Mutations in NUP160 Are Implicated in Steroid-Resistant Nephrotic Syndrome

Total Page:16

File Type:pdf, Size:1020Kb

Mutations in NUP160 Are Implicated in Steroid-Resistant Nephrotic Syndrome BASIC RESEARCH www.jasn.org Mutations in NUP160 Are Implicated in Steroid-Resistant Nephrotic Syndrome Feng Zhao,1,2,3,4 Jun-yi Zhu ,2 Adam Richman,2 Yulong Fu,2 Wen Huang,2 Nan Chen,5 Xiaoxia Pan,5 Cuili Yi,1 Xiaohua Ding,1 Si Wang,1 Ping Wang,1 Xiaojing Nie,1,3,4 Jun Huang,1,3,4 Yonghui Yang,1,3,4 Zihua Yu ,1,3,4 and Zhe Han2,6 1Department of Pediatrics, Fuzhou Dongfang Hospital, Fujian, People’s Republic of China; 2Center for Genetic Medicine Research, Children’s National Health System, Washington, DC; 3Department of Pediatrics, Affiliated Dongfang Hospital, Xiamen University, Fujian, People’s Republic of China; 4Department of Pediatrics, Fuzhou Clinical Medical College, Fujian Medical University, Fujian, People’s Republic of China; 5Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; and 6Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC ABSTRACT Background Studies have identified mutations in .50 genes that can lead to monogenic steroid-resistant nephrotic syndrome (SRNS). The NUP160 gene, which encodes one of the protein components of the nuclear pore complex nucleoporin 160 kD (Nup160), is expressed in both human and mouse kidney cells. Knockdown of NUP160 impairs mouse podocytes in cell culture. Recently, siblings with SRNS and pro- teinuria in a nonconsanguineous family were found to carry compound-heterozygous mutations in NUP160. Methods We identified NUP160 mutations by whole-exome and Sanger sequencing of genomic DNA from a young girl with familial SRNS and FSGS who did not carry mutations in other genes known to be associated with SRNS. We performed in vivo functional validation studies on the NUP160 mutations using a Drosophila model. R11733 E803K Results We identified two compound-heterozygous NUP160 mutations, NUP160 and NUP160 . We showed that silencing of Drosophila NUP160 specifically in nephrocytes (fly renal cells) led to func- tional abnormalities, reduced cell size and nuclear volume, and disorganized nuclear membrane structure. These defects were completely rescued by expression of the wild-type human NUP160 gene in nephrocytes. R11733 By contrast, expression of the NUP160 mutant allele NUP160 completely failed to rescue nephrocyte E803K phenotypes, and mutant allele NUP160 rescued only nuclear pore complex and nuclear lamin localization defects. Conclusions Mutations in NUP160 are implicated in SRNS. Our findings indicate that NUP160 should be included in the SRNS diagnostic gene panel to identify additional patients with SRNS and homozygous or compound-heterozygous NUP160 mutations and further strengthen the evidence that NUP160 muta- tionscancauseSRNS. J Am Soc Nephrol 30: 840–853, 2019. doi: https://doi.org/10.1681/ASN.2018080786 Received August 1, 2018. Accepted February 2, 2019. Research, Children's National Health System, 111 Michigan Ave NW, Washington DC 20010, or Dr. Zihua Yu, Department of F.Z. and J.-y.Z. contributed equally to this work. Pediatrics, Fuzhou Dongfang Hospital, 156 Xi Er Huan Bei Lu, Fuzhou, Fujian 350025, China. Email: zhan@childrensnational. Published online ahead of print. Publication date available at org or [email protected] www.jasn.org. Copyright © 2019 by the American Society of Nephrology Correspondence: Dr. Zhe Han, Center for Genetic Medicine 840 ISSN : 1046-6673/3005-840 J Am Soc Nephrol 30: 840–853, 2019 www.jasn.org BASIC RESEARCH Nephrotic syndrome is a renal disease caused by disruption of Significance Statement the glomerular filtration barrier, resulting in massive protein- uria, hypoalbuminemia, hyperlipidemia, and edema.1 With Mutations in .50 genes can lead to monogenic steroid-resistant ne- respect to responsiveness to standard steroid therapy, ne- phrotic syndrome (SRNS). The authors found that a young patient with phrotic syndrome is classified into steroid-sensitive nephrotic familial SRNS and FSGS carried novel compound-heterozygous mu- tations in NUP160; this gene encodes nucleoporin 160 kD, one of the syndrome and steroid-resistant nephrotic syndrome (SRNS). protein components of the nuclear pore complex. Using an in vivo renal SRNS can have either an immunologic or genetic etiology.2 cell assay on the basis of Drosophila nephrocytes (an experimental The contributions of genetic factors are increasingly empha- podocyte model previously used to validate candidate renal disease sized in the growing understanding of SRNS pathogenesis. To genes and specific patient-derived mutant alleles), they validated the NUP160 date, .50 monogenic genes have been identified that cause gene variants as factors implicated in kidney pathology. The findings indicate that NUP160 should be included in the SRNS di- 3 SRNS when mutated. These include genes encoding compo- agnostic gene panel to identify additional patients with SRNS carrying nents of the slit diaphragm, such as NPHS1, NPHS2,and homozygous or compound-heterozygous NUP160 mutations. CD2AP; genes encoding actin cytoskeleton proteins, such as ACTN4, INF2,andMYO1E; genes encoding actin-regulating small GTPases of the Rho/Rac/Cdc42 family, including nephrocyte phenotypes by expression of a wild-type human NUP160 ARHGDIA, ARHGAP24,andKANK; and genes encoding transgene but not by either patient-derived mutant in vivo NUP160 nucleoporins (Nups), including NUP93, NUP107,and allele, providing evidence to implicate these NUP205. Mutations in NPHS1, NPHS2,andCD2AP disrupt mutations as pathogenic. the integrity of the slit diaphragm and lead to congenital nephrotic syndrome, early-onset autosomal recessive SRNS, and early-onset FSGS, respectively.4–6 Mutations in METHODS ACTN4 change the cytoskeletal dynamics of podocytes and lead to adult-onset autosomal dominant FSGS.7 Mutations Study Participants in ARHGDIA alter podocyte migration capabilities and Written informed consent from index family members and lead to early-onset SRNS.8 Mutations in NUP93 inhibit po- control subjects was obtained under a protocol approved by docyte proliferation, promote podocyte apoptosis, and lead the institutional review boards of Shanghai Ruijin Hospital and to early childhood-onset SRNS.9 Mutations in NUP107 Fuzhou Dongfang Hospital of China. DNA samples from 520 cause hypoplastic glomerular structures and abnormal po- healthy persons were used as controls. The nonconsanguineous docyte foot processes and lead to early childhood-onset Chinese index family included the proband, unaffected parents, SRNS.10 Recently, Braun et al.11 described mutations in and five siblings, two of whom died from SRNS in the 1990s NUP107, NUP85, NUP133,andNUP160 in 13 families (Figure 1C, Supplemental Table 1). DNA samples of the index with SRNS. family were available from the proband (II6), a healthy sibling The NUP160 gene (mapping to chromosome 11p) encodes (II5), and both parents (I1 and I2). Nephrotic syndrome was Nup160, which is a component of the Nup107–160 complex diagnosed on the basis of urinary protein excretion .50 mg/kg required for early stages of nuclear pore complex (NPC) as- per day with hypoalbuminemia ,25 g/L. Steroid resistance was sembly.12,13 It is expressed in both human and mouse kidney defined as a failure of induction of complete remission after cells. Knockdown of the NUP160 gene damages mouse 4 weeks of standard therapy with prednisone (2 mg/kg per day podocytes cultured in vitro.14 Within a nonconsanguineous giveninthreedivideddoses;maximum60mg/d).ESRDwas 2 Chinese family two siblings, a brother with SRNS and a sister defined as a GFR,10 ml/min per 1.73 m or the necessity of E803K with proteinuria, were both found to carry NUP160 and any RRT. Tissue biopsies were evaluated by renal pathologists. R9103 NUP160 compound-heterozygous mutations.11 We excluded the possibility that the proband carried muta- We now describe two compound-heterozygous mutations tions in known genes associated with SRNS (Supplemental R11733 E803K in NUP160, NUP160 and NUP160 , identified in a Table 2). young girl with familial SRNS and FSGS. This patient did not carry mutations in genes previously associated with SRNS. Whole-Exome Sequencing Furthermore, we functionally validated the NUP160 muta- Genomic DNAwas purified from blood samples collected from tions in vivo using a Drosophila model.15–21 The Drosophila the proband (II6), her surviving sister (II5), and her parents nephrocyte system has been previously proven to be very use- (I1 and I2) using the DNeasy Blood & Tissue Kit (Qiagen) ful for validating candidate gene mutations for involvement in using standard procedures (Figure 1C). Whole-exome capture monogenic SRNS and investigating molecular disease mech- and sequencing were performed on a SureSelect platform anisms underlying podocyte cellular pathologies.22–25 We first (Agilent) with 3 mg of genomic DNA from each individual showed that nephrocyte-specific silencing of the conserved using SureSelect Exome Capture System V4 (5M). The resulting endogenous fly Nup160 gene induced severe renal cell defects, libraries were sequenced on a HiSeq 2000 Multiplexed Sequenc- thereby experimentally validating NUP160 as a novel candi- ing platform (Illumina) according to the manufacturer’s instruc- date renal disease gene. We then showed complete rescue of tions for paired end 100-bp reads. Reads were aligned to the J Am Soc Nephrol 30: 840–853, 2019 NUP160 Mutations in SRNS 841 BASIC RESEARCH www.jasn.org A ATG TGA 1 243 576108 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 5,476 bp 196 bp B 803 1173 Nup160 1,436 aa pfam11715: nuleoporin Nup120/160 c.2407G>A(h) c.3517C>T(h) p.Glu803Lys p.Arg1173X low complexity region D RefSeq phosphorylation coiled coil II6 (P) C I1(F) I 1 2 I2(M) II 123456 II5(S) E p.Glu803Lys p.Arg1173X H. sapiens ESNL QHLLLS V E TDS D G ECTAAPTNR- QEIIL EEL D M. musculus E SNL Q H LLLS V E TDS D G ECTAAPTNR - Q I E ILE L ED G. gallus ESNL QHLLLASEV DT D G E C A A V P TTR- Q IIE L E L ED X.
Recommended publications
  • Exome Sequencing Reveals Cubilin Mutation As a Single-Gene Cause of Proteinuria
    BRIEF COMMUNICATION www.jasn.org Exome Sequencing Reveals Cubilin Mutation as a Single-Gene Cause of Proteinuria Bugsu Ovunc,*† Edgar A. Otto,* Virginia Vega-Warner,* Pawaree Saisawat,* Shazia Ashraf,* Gokul Ramaswami,* Hanan M. Fathy,‡ Dominik Schoeb,* Gil Chernin,* Robert H. Lyons,§ ʈ Engin Yilmaz,† and Friedhelm Hildebrandt* ¶ ʈ Departments of *Pediatrics and Human Genetics, §Department of Biological Chemistry and DNA Sequencing Core, and ¶Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan; †Department of Medical Biology, Hacettepe University, Ankara, Turkey; and ‡The Pediatric Nephrology Unit, Alexandria University, Alexandria, Egypt ABSTRACT In two siblings of consanguineous parents with intermittent nephrotic-range pro- tion is still unknown.7 This forbids the use of teinuria, we identified a homozygous deleterious frameshift mutation in the gene cohort studies for gene identification and ne- CUBN, which encodes cubulin, using exome capture and massively parallel re- cessitates the ability to identify disease-caus- sequencing. The mutation segregated with affected members of this family and ing genes in single families. We therefore was absent from 92 healthy individuals, thereby identifying a recessive mutation in combined whole genome homozygosity CUBN as the single-gene cause of proteinuria in this sibship. Cubulin mutations mapping with consecutive whole human ex- cause a hereditary form of megaloblastic anemia secondary to vitamin B12 defi- ome capture (WHEC) and massively par- ciency, and proteinuria occurs in 50% of cases since cubilin is coreceptor for both allel re-sequencing to overcome this lim- 6 the intestinal vitamin B12-intrinsic factor complex and the tubular reabsorption of itation. In this way we here identify a protein in the proximal tubule.
    [Show full text]
  • Original Article Dynamics of Lamins B and A/C and Nucleoporin Nup160 During Meiotic Maturation in Mouse Oocytes
    Original Article Dynamics of Lamins B and A/C and Nucleoporin Nup160 during Meiotic Maturation in Mouse Oocytes (oocytes / meiosis / meiotic spindle / nuclear lamina / Nup107-160 / nuclear pore complex) V. NIKOLOVA, S. DELIMITREVA, I. CHAKAROVA, R. ZHIVKOVA, V. HADZHINESHEVA, M. MARKOVA Department of Biology, Medical Faculty, Medical University of Sofia, Bulgaria Abstract. This study was aimed at elucidating the plex reorganization of the cytoskeleton and nuclear en- fate of three important nuclear envelope components velope (Delimitreva et al., 2012). Although the early – lamins B and A/C and nucleoporin Nup160, during meiotic stages have been relatively well studied, the meiotic maturation of mouse oocytes. These proteins events of final steps of oocyte meiosis (from meiotic re- were localized by epifluorescence and confocal mi- sumption in late prophase I until metaphase II) are still croscopy using specific antibodies in oocytes at dif- poorly understood. The oocyte nucleus in late prophase ferent stages from prophase I (germinal vesicle) to I, traditionally called GV (germinal vesicle), becomes metaphase II. In immature germinal vesicle oocytes, competent to resume meiosis upon accumulation of all three proteins were detected at the nuclear pe- pericentriolar heterochromatin called karyosphere, sur- riphery. In metaphase I and metaphase II, lamin B rounded nucleolus or rimmed nucleolus (Can et al., co-localized with the meiotic spindle, lamin A/C was 2003; De la Fuente et al., 2004; Tan et al., 2009). Then, found in a diffuse halo surrounding the spindle and the nucleus disaggregates in the so-called germinal ve- to a lesser degree throughout the cytoplasm, and sicle breakdown (GVBD) stage.
    [Show full text]
  • Detailed Investigations of Proximal Tubular Function in Imerslund-Grasbeck Syndrome
    Detailed investigations of proximal tubular function in Imerslund-Grasbeck syndrome. Tina Storm, Christina Zeitz, Olivier Cases, Sabine Amsellem, Pierre Verroust, Mette Madsen, Jean-François Benoist, Sandrine Passemard, Sophie Lebon, Iben Jønsson, et al. To cite this version: Tina Storm, Christina Zeitz, Olivier Cases, Sabine Amsellem, Pierre Verroust, et al.. Detailed in- vestigations of proximal tubular function in Imerslund-Grasbeck syndrome.. BMC Medical Genetics, BioMed Central, 2013, 14 (1), pp.111. 10.1186/1471-2350-14-111. inserm-00904107 HAL Id: inserm-00904107 https://www.hal.inserm.fr/inserm-00904107 Submitted on 13 Nov 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Storm et al. BMC Medical Genetics 2013, 14:111 http://www.biomedcentral.com/1471-2350/14/111 RESEARCHARTICLE Open Access Detailed investigations of proximal tubular function in Imerslund-Gräsbeck syndrome Tina Storm1, Christina Zeitz2,3,4, Olivier Cases2,3,4, Sabine Amsellem2,3,4, Pierre J Verroust1,2,3,4, Mette Madsen1, Jean-François Benoist6, Sandrine Passemard7,8, Sophie Lebon8, Iben Møller Jønsson9, Francesco Emma10, Heidi Koldsø11, Jens Michael Hertz12, Rikke Nielsen1, Erik I Christensen1* and Renata Kozyraki2,3,4,5* Abstract Background: Imerslund-Gräsbeck Syndrome (IGS) is a rare genetic disorder characterised by juvenile megaloblastic anaemia.
    [Show full text]
  • Antigen-Specific Memory CD4 T Cells Coordinated Changes in DNA
    Downloaded from http://www.jimmunol.org/ by guest on September 24, 2021 is online at: average * The Journal of Immunology The Journal of Immunology published online 18 March 2013 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2013/03/17/jimmun ol.1202267 Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto, Katsumi Ogoshi, Atsushi Sasaki, Jun Abe, Wei Qu, Yoichiro Nakatani, Budrul Ahsan, Kenshiro Oshima, Francis H. W. Shand, Akio Ametani, Yutaka Suzuki, Shuichi Kaneko, Takashi Wada, Masahira Hattori, Sumio Sugano, Shinichi Morishita and Kouji Matsushima J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Author Choice option Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Freely available online through http://www.jimmunol.org/content/suppl/2013/03/18/jimmunol.120226 7.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Author Choice Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 24, 2021. Published March 18, 2013, doi:10.4049/jimmunol.1202267 The Journal of Immunology Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto,*,†,‡ Katsumi Ogoshi,* Atsushi Sasaki,† Jun Abe,* Wei Qu,† Yoichiro Nakatani,† Budrul Ahsan,x Kenshiro Oshima,† Francis H.
    [Show full text]
  • Detailed Investigations of Proximal Tubular Function in Imerslund-Gräsbeck Syndrome
    Storm et al. BMC Medical Genetics 2013, 14:111 http://www.biomedcentral.com/1471-2350/14/111 RESEARCH ARTICLE Open Access Detailed investigations of proximal tubular function in Imerslund-Gräsbeck syndrome Tina Storm1, Christina Zeitz2,3,4, Olivier Cases2,3,4, Sabine Amsellem2,3,4, Pierre J Verroust1,2,3,4, Mette Madsen1, Jean-François Benoist6, Sandrine Passemard7,8, Sophie Lebon8, Iben Møller Jønsson9, Francesco Emma10, Heidi Koldsø11, Jens Michael Hertz12, Rikke Nielsen1, Erik I Christensen1* and Renata Kozyraki2,3,4,5* Abstract Background: Imerslund-Gräsbeck Syndrome (IGS) is a rare genetic disorder characterised by juvenile megaloblastic anaemia. IGS is caused by mutations in either of the genes encoding the intestinal intrinsic factor-vitamin B12 receptor complex, cubam. The cubam receptor proteins cubilin and amnionless are both expressed in the small intestine as well as the proximal tubules of the kidney and exhibit an interdependent relationship for post-translational processing and trafficking. In the proximal tubules cubilin is involved in the reabsorption of several filtered plasma proteins including vitamin carriers and lipoproteins. Consistent with this, low-molecular-weight proteinuria has been observed in most patients with IGS. The aim of this study was to characterise novel disease-causing mutations and correlate novel and previously reported mutations with the presence of low-molecular-weight proteinuria. Methods: Genetic screening was performed by direct sequencing of the CUBN and AMN genes and novel identified mutations were characterised by in silico and/or in vitro investigations. Urinary protein excretion was analysed by immunoblotting and high-resolution gel electrophoresis of collected urines from patients and healthy controls to determine renal phenotype.
    [Show full text]
  • Lineage-Specific Evolution of the Complex Nup160 Hybrid
    GENETICS | INVESTIGATION Lineage-Specific Evolution of the Complex Nup160 Hybrid Incompatibility Between Drosophila melanogaster and Its Sister Species Shanwu Tang and Daven C. Presgraves1 Department of Biology, University of Rochester, New York 14627 ABSTRACT Two genes encoding protein components of the nuclear pore complex Nup160 and Nup96 cause lethality in F2-like hybrid genotypes between Drosophila simulans and Drosophila melanogaster. In particular, D. simulans Nup160 and Nup96 each cause inviability when hemizygous or homozygous in species hybrids that are also hemizygous (or homozygous) for the D. melanogaster X chromosome. The hybrid lethality of Nup160, however, is genetically complex, depending on one or more unknown additional factors in the autosomal background. Here we study the genetics and evolution of Nup160-mediated hybrid lethality in three ways. First, we test for variability in Nup160-mediated hybrid lethality within and among the three species of the D. simulans clade— D. simulans, D. sechellia,andD. mauritiana. We show that the hybrid lethality of Nup160 is fixed in D. simulans and D. sechellia but absent in D. mauritiana. Second, we explore how the hybrid lethality of Nup160 depends on other loci in the autosomal background. We find that D. simulans Nup160-mediated hybrid lethality does not depend on the presence of D. melanogaster Nup96,andwefind that D. simulans and D. mauritiana are functionally differentiated at Nup160 as well as at other autosomal factor(s). Finally, we use population genetics data to show that Nup160 has experienced histories of recurrent positive selection both before and after the split of the three D. simulans clade species 240,000 years ago.
    [Show full text]
  • Gene Expression Analysis Defines the Proximal Tubule As the Compartment for Endocytic Receptor-Mediated Uptake in the Xenopus Pronephric Kidney
    Pflugers Arch - Eur J Physiol (2008) 456:1163–1176 DOI 10.1007/s00424-008-0488-3 MOLECULAR AND GENOMIC PHYSIOLOGY Gene expression analysis defines the proximal tubule as the compartment for endocytic receptor-mediated uptake in the Xenopus pronephric kidney Erik I. Christensen & Daniela Raciti & Luca Reggiani & Pierre J. Verroust & André W. Brändli Received: 16 January 2008 /Accepted: 28 February 2008 /Published online: 13 June 2008 # Springer-Verlag 2008 Abstract Endocytic receptors in the proximal tubule of the lrp2 and cubilin in the apical plasma membrane. Further- mammalian kidney are responsible for the reuptake of more, functional aspects of the endocytic receptors were numerous ligands, including lipoproteins, sterols, vitamin- revealed by the vesicular localization of retinol-binding binding proteins, and hormones, and they can mediate protein in the proximal tubules, probably representing drug-induced nephrotoxicity. In this paper, we report the endocytosed protein. In summary, we provide here the first first evidence indicating that the pronephric kidneys of comprehensive report of endocytic receptor expression, Xenopus tadpoles are capable of endocytic transport. We including amnionless, in a nonmammalian species. Re- establish that the Xenopus genome harbors genes for the markably, renal endocytic receptor expression and function known three endocytic receptors megalin/LRP2, cubilin, in the Xenopus pronephric kidney closely mirrors the and amnionless. The Xenopus endocytic receptor genes situation in the mammalian kidney. The Xenopus proneph- share extensive synteny with their mammalian counterparts. ric kidney therefore represents a novel, simple model for In situ hybridizations demonstrated that endocytic receptor physiological studies on the molecular mechanisms under- expression is highly tissue specific, primarily in the lying renal tubular endocytosis.
    [Show full text]
  • A Test of Double Interspecific Introgression of Nucleoporin Genes
    INVESTIGATION A Test of Double Interspecific Introgression of Nucleoporin Genes in Drosophila Kyoichi Sawamura,*,1 Kazunori Maehara,† Yoko Keira,‡ Hiroyuki O. Ishikawa,‡ Takeshi Sasamura,§ Tomoko Yamakawa,§ and Kenji Matsuno§ *Faculty of Life and Environmental Sciences, and †Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, ‡Department of Biology, Chiba University, Chiba, Chiba 263-8522, and § Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan 560-0043 ABSTRACT In interspecific hybrids between Drosophila melanogaster and Drosophila simulans, the D. KEYWORDS simulans nucleoporin-encoding Nup96sim and Nup160sim can cause recessive lethality if the hybrid does Drosophila not also inherit the D. simulans X chromosome. In addition, Nup160sim leads to recessive female sterility in hybrid inviability the D. melanogaster genetic background. Here, we conducted carefully controlled crosses to better hybrid sterility understand the relationship between Nup96sim and Nup160sim. Nup96sim did not lead to female sterility nucleoporin in the D. melanogaster genetic background, and double introgression of Nup96sim and Nup160sim did not reproductive generally lead to lethality when one was heterozygous and the other homozygous (hemizygous). It appears isolation that introgression of additional autosomal D. simulans genes is necessary to cause lethality and that the speciation effect of the introgression is dominant to D. melanogaster alleles. Interestingly, the genetic background affected dominance of Nup96sim, and double introgression carrying homozygous Nup96sim and hemizy- gous Nup160sim resulted in lethality. Thus, Nup96sim and Nup160sim seem to be two components of the same incompatibility. A handful of hybrid incompatibility genes that are responsible for mutation of D. simulans. D. melanogaster/D. simulans hybrids carry- reproductive isolation between species have been identified (Johnson ing the D.
    [Show full text]
  • Genetic Heterogeneity of Megaloblastic Anaemia Type 1 in Tunisian Patients
    J Hum Genet (2007) 52:262–270 DOI 10.1007/s10038-007-0110-0 ORIGINAL ARTICLE Genetic heterogeneity of megaloblastic anaemia type 1 in Tunisian patients Chiraz Bouchlaka Æ Chokri Maktouf Æ Bahri Mahjoub Æ Abdelkarim Ayadi Æ M. Tahar Sfar Æ Mahbouba Sioud Æ Neji Gueddich Æ Zouheir Belhadjali Æ Ahmed Rebaı¨ Æ Sonia Abdelhak Æ Koussay Dellagi Received: 2 August 2006 / Accepted: 21 December 2006 / Published online: 7 February 2007 Ó The Japan Society of Human Genetics and Springer 2007 Abstract Megaloblastic anaemia 1 (MGA1) is a rare geneous and can be caused by mutations in either the autosomal recessive condition characterized by selec- cubilin (CUBN) or the amnionless (AMN) gene. In tive intestinal vitamin B12 malabsorption and pro- the present study we investigated the molecular defect teinuria. More than 200 MGA1 patients have been underlying MGA1 in nine Tunisian patients belonging identified worldwide, but the disease is relatively to six unrelated consanguineous families. Haplotype prevalent in Finland, Norway and several Eastern and linkage analyses, using microsatellite markers Mediterranean regions. MGA1 is genetically hetero- surrounding both CUBN and AMN genes, indicated that four out of the six families were likely to be linked to the CUBN gene. Patients from these fami- C. Bouchlaka Á C. Maktouf Á S. Abdelhak (&) lies were screened for the Finnish, Mediterranean and Molecular Investigation of Genetic Orphan Diseases, Arabian mutations already published. None of the Institut Pasteur de Tunis, BP 74, 13 Place Pasteur 1002, screened mutations could be detected in our popula- Tunis Belve´de`re, Tunisia tion. One family showed a linkage to AMN gene.
    [Show full text]
  • The Genetic Program of Pancreatic Beta-Cell Replication in Vivo
    Page 1 of 65 Diabetes The genetic program of pancreatic beta-cell replication in vivo Agnes Klochendler1, Inbal Caspi2, Noa Corem1, Maya Moran3, Oriel Friedlich1, Sharona Elgavish4, Yuval Nevo4, Aharon Helman1, Benjamin Glaser5, Amir Eden3, Shalev Itzkovitz2, Yuval Dor1,* 1Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 2Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel. 3Department of Cell and Developmental Biology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel 4Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University and Hadassah, The Institute for Medical Research Israel- Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 5Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel *Correspondence: [email protected] Running title: The genetic program of pancreatic β-cell replication 1 Diabetes Publish Ahead of Print, published online March 18, 2016 Diabetes Page 2 of 65 Abstract The molecular program underlying infrequent replication of pancreatic beta- cells remains largely inaccessible. Using transgenic mice expressing GFP in cycling cells we sorted live, replicating beta-cells and determined their transcriptome. Replicating beta-cells upregulate hundreds of proliferation- related genes, along with many novel putative cell cycle components. Strikingly, genes involved in beta-cell functions, namely glucose sensing and insulin secretion were repressed. Further studies using single molecule RNA in situ hybridization revealed that in fact, replicating beta-cells double the amount of RNA for most genes, but this upregulation excludes genes involved in beta-cell function.
    [Show full text]
  • M1BP Cooperates with CP190 to Activate Transcription at TAD Borders and Promote Chromatin Insulator Activity
    ARTICLE https://doi.org/10.1038/s41467-021-24407-y OPEN M1BP cooperates with CP190 to activate transcription at TAD borders and promote chromatin insulator activity Indira Bag 1,2, Shue Chen 1,2,4, Leah F. Rosin 1,2,4, Yang Chen 1,2, Chen-Yu Liu3, Guo-Yun Yu3 & ✉ Elissa P. Lei 1,2 1234567890():,; Genome organization is driven by forces affecting transcriptional state, but the relationship between transcription and genome architecture remains unclear. Here, we identified the Drosophila transcription factor Motif 1 Binding Protein (M1BP) in physical association with the gypsy chromatin insulator core complex, including the universal insulator protein CP190. M1BP is required for enhancer-blocking and barrier activities of the gypsy insulator as well as its proper nuclear localization. Genome-wide, M1BP specifically colocalizes with CP190 at Motif 1-containing promoters, which are enriched at topologically associating domain (TAD) borders. M1BP facilitates CP190 chromatin binding at many shared sites and vice versa. Both factors promote Motif 1-dependent gene expression and transcription near TAD borders genome-wide. Finally, loss of M1BP reduces chromatin accessibility and increases both inter- and intra-TAD local genome compaction. Our results reveal physical and functional inter- action between CP190 and M1BP to activate transcription at TAD borders and mediate chromatin insulator-dependent genome organization. 1 Nuclear Organization and Gene Expression Section, Bethesda, MD, USA. 2 Laboratory of Biochemistry and Genetics, Bethesda, MD, USA. 3 Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA. ✉ 4These authors contributed equally: Shue Chen, Leah F.
    [Show full text]
  • C9orf72-Associated SMCR8 Protein Binds in the Ubiquitin Pathway and with Proteins Linked with Neurological Disease John L
    Goodier et al. Acta Neuropathologica Communications (2020) 8:110 https://doi.org/10.1186/s40478-020-00982-x RESEARCH Open Access C9orf72-associated SMCR8 protein binds in the ubiquitin pathway and with proteins linked with neurological disease John L. Goodier1*, Alisha O. Soares1, Gavin C. Pereira1, Lauren R. DeVine2, Laura Sanchez3, Robert N. Cole2 and Jose Luis García-Pérez3,4 Abstract A pathogenic GGGCCC hexanucleotide expansion in the first intron/promoter region of the C9orf72 gene is the most common mutation associated with amyotrophic lateral sclerosis (ALS). The C9orf72 gene product forms a complex with SMCR8 (Smith-Magenis Syndrome Chromosome Region, Candidate 8) and WDR41 (WD Repeat domain 41) proteins. Recent studies have indicated roles for the complex in autophagy regulation, vesicle trafficking, and immune response in transgenic mice, however a direct connection with ALS etiology remains unclear. With the aim of increasing understanding of the multi-functional C9orf72-SMCR8-WDR41 complex, we determined by mass spectrometry analysis the proteins that directly associate with SMCR8. SMCR8 protein binds many components of the ubiquitin-proteasome system, and we demonstrate its poly-ubiquitination without obvious degradation. Evidence is also presented for localization of endogenous SMCR8 protein to cytoplasmic stress granules. However, in several cell lines we failed to reproduce previous observations that C9orf72 protein enters these granules. SMCR8 protein associates with many products of genes associated with various Mendelian neurological disorders in addition to ALS, implicating SMCR8-containing complexes in a range of neuropathologies. We reinforce previous observations that SMCR8 and C9orf72 protein levels are positively linked, and now show in vivo that SMCR8 protein levels are greatly reduced in brain tissues of C9orf72 gene expansion carrier individuals.
    [Show full text]