1977, Edwards 1979). Its feeding habits, like those of most spiders, vary somewhat and it has also been known to eat scorpions and bats (Bhattacharya 1941), although it is questionable as to whether it normally attacks such prey. This spider is often found associated with human habitation, possibly due to the abun- dance of prey (Subrahamanyam 1944, Edwards 1979). Although biological notes on H. venatoria have been published by several workers (Lucas 1871, Minchin 1904, Bristowe 1924, Bonnet 1930, Ori 1974, 1977), the only life history work to date was published by Bonnet (1932) and Sekiguchi (1943, 1944a,b, 1945). Bonnet (1932) based his study on only 12 spiders (of which seven matured) and lacked data on the postembryonic stages. Sekiguchi (1943, 1944a,b, 1945) presented a more nearly complete study, but the papers are difficult to translate and they still lack some data, especially in regard to variation in the number of instars and carapace width. We have raised H. venatoria in the laboratory and present here our data on life cycle of this important beneficial arthropod. MATERIALS AND METHODS Spiders were obtained from avocado groves in south Florida, near Homestead, Dade County. Egg sacs taken from our laboratory This study was partially supported by the United States-lsrael BARD Fund as Research Project No. -
Molecular Insights Into the Phylogenetic Structure of the Spider
MolecularBlackwell Publishing Ltd insights into the phylogenetic structure of the spider genus Theridion (Araneae, Theridiidae) and the origin of the Hawaiian Theridion-like fauna MIQUEL A. ARNEDO, INGI AGNARSSON & ROSEMARY G. GILLESPIE Accepted: 9 March 2007 Arnedo, M. A., Agnarsson, I. & Gillespie, R. G. (2007). Molecular insights into the phylo- doi:10.1111/j.1463-6409.2007.00280.x genetic structure of the spider genus Theridion (Araneae, Theridiidae) and the origin of the Hawaiian Theridion-like fauna. — Zoologica Scripta, 36, 337–352. The Hawaiian happy face spider (Theridion grallator Simon, 1900), named for a remarkable abdominal colour pattern resembling a smiling face, has served as a model organism for under- standing the generation of genetic diversity. Theridion grallator is one of 11 endemic Hawaiian species of the genus reported to date. Asserting the origin of island endemics informs on the evolutionary context of diversification, and how diversity has arisen on the islands. Studies on the genus Theridion in Hawaii, as elsewhere, have long been hampered by its large size (> 600 species) and poor definition. Here we report results of phylogenetic analyses based on DNA sequences of five genes conducted on five diverse species of Hawaiian Theridion, along with the most intensive sampling of Theridiinae analysed to date. Results indicate that the Hawai- ian Islands were colonised by two independent Theridiinae lineages, one of which originated in the Americas. Both lineages have undergone local diversification in the archipelago and have convergently evolved similar bizarre morphs. Our findings confirm para- or polyphyletic status of the largest Theridiinae genera: Theridion, Achaearanea and Chrysso. -
Howard Associate Professor of Natural History and Curator Of
INGI AGNARSSON PH.D. Howard Associate Professor of Natural History and Curator of Invertebrates, Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405-0086 E-mail: [email protected]; Web: http://theridiidae.com/ and http://www.islandbiogeography.org/; Phone: (+1) 802-656-0460 CURRICULUM VITAE SUMMARY PhD: 2004. #Pubs: 138. G-Scholar-H: 42; i10: 103; citations: 6173. New species: 74. Grants: >$2,500,000. PERSONAL Born: Reykjavík, Iceland, 11 January 1971 Citizenship: Icelandic Languages: (speak/read) – Icelandic, English, Spanish; (read) – Danish; (basic) – German PREPARATION University of Akron, Akron, 2007-2008, Postdoctoral researcher. University of British Columbia, Vancouver, 2005-2007, Postdoctoral researcher. George Washington University, Washington DC, 1998-2004, Ph.D. The University of Iceland, Reykjavík, 1992-1995, B.Sc. PROFESSIONAL AFFILIATIONS University of Vermont, Burlington. 2016-present, Associate Professor. University of Vermont, Burlington, 2012-2016, Assistant Professor. University of Puerto Rico, Rio Piedras, 2008-2012, Assistant Professor. National Museum of Natural History, Smithsonian Institution, Washington DC, 2004-2007, 2010- present. Research Associate. Hubei University, Wuhan, China. Adjunct Professor. 2016-present. Icelandic Institute of Natural History, Reykjavík, 1995-1998. Researcher (Icelandic invertebrates). Institute of Biology, University of Iceland, Reykjavík, 1993-1994. Research Assistant (rocky shore ecology). GRANTS Institute of Museum and Library Services (MA-30-19-0642-19), 2019-2021, co-PI ($222,010). Museums for America Award for infrastructure and staff salaries. National Geographic Society (WW-203R-17), 2017-2020, PI ($30,000). Caribbean Caves as biodiversity drivers and natural units for conservation. National Science Foundation (IOS-1656460), 2017-2021: one of four PIs (total award $903,385 thereof $128,259 to UVM). -
Morphology of Female Genital Organs of Three Spider Species from Genus Neoscona (Araneae- Araneidae) Sonali P
IJRBAT, Special Issue (2), Vol-V, July 2017 ISSN No. 2347-517X (Online) 0orphology of female genital organs of three spider species from genus Neoscona (Araneae- Araneidae) Sonali P. Chapke, (hagat Vi-ay8. ( and Ra-a. I. A. Shri Shiva i college of Art Comme rce and Science, Akola IShri Shiva i Colle ge, Akot. sc7..1/gmail.com Abstract The morphology of the female genitalia is assumed to play a crucial role in shaping the sperm priority patte rns in spiders that probably are reflected in the mating behavior of a given species. Be e1amined the morphology of virgin femalesK genitalia by means of light microscopy of cleared specimens. The female epigynal plate, of three species of genus Neoscona - Neoscona theisi, Neoscona sinhagadensis and Neoscona rumpfi 0ere dissected out, and internal ginataila are e1posed and described. In all three species the internal genitalia, consist of a pair of spermatheca provided 0ith fertiliCation duct, and copulatory duct. Species specific variations are reported, in the epigyne and internal genitalia. The epigynal plate in N.theisi, and N.rumpfi have a length of aboutn0.2 mm 0hile ventral length in N. sinhagadensis was 0.75mm.Though the scape is found all the three species but its siCe and shape varies. Key words5 Neoscona, genital morphology, epigynum, cape, spermatheca Introduction2 dark. 8nce complete the host 0ill position herself The female genital structure, or e pigynum, is a head do0n at the hub (ce ntre) of the 0eb 0aiting harde ned plate on the unde rside of the abdomen for prey to fly into the 0eb. -
A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views. -
A Summary List of Fossil Spiders
A summary list of fossil spiders compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders. In Platnick, N. I. (ed.) The world spider catalog, version 10.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2009 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the spider fossil record and numerous new taxa have been described. As part of a larger project to catalog the diversity of fossil arachnids and their relatives, our aim here is to offer a summary list of the known fossil spiders in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list follows the names and sequence of families adopted in the Catalog. For this reason some of the family groupings proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. Genus and species names were compiled from established lists and cross-referenced against the primary literature. -
Monarch (Danaus Plexippus) in Canada
Species at Risk Act Management Plan Series Management Plan for the Monarch (Danaus plexippus) in Canada Monarch 2016 Recommended citation: Environment and Climate Change Canada. 2016. Management Plan for the Monarch (Danaus plexippus) in Canada. Species at Risk Act Management Plan Series. Environment and Climate Change Canada, Ottawa. iv + 45 pp. For copies of the management plan, or for additional information on species at risk, including the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) Status Reports, residence descriptions, action plans, and other related recovery documents, please visit the Species at Risk (SAR) Public Registry1. Cover illustration: Monarch © Karine Bériault 2007 Également disponible en français sous le titre « Plan de gestion du monarque (Danaus plexippus) au Canada » © Her Majesty the Queen in Right of Canada, represented by the Minister of Environment and Climate Change Canada, 2016. All rights reserved. ISBN 978-1-100-25735-8 Catalogue no. En3-5/71-2016E-PDF Content (excluding the illustrations) may be used without permission, with appropriate credit to the source. 1 http://sararegistry.gc.ca/default.asp?lang=En&n=24F7211B-1 Management Plan for the Monarch 2016 PREFACE The federal, provincial, and territorial government signatories under the Accord for the Protection of Species at Risk (1996)2 agreed to establish complementary legislation and programs that provide for effective protection of species at risk throughout Canada. Under the Species at Risk Act (S.C. 2002, c.29) (SARA), the federal competent ministers are responsible for the preparation of management plans for listed Special Concern species and are required to report on progress within five years after the publication of the final document on the SAR Public Registry. -
Arachnids of Elba Protected Area in the Southern Part of the Eastern Desert of Egypt
ARTÍCULO: Arachnids of Elba protected area in the southern part of the eastern desert of Egypt Hisham K. El-Hennawy ARTÍCULO: Arachnids of Elba protected area in the southern part of the eastern desert of Egypt Hisham K. El-Hennawy 41 El-Manteqa Abstract: El-Rabia St., Heliopolis, Elba protected area is a unique area with a variety of habitats. Its fauna is Cairo 11341 rich with numerous vertebrate and invertebrate species. The arachnids of this Egypt area are here studied for the first time. Specimens of five arachnid orders e-mail: [email protected] were collected during nine trips to different places in the area (June 1994 - November 2000). The collection contains 28 species of 16 families of Order Araneae, 1 species of family Phalangiidae of Order Opiliones, 2 species of family Olpiidae of Order Pseudoscorpiones, 4 species of 3 families of Order Solifugae, and 7 species of family Buthidae of Order Scorpiones. A map of the studied area and keys to the solifugid and scorpion species and spider Revista Ibérica de Aracnología families of the area are included. ISSN: 1576 - 9518. Keywords: Arachnida, spiders, scorpions, sun-spiders, pseudoscorpions, Dep. Legal: Z-2656-2000. harvestmen, Egypt, Elba protected area. Vol. 15, 30-VI-2007 Sección: Artículos y Notas. Pp: 115 − 121. Fecha publicación: 30 Abril 2008 Edita: Arácnidos del área protegida de Elba en la parte del sur del desierto Grupo Ibérico de Aracnología (GIA) oriental de Egipto Grupo de trabajo en Aracnología de la Sociedad Entomológica Aragonesa (SEA) Avda. Radio Juventud, 37 Resumen: 50012 Zaragoza (ESPAÑA) El Elba es un área protegida con una gran variedad de hábitats.