Mutations in NUP160 Are Implicated in Steroid-Resistant Nephrotic Syndrome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Exome Sequencing Reveals Cubilin Mutation As a Single-Gene Cause of Proteinuria
BRIEF COMMUNICATION www.jasn.org Exome Sequencing Reveals Cubilin Mutation as a Single-Gene Cause of Proteinuria Bugsu Ovunc,*† Edgar A. Otto,* Virginia Vega-Warner,* Pawaree Saisawat,* Shazia Ashraf,* Gokul Ramaswami,* Hanan M. Fathy,‡ Dominik Schoeb,* Gil Chernin,* Robert H. Lyons,§ ʈ Engin Yilmaz,† and Friedhelm Hildebrandt* ¶ ʈ Departments of *Pediatrics and Human Genetics, §Department of Biological Chemistry and DNA Sequencing Core, and ¶Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan; †Department of Medical Biology, Hacettepe University, Ankara, Turkey; and ‡The Pediatric Nephrology Unit, Alexandria University, Alexandria, Egypt ABSTRACT In two siblings of consanguineous parents with intermittent nephrotic-range pro- tion is still unknown.7 This forbids the use of teinuria, we identified a homozygous deleterious frameshift mutation in the gene cohort studies for gene identification and ne- CUBN, which encodes cubulin, using exome capture and massively parallel re- cessitates the ability to identify disease-caus- sequencing. The mutation segregated with affected members of this family and ing genes in single families. We therefore was absent from 92 healthy individuals, thereby identifying a recessive mutation in combined whole genome homozygosity CUBN as the single-gene cause of proteinuria in this sibship. Cubulin mutations mapping with consecutive whole human ex- cause a hereditary form of megaloblastic anemia secondary to vitamin B12 defi- ome capture (WHEC) and massively par- ciency, and proteinuria occurs in 50% of cases since cubilin is coreceptor for both allel re-sequencing to overcome this lim- 6 the intestinal vitamin B12-intrinsic factor complex and the tubular reabsorption of itation. In this way we here identify a protein in the proximal tubule. -
Original Article Dynamics of Lamins B and A/C and Nucleoporin Nup160 During Meiotic Maturation in Mouse Oocytes
Original Article Dynamics of Lamins B and A/C and Nucleoporin Nup160 during Meiotic Maturation in Mouse Oocytes (oocytes / meiosis / meiotic spindle / nuclear lamina / Nup107-160 / nuclear pore complex) V. NIKOLOVA, S. DELIMITREVA, I. CHAKAROVA, R. ZHIVKOVA, V. HADZHINESHEVA, M. MARKOVA Department of Biology, Medical Faculty, Medical University of Sofia, Bulgaria Abstract. This study was aimed at elucidating the plex reorganization of the cytoskeleton and nuclear en- fate of three important nuclear envelope components velope (Delimitreva et al., 2012). Although the early – lamins B and A/C and nucleoporin Nup160, during meiotic stages have been relatively well studied, the meiotic maturation of mouse oocytes. These proteins events of final steps of oocyte meiosis (from meiotic re- were localized by epifluorescence and confocal mi- sumption in late prophase I until metaphase II) are still croscopy using specific antibodies in oocytes at dif- poorly understood. The oocyte nucleus in late prophase ferent stages from prophase I (germinal vesicle) to I, traditionally called GV (germinal vesicle), becomes metaphase II. In immature germinal vesicle oocytes, competent to resume meiosis upon accumulation of all three proteins were detected at the nuclear pe- pericentriolar heterochromatin called karyosphere, sur- riphery. In metaphase I and metaphase II, lamin B rounded nucleolus or rimmed nucleolus (Can et al., co-localized with the meiotic spindle, lamin A/C was 2003; De la Fuente et al., 2004; Tan et al., 2009). Then, found in a diffuse halo surrounding the spindle and the nucleus disaggregates in the so-called germinal ve- to a lesser degree throughout the cytoplasm, and sicle breakdown (GVBD) stage. -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. -
Detailed Investigations of Proximal Tubular Function in Imerslund-Grasbeck Syndrome
Detailed investigations of proximal tubular function in Imerslund-Grasbeck syndrome. Tina Storm, Christina Zeitz, Olivier Cases, Sabine Amsellem, Pierre Verroust, Mette Madsen, Jean-François Benoist, Sandrine Passemard, Sophie Lebon, Iben Jønsson, et al. To cite this version: Tina Storm, Christina Zeitz, Olivier Cases, Sabine Amsellem, Pierre Verroust, et al.. Detailed in- vestigations of proximal tubular function in Imerslund-Grasbeck syndrome.. BMC Medical Genetics, BioMed Central, 2013, 14 (1), pp.111. 10.1186/1471-2350-14-111. inserm-00904107 HAL Id: inserm-00904107 https://www.hal.inserm.fr/inserm-00904107 Submitted on 13 Nov 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Storm et al. BMC Medical Genetics 2013, 14:111 http://www.biomedcentral.com/1471-2350/14/111 RESEARCHARTICLE Open Access Detailed investigations of proximal tubular function in Imerslund-Gräsbeck syndrome Tina Storm1, Christina Zeitz2,3,4, Olivier Cases2,3,4, Sabine Amsellem2,3,4, Pierre J Verroust1,2,3,4, Mette Madsen1, Jean-François Benoist6, Sandrine Passemard7,8, Sophie Lebon8, Iben Møller Jønsson9, Francesco Emma10, Heidi Koldsø11, Jens Michael Hertz12, Rikke Nielsen1, Erik I Christensen1* and Renata Kozyraki2,3,4,5* Abstract Background: Imerslund-Gräsbeck Syndrome (IGS) is a rare genetic disorder characterised by juvenile megaloblastic anaemia. -
Antigen-Specific Memory CD4 T Cells Coordinated Changes in DNA
Downloaded from http://www.jimmunol.org/ by guest on September 24, 2021 is online at: average * The Journal of Immunology The Journal of Immunology published online 18 March 2013 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2013/03/17/jimmun ol.1202267 Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto, Katsumi Ogoshi, Atsushi Sasaki, Jun Abe, Wei Qu, Yoichiro Nakatani, Budrul Ahsan, Kenshiro Oshima, Francis H. W. Shand, Akio Ametani, Yutaka Suzuki, Shuichi Kaneko, Takashi Wada, Masahira Hattori, Sumio Sugano, Shinichi Morishita and Kouji Matsushima J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Author Choice option Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Freely available online through http://www.jimmunol.org/content/suppl/2013/03/18/jimmunol.120226 7.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Author Choice Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 24, 2021. Published March 18, 2013, doi:10.4049/jimmunol.1202267 The Journal of Immunology Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto,*,†,‡ Katsumi Ogoshi,* Atsushi Sasaki,† Jun Abe,* Wei Qu,† Yoichiro Nakatani,† Budrul Ahsan,x Kenshiro Oshima,† Francis H. -
NLS-Mediated NPC Functions of the Nucleoporin Pom121
FEBS Letters 584 (2010) 3292–3298 journal homepage: www.FEBSLetters.org NLS-mediated NPC functions of the nucleoporin Pom121 Sevil Yavuz, Rachel Santarella-Mellwig, Birgit Koch, Andreas Jaedicke, Iain W. Mattaj *,1, Wolfram Antonin **,1 European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany article info abstract Article history: RanGTP mediates nuclear import and mitotic spindle assembly by dissociating import receptors Received 23 February 2010 from nuclear localization signal (NLS) bearing proteins. We investigated the interplay between Revised 31 May 2010 import receptors and the transmembrane nucleoporin Pom121. We found that Pom121 interacts Accepted 2 July 2010 with importin a/b and a group of nucleoporins in an NLS-dependent manner. In vivo, replacement Available online 14 July 2010 of Pom121 with an NLS mutant version resulted in defective nuclear transport, induction of aber- Edited by Ulrike Kuttay rant cytoplasmic membrane stacks and decreased cell viability. We propose that the NLS sites of Pom121 affect its function in NPC assembly both by influencing nucleoporin interactions and pore membrane structure. Keywords: Pom121 Nucleoporin Structured summary: Importin MINT-7951230: pom121 (uniprotkb:Q5EWX9) physically interacts (MI:0914) with nup155 (uni- protkb:O75694), Nup133 (uniprotkb:Q8WUM0) and Importin beta (uniprotkb:Q14974) by pull down (MI:0096) MINT-7951210: pom121 (uniprotkb:Q5EWX9) physically interacts (MI:0915) with Importin alpha (uni- protkb:P52170) and Importin beta (uniprotkb:P52297) -
Detailed Investigations of Proximal Tubular Function in Imerslund-Gräsbeck Syndrome
Storm et al. BMC Medical Genetics 2013, 14:111 http://www.biomedcentral.com/1471-2350/14/111 RESEARCH ARTICLE Open Access Detailed investigations of proximal tubular function in Imerslund-Gräsbeck syndrome Tina Storm1, Christina Zeitz2,3,4, Olivier Cases2,3,4, Sabine Amsellem2,3,4, Pierre J Verroust1,2,3,4, Mette Madsen1, Jean-François Benoist6, Sandrine Passemard7,8, Sophie Lebon8, Iben Møller Jønsson9, Francesco Emma10, Heidi Koldsø11, Jens Michael Hertz12, Rikke Nielsen1, Erik I Christensen1* and Renata Kozyraki2,3,4,5* Abstract Background: Imerslund-Gräsbeck Syndrome (IGS) is a rare genetic disorder characterised by juvenile megaloblastic anaemia. IGS is caused by mutations in either of the genes encoding the intestinal intrinsic factor-vitamin B12 receptor complex, cubam. The cubam receptor proteins cubilin and amnionless are both expressed in the small intestine as well as the proximal tubules of the kidney and exhibit an interdependent relationship for post-translational processing and trafficking. In the proximal tubules cubilin is involved in the reabsorption of several filtered plasma proteins including vitamin carriers and lipoproteins. Consistent with this, low-molecular-weight proteinuria has been observed in most patients with IGS. The aim of this study was to characterise novel disease-causing mutations and correlate novel and previously reported mutations with the presence of low-molecular-weight proteinuria. Methods: Genetic screening was performed by direct sequencing of the CUBN and AMN genes and novel identified mutations were characterised by in silico and/or in vitro investigations. Urinary protein excretion was analysed by immunoblotting and high-resolution gel electrophoresis of collected urines from patients and healthy controls to determine renal phenotype. -
Lineage-Specific Evolution of the Complex Nup160 Hybrid
GENETICS | INVESTIGATION Lineage-Specific Evolution of the Complex Nup160 Hybrid Incompatibility Between Drosophila melanogaster and Its Sister Species Shanwu Tang and Daven C. Presgraves1 Department of Biology, University of Rochester, New York 14627 ABSTRACT Two genes encoding protein components of the nuclear pore complex Nup160 and Nup96 cause lethality in F2-like hybrid genotypes between Drosophila simulans and Drosophila melanogaster. In particular, D. simulans Nup160 and Nup96 each cause inviability when hemizygous or homozygous in species hybrids that are also hemizygous (or homozygous) for the D. melanogaster X chromosome. The hybrid lethality of Nup160, however, is genetically complex, depending on one or more unknown additional factors in the autosomal background. Here we study the genetics and evolution of Nup160-mediated hybrid lethality in three ways. First, we test for variability in Nup160-mediated hybrid lethality within and among the three species of the D. simulans clade— D. simulans, D. sechellia,andD. mauritiana. We show that the hybrid lethality of Nup160 is fixed in D. simulans and D. sechellia but absent in D. mauritiana. Second, we explore how the hybrid lethality of Nup160 depends on other loci in the autosomal background. We find that D. simulans Nup160-mediated hybrid lethality does not depend on the presence of D. melanogaster Nup96,andwefind that D. simulans and D. mauritiana are functionally differentiated at Nup160 as well as at other autosomal factor(s). Finally, we use population genetics data to show that Nup160 has experienced histories of recurrent positive selection both before and after the split of the three D. simulans clade species 240,000 years ago. -
Gene Expression Analysis Defines the Proximal Tubule As the Compartment for Endocytic Receptor-Mediated Uptake in the Xenopus Pronephric Kidney
Pflugers Arch - Eur J Physiol (2008) 456:1163–1176 DOI 10.1007/s00424-008-0488-3 MOLECULAR AND GENOMIC PHYSIOLOGY Gene expression analysis defines the proximal tubule as the compartment for endocytic receptor-mediated uptake in the Xenopus pronephric kidney Erik I. Christensen & Daniela Raciti & Luca Reggiani & Pierre J. Verroust & André W. Brändli Received: 16 January 2008 /Accepted: 28 February 2008 /Published online: 13 June 2008 # Springer-Verlag 2008 Abstract Endocytic receptors in the proximal tubule of the lrp2 and cubilin in the apical plasma membrane. Further- mammalian kidney are responsible for the reuptake of more, functional aspects of the endocytic receptors were numerous ligands, including lipoproteins, sterols, vitamin- revealed by the vesicular localization of retinol-binding binding proteins, and hormones, and they can mediate protein in the proximal tubules, probably representing drug-induced nephrotoxicity. In this paper, we report the endocytosed protein. In summary, we provide here the first first evidence indicating that the pronephric kidneys of comprehensive report of endocytic receptor expression, Xenopus tadpoles are capable of endocytic transport. We including amnionless, in a nonmammalian species. Re- establish that the Xenopus genome harbors genes for the markably, renal endocytic receptor expression and function known three endocytic receptors megalin/LRP2, cubilin, in the Xenopus pronephric kidney closely mirrors the and amnionless. The Xenopus endocytic receptor genes situation in the mammalian kidney. The Xenopus proneph- share extensive synteny with their mammalian counterparts. ric kidney therefore represents a novel, simple model for In situ hybridizations demonstrated that endocytic receptor physiological studies on the molecular mechanisms under- expression is highly tissue specific, primarily in the lying renal tubular endocytosis. -
Nuclear Pore Complexes Cluster in Dysmorphic Nuclei of Normal and Progeria Cells During Replicative Senescence
Nuclear Pore Complexes Cluster in Dysmorphic Nuclei of Normal and Progeria Cells during Replicative Senescence Jennifer M. Röhrl, Rouven Arnold and Karima Djabali * Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Technical University of Munich (TUM), 85748 Garching, Germany; [email protected] (J.M.R.); [email protected] (R.A.) * Correspondence: [email protected] Supplementary Figures Figure S1: Seeding of NPCs, by ELYS on anaphase chromosomes was not affected in HGPS. Immunocytochemistry of (a) control (GMO1652c) and (b) HGPS (HGADFN003) fibroblasts using α‐ELYS and α‐LA antibody, counterstained with DAPI. NPCs cluster in interphase HGPS cells (b), unlike the evenly distributed punctate pattern in interphase control cells (a). Recruitment of ELYS to anaphase chromosomes is not affected in HGPS cells, compared to control. No defect in ELYS localization can be observed in HGPS from prophase to cytokinesis. NPC, nuclear pore complex; HGPS, Hutchinson‐Gilford progeria. n ≥3. Figure S2: Recruitment of basket nucleoporin NUP153 and scaffold nucleoporin NUP107 were not affected in HGPS. Immunocytochemistry of (a) control (GMO1652c) and (b) HGPS (HGADFN003) fibroblasts using α‐ NUP107 and α‐NUP153 antibodies, counterstained with DAPI. NPCs cluster in interphase HGPS cells (b), unlike the evenly spread out punctate pattern in control interphase (a). Recruitment of NUP153 to anaphase chromosomes is not affected in HGPS cells, compared to the control. No defect in NUP153 or NUP107 localization can be observed in HGPS from prophase to cytokinesis. n ≥3. Figure S3: SUN1 aggregates did not colocalize with mAb414. Immunocytochemistry of (a) control (GMO1652c) and (b) HGPS (HGADFN003) fibroblasts using mAb414 and α‐SUN1 antibodies, counterstained with DAPI. -
Snapshot: the Nuclear Envelope II Andrea Rothballer and Ulrike Kutay Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
SnapShot: The Nuclear Envelope II Andrea Rothballer and Ulrike Kutay Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland H. sapiens D. melanogaster C. elegans S. pombe S. cerevisiae Cytoplasmic filaments RanBP2 (Nup358) Nup358 CG11856 NPP-9 – – – Nup214 (CAN) DNup214 CG3820 NPP-14 Nup146 SPAC23D3.06c Nup159 Cytoplasmic ring and Nup88 Nup88 (Mbo) CG6819 – Nup82 SPBC13A2.02 Nup82 associated factors GLE1 GLE1 CG14749 – Gle1 SPBC31E1.05 Gle1 hCG1 (NUP2L1, NLP-1) tbd CG18789 – Amo1 SPBC15D4.10c Nup42 (Rip1) Nup98 Nup98 CG10198 Npp-10N Nup189N SPAC1486.05 Nup145N, Nup100, Nup116 Nup 98 complex RAE1 (GLE2) Rae1 CG9862 NPP-17 Rae1 SPBC16A3.05 Gle2 (Nup40) Nup160 Nup160 CG4738 NPP-6 Nup120 SPBC3B9.16c Nup120 Nup133 Nup133 CG6958 NPP-15 Nup132, Nup131 SPAC1805.04, Nup133 SPBP35G2.06c Nup107 Nup107 CG6743 NPP-5 Nup107 SPBC428.01c Nup84 Nup96 Nup96 CG10198 NPP-10C Nup189C SPAC1486.05 Nup145C Outer NPC scaffold Nup85 (PCNT1) Nup75 CG5733 NPP-2 Nup-85 SPBC17G9.04c Nup85 (Nup107-160 complex) Seh1 Nup44A CG8722 NPP-18 Seh1 SPAC15F9.02 Seh1 Sec13 Sec13 CG6773 Npp-20 Sec13 SPBC215.15 Sec13 Nup37 tbd CG11875 – tbd SPAC4F10.18 – Nup43 Nup43 CG7671 C09G9.2 – – – Centrin-21 tbd CG174931, CG318021 R08D7.51 Cdc311 SPCC1682.04 Cdc311 Nup205 tbd CG11943 NPP-3 Nup186 SPCC290.03c Nup192 Nup188 tbd CG8771 – Nup184 SPAP27G11.10c Nup188 Central NPC scaffold Nup155 Nup154 CG4579 NPP-8 tbd SPAC890.06 Nup170, Nup157 (Nup53-93 complex) Nup93 tbd CG7262 NPP-13 Nup97, Npp106 SPCC1620.11, Nic96 SPCC1739.14 Nup53(Nup35, MP44) tbd CG6540 NPP-19 Nup40 SPAC19E9.01c