United States Patent (19) 11 Patent Number: 5,045,510 Kohli Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11 Patent Number: 5,045,510 Kohli Et Al United States Patent (19) 11 Patent Number: 5,045,510 Kohli et al. 45) Date of Patent: Sep. 3, 1991 54 PROCESS FOR PREPARING ASURFACE 56) References Cited DARKENED GLASS U.S. PATENT DOCUMENTS 75 Inventors: Jeffrey T. Kohli, Alfred; James E. 3,419,370 2/968 Craner et al. ..................... 65/30. 3,449,103 6/1969 Stookey ............. ... 6.5/30. Shelby, Alfred Station, both of N.Y. 3,689,242 9/1972 Platakis et al. ....................... 65/32.3 O 3,756,798 9/1973 Ernsberger .......................... 65/32.3 (73). Assignee: Alfred University, Alfred, N.Y. 4,065,283 12/1977 Asahara et al. ......................... 65/6 4,130,680 12/1978 Ference et al. ................... 65/30. *) Notice: The portion of the term of this patent 4,240,836 12/1980 Borrelli et al.................... S01/3 subsequent to Jul. 31, 2007 has been 4,475,059 10/1984 Sink ..................................... 33/534 disclaimed. 4,613,786 9/1986 Holland et al. ......................... 65/61 Primary Examiner-William R. Dixon, Jr. (21) Appl. No.: 557,913 Assistant Examiner-Anthony J. Green Attorney, Agent, or Firm-Howard J. Greenwald 22 Filed: Jul. 25, 1990 (57) ABSTRACT 8 8 A process for preparing a surface-darkened glass is Related U.S. Application Data disclosed. In the first step of this process, a specified 63 Continuation-in-part of Ser. No. 431,633, Nov. 3, 1989, silicate glass which contains a minor amount of anti Pat. No. 4,944,784. mony trioxide is provided. Thereafter, this glass is heated to a temperature of from about 350 to about 51 Int. Cl. ...................... C03C 3/091; CO3C 23/00; 1,000 degrees Celsius while being contacted with hy CO3B 32/OO drogen-containing gas. The presence of the antimony 52 U.S. Cl. ........................................ 501/66; 501/13; trioxide in the glass facilitates the darkening of its sur 501/65; 65/30. 11; 65/32.3; 313/534 face. 58) Field of Search ....................... 65/30. 11, 32.3, 61; 501/13, 65, 66; 313/534 13 Claims, 2 Drawing Sheets U.S. Patent Sep. 3, 1991 Sheet 1 of 2 5,045,510 U.S. Patent Sep. 3, 1991 Sheet 2 of 2 5,045,510 38 40 42 44 ALL O 5,045,510 1. 2 per million of silver ion, less than 10 parts (by weight) PROCESS FOR PREPARING A SURFACE per million of halide ion, less than about 0.01 weight DARKENED GLASS percent of elemental iron, and less than about 0.01 weight percent of iron ions, is heated to a temperature CROSS-REFERENCE TO RELATED 5 of at least about 350 degrees Celsius while being con APPLICATION tacted with hydrogen-containing gas. This is a continuation-in-part application of appli cants' copending patent application U.S. Ser. No. BRIEF DESCRIPTION OF THE DRAWINGS 07/431,633, filed Nov. 3, 1989, U.S. Pat. No. 4,944,784. The present invention will be more fully understood 10 by reference to the following detailed description FIELD OF THE INVENTION thereof, when read in conjunction with the attached A process for darkening the surface of a glass compo drawings, wherein like reference numerals refer to like sition in which a silicate glass containing antimony ion elements, and wherein: and less than 20 parts per million of silver ion or halide FIG. 1 is a transparent glass blank which may be used ion is contacted with a hydrogen-containing gas while 15 to prepare a window by a preferred process of the in being heated to a temperature of at least about 350 de vention; grees Celsius. FIG. 2 is a machine-ground object produced from the glass blank of FIG. 1; BACKGROUND OF THE INVENTION FIG. 3 is a surface-darkened glass object produced It is known that glasses whose surfaces are darkened from the machine-ground object of FIG. 2; may be used to prepare many different products. Thus, FIG. 4 is a reground glass object produced from the for example, a surface-darkened glass in the form of a surface-darkened object of FIG. 3; disc may have its faces polished so that they transmit FIG. 5 is an aperture to which a gallium arsenide light through the visible region of the spectrum but wafer has been bonded; have its perimeter substantially absorb such light. The 25 lens so formed will absorb stray light near its perimeter FIG. 6 is a schematic of a means for determining the but transmit such light near its center. absorbance characteristics of one surface-darkened arti The prior art describes a process for the preparation cle; and of a surface-darkened glass in which a clear glass core is FIG. 7 is a plot of the absorbance per thickness of the enveloped with a dark glass cladding and both are then 30 article of FIG. 6. subjected to heat and applied pressure to fuse them into DESCRIPTION OF THE PREFERRED a single unit. This prior art process often produces glass EMBODIMENTS objects with imperfections at the interface of the core and the cladding; and, when the surface of such a glass The process of applicants invention produces a dark object is polished, pitting and other imperfections often 35 ened glass, that is, a glass with one or more darkened appear at the interface. These surface imperfections regions whose optical absorbance throughout the ultra cause problems when one attempts to bond the surface violet, visible, and near-infrared regions of light spec to another surface. trum is substantially higher than glass regions not It is an object of this invention to provide a process treated by the process. for the preparation of a surface-darkened glass which 40 The glass produced by the process of this invention has substantially fewer surface imperfections and is may be used to collimate light and produce treated substantially more uniform than prior art surface-dark apertures for cameras and scopes for night vision appli ened glass; cations, for example. It is another object of this invention to provide a The process of this invention may be used with sili process for the preparation of surface-darkened glass 45 cate glasses. As used in this specification, the term sili which does not necessitate the joining of two different cate glass refers to a glass composition which contains glass bodies; less than about 20 parts per million of silver ion, less It is yet another object of this invention to provide a than about 20 parts per million of halide ion, and at least process for the preparation of a surface-darkened glass about 40 weight percent of silica. with a relatively low amount of deformation; 50 In the first step of the process of this invention, from It is yet another object of this invention to provide a about 0.1 to about 10 weight percent of antimony ion relatively low-temperature process for the preparation (by weight of antimony trioxide) is incorporated into a of surface-darkened glass; silicate glass. The antimony ion is preferably selected It is yet another object of this invention to provide a from the group consisting of trivalent antimony ion, process for the preparation of surface-darkened glass in 55 pentavalent antimony ion, and mixtures thereof. How which the reaction time is relatively short; and ever, as will be apparent to those skilled in the art, other It is yet another object of this invention to provide a antimony compounds also may be used. surface-darkened glass object which contains at least In general, the antimony ion is incorporated into the about 40 weight percent of silica, elemental antimony, glass by adding an antimony compound, such as anti less than about 20 parts per million of halide ion, less 60 mony trioxide, to either the glass batch and/or the glass than about 20 parts per million of silver ion, less than melt. When the antimony compound used is not anti about 0.01 weight percent of iron, and less than about mony trioxide, the amounts added should be adjusted SO 0.01 weight percent of ferric ion. that, on an equivalent basis, from about 0.1 to about 10 SUMMARY OF THE INVENTION weight percent of antimony trioxide is added. In deter 65 mining how much of other antimony compound(s) must In accordance with this invention, there is provided a be added to be equivalent to a specified amount of anti process for preparing a glass object in which a specified mony trioxide, one may calculate the number of anti silicate glass containing less than 20 parts (by weight) mony ions per cubic centimeter furnished by the anti 5,045,510 3 4. mony trioxide and then use an amount of the other preferred that the other components of the batch have antimony compound(s) which will furnish the same all of their particles be from about 0.5 to about 10 mi concentration antimony ions. crons in size. The batch components should be thor It is to be understood that, once the glass batch has oughly mixed so that a homogeneous batch is produced. been melted, antimony is not present in the glass in the When the antimony compound is added during the form of antimony compound but is present as antimony glass melting, it also should have substantially all of its ion. Thus, when reference is made to a glass containing particles be from about 0.5 to about 5.0 microns in larg from about 0.1 to about 10 weight percent of antimony est dimension. The antimony compound should be thor ion, it will be understood that such glass contains a oughly mixed in the melt so that a homogeneous melt sufficient amount of antimony ion to correspond to the O results.
Recommended publications
  • United States Patent (19) 11) 4,080,491 Kobayashi Et Al
    United States Patent (19) 11) 4,080,491 Kobayashi et al. 45) Mar. 21, 1978 54) PROCESS OF PRODUCING RING-OPENING 56 References Cited POLYMERIZATION PRODUCTS U.S. PATENT DOCUMENTS (75) Inventors: Yukio Kobayashi; Takashi Ueshima; 3,798,175 3/1974 Streck .................................. 526/136 Shoichi Kobayashi, all of Yokohama, 3,856,758 - 12/1974 Ueshima ............................... 526/169 Japan 3,859,265 1/1975 Hepworth ............................ 526/281 3,959,234 5/1976 Kurosawa ............................ 526/281 Assignee: Showa Denko K.K., Tokyo, Japan (73) Primary Examiner-Paul R. Michl 21 Appl. No.: 714,833 Attorney, Agent, or Firm-Fitzpatrick, Cella, Harper & 22) Filed: Aug. 16, 1976 Scinto Foreign Application Priority Data 57 ABSTRACT (30) A process of producing a ring-opening polymerization Aug. 27, 1975 Japan ................................ 50-103060 product of a norbornene derivative containing at least Mar. 26, 1976 Japan .................................. 51-32464 one polar group or aromatic group, a norbornadiene Mar. 26, 1976 Japan .................................. 51-32465 derivative containing at least one of said groups or a Apr. 5, 1976 Japan .................................. 51-37274 cycloolefin using a catalyst system prepared from an Apr. 27, 1976 Japan .................................. 51-47268 organometallic compound and the reaction product of May 25, 1976 Japan .................................. 51-59642 tungsten oxide or molybdenum oxide and a phosphorus 51 Int. C.’................................................ C08F 4/78 pentahalide or phosphorus oxytrihalide or these com (52) U.S. C. ..... o e s p s 8 v 8 526/137; 526/113; pounds and other third components. The catalyst sys 526/127; 526/136; 526/169; 526/281; 526/308 temi possesses a high polymerization activity. (58) Field of Search ....................
    [Show full text]
  • Mineral Commodity Summareis 2013
    U.S. Department of the Interior U.S. Geological Survey MINERAL COMMODITY SUMMARIES 2013 Abrasives Fluorspar Mercury Silver Aluminum Gallium Mica Soda Ash Antimony Garnet Molybdenum Sodium Sulfate Arsenic Gemstones Nickel Stone Asbestos Germanium Niobium Strontium Barite Gold Nitrogen Sulfur Bauxite Graphite Peat Talc Beryllium Gypsum Perlite Tantalum Bismuth Hafnium Phosphate Rock Tellurium Boron Helium Platinum Thallium Bromine Indium Potash Thorium Cadmium Iodine Pumice Tin Cement Iron and Steel Quartz Crystal Titanium Cesium Iron Ore Rare Earths Tungsten Chromium Iron Oxide Pigments Rhenium Vanadium Clays Kyanite Rubidium Vermiculite Cobalt Lead Salt Wollastonite Copper Lime Sand and Gravel Yttrium Diamond Lithium Scandium Zeolites Diatomite Magnesium Selenium Zinc Feldspar Manganese Silicon Zirconium U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2013 Manuscript approved for publication January 24, 2013. For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment— visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod For sale by the Superintendent of Documents, U.S. Government Printing Office Mail: Stop IDCC; Washington, DC 20402–0001 Phone: (866) 512–1800 (toll-free); (202) 512–1800 (DC area) Fax: (202) 512–2104 Internet: bookstore.gpo.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report.
    [Show full text]
  • CHEM 1411 Nomenclature Homework - Answers Part I
    1 CHEM 1411 Nomenclature Homework - Answers Part I 1. The following are a list of binary and pseudobinary ionic compounds. Write the name when the formula is given. Write the formula when the name is given. (a) AlCl3 aluminum chloride (k) rubidium oxide Rb2O (b) AuBr3 gold (III) bromide (l) chromium (III) selenide Cr2Se3 (c) Na2S sodium sulfide (m) barium iodide BaI2 (d) Cu3P2 copper (II) phosphide (n) copper (I) fluoride CuF (e) Fe(OH)2 iron (II) hydroxide (o) copper (II) fluoride CuF2 (f) NH4OH ammonium hydroxide (p) strontium cyanide Sr(CN)2 (g) Co(CH3COO)3 cobalt (III) acetate (q) mercury (II) bromide HgBr2 (h) Zn(SCN)2 zinc thiocyanate (r) mercury (I) bromide Hg2Br2 (i) CaCrO4 calcium chromate (s) magnesium permanganate Mg(MnO4)2 (j) K2Cr2O7 potassium dichromate (t) lithium nitride Li3N 2. The following are lists of covalent compounds. Write the name when a formula is given. Write the formula when given a name. (a) CSe2 carbon diselenide (h) dichlorine heptoxide Cl2O7 (b) SF6 sulfur hexafluoride (i) xenon tetrafluoride XeF4 (c) BrF5 bromine pentafluoride (j) carbon monoxide CO (d) P4O10 tetraphosphorous decoxide (k) oxygen O2 (e) Cl2O dichlorine oxide (l) diboron trioxide B2B O3 (f) NH3 ammonia (m) arsenic trifluoride AsF3 (g) N2 dinitrogen or nitrogen (n) diiodine I2 2 3. The following are lists of acids or acid-forming compounds. Write the name when the formula is given. Write the formula when the name is given. (a) H3PO2 hypophosphorous acid (k) hydrogen cyanide HCN (g) (b) H2SO4 sulfuric acid (l) periodic acid HIO4 (c) HClO hypochlorous acid (m) hypochlorous acid HClO (d) H3PO4 phosphoric acid (n) nitric acid HNO3 (e) HBrO4 perbromic acid (o) acetic acid CH3CO2H (f) HIO2 iodous acid (p) chloric acid HClO3 (g) HI (g) hydrogen iodide (q) perbromic acid HBrO4 (h) HI (aq) hydroiodic acid (r) hydrofluoric acid HF (aq) (i) HCN (aq) hydrocyanic acid (s) phosphorous acid H3PO3 (j) HBrO hypobromous acid (t) hydrosulfuric acid H2S (aq) 4.
    [Show full text]
  • The Preparation and Identification of Rubidium
    THE PREPARATION AND IDENTIFICATION OF RUBIDIUM TELLURO-MOLYBDATE AND OF CESIIDl TELLURO- MOLYBDA.TE SEP ZI 193B THE PREPARATION AlJD IDENTIFICATION or :RUBIDIUM TELLURO-MOLYBDATE AND OF CESIUM '?ELLURO-MOLYBDATE By HENRY ARTHUR CARLSON \ \ Bachelor of Science Drury College Springfield. Missouri 1936 Submitted to the Department of Chemistry Oklahoma Agricultural and Meohanica.l College In Partial Fulfillment of the Requirements For the degree of MASTER OF SCIENCE 1938 . ... ... .. .. .. ... .. ' :· ·. : : . .. .. ii S£p C"·J"··} ;.;:{ I' ' """"''· APPROVED:- \ Head~~stry 108627 iii ACKNOWLEDGMENT The author wishes to acknowledge the valuabl e advice and assistance of Dr. Sylvan R~ Wood, under whose direction this work was done. Acknowledgment is also made of the many help­ ful suggestions and cordial cooperation of Dr. H. M. Trimble. The author wishes to express his sincere appreciation to the Oklahoma Agricultural and Mechanical College for financial assistance in the fonn of a graduate assistantship in the Depart­ ment of Chemistry during the school years 1936-37 and 1937-38. iv TABLE OF CONTENTS I. Introduction------------------------------ 1 II. Materials Used-------------"--------------- 3 III. Preparation of Rubidium Telluro-molybdate---- 5 IV. Methods of Analysis------------------------ 6 Telluriur a-"---------"----------------------- 6 Molybdenum•----------------------------- 8 Rubi di um------------------"-------------... 10 \Yater of Hydration---------------------- 11 v. Calculation of: Formula---------------------- 12 VI. Preparation
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Alkali Oxide-Tantalum, Niobium and Antimony Oxide Ionic Conductors, RASA CR-13^869, 76 Pages (National Technical Information Service
    - - J HPS' 3/3-6* dfo+t f NBSIR 75-754 NASA CR-1 34869 A Rota, R. 3., Brewer, 3., Parkier, H. 3., Minor, D. B., Waring, J. L., Alkali oxide-tantalum, niobium and antimony oxide ionic conductors, RASA CR-13^869, 76 pages (National Technical Information Service, Springfield, Va . 1975). ALKALI OXIDE-TANTALUM, NIOBIUM AND ANTIMONY OXIDE IONIC CONDUCTORS by R. S. Roth, W. S. Brower. H. S. Parker, D. B. Minor and J. L. Waring prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACT C-50821-C U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS WASHINGTON, D. C. 20234 TABLE OF CONTENTS SUMMARY 3 1.0 INTRODUCTION 5 2.0 DISCUSSION OF RESULTS 6 2.1 The System Nb 0 -4Rb 0 : llNb^ 6 2 5 2 2.2 The System Ta 0 -4Rt> 0: llTa^ 6 2 5 2 2.3 The System Sb_0.-NaSbO_ 7 2 4 j 2.3.1 NaSb0 . 8 3 2.3.2 Pyrochlore Solid Solution 8 2.3.3 Polymorphism of Sb^ 10 2.4 The System Sb„0,-KSb0 o 11 2 4 3 2.4.1 Hydroxyl Ion Stabilization of Cubic Potassium Antimonate 11 2.5 The System Sb o0. -NaSbO„-NaF 13 2 4 3 2.5.1 The System NaSbO^NaF 13 2.5.2 The Ternary System 14 2.6 Other Systems 15 2.6.1 Alkali Bismuthates 15 2.6.2 Alkali-Rare Earth Systems 15 2.6.3 Further Studies in the System Nb 0 :KNb0 16 2 5 3 2.7 Pellet Fabrication 16 2.7.1 41K 0:59Nb 0 ("2:3"*, K Nb 0 ) 16 2 2 5 4 6 17 2.7.2 4Rb 0:llNb 0 (11-layer phase) 18 2 2 5 2.7.3 Large Pellets for Ionic Conductivity Measurements ...
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.249,480 B2 Sepeur Et Al
    USOO924.948OB2 (12) United States Patent (10) Patent No.: US 9.249,480 B2 Sepeur et al. (45) Date of Patent: Feb. 2, 2016 (54) METHOD FOR PRODUCING ALKALIAND (58) Field of Classification Search ALKALINE EARTH ALLOYS AND USE OF CPC ................................. C22C 24/00; B01J 23/04 THE ALKALIAND ALKALINE EARTH USPC ....................................................... 427/376.1 ALLOYS See application file for complete search history. (75) Inventors: Stefan Sepeur, Wadgassen (DE); (56) References Cited Gerald Frenzer, Saarbruecken (DE); U.S. PATENT DOCUMENTS Stefan Huefner, Saarbruecken (DE); Frank Mueller, Saarbruecken (DE) 2,171.439 A 8/1939 von Zeppelin 3,469,729 A * 9/1969 Grekila et al. ............. 220/2.3 R (73) Assignees: NANO-X GmbH, Saarbruecken (DE); Elringklinger AG, Dettingen an der (Continued) Erms (DE), part interest FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this CH 216 205 8, 1941 patent is extended or adjusted under 35 CH 219713 2, 1942 U.S.C. 154(b) by 81 days. (Continued) (21) Appl. No.: 13/138,373 OTHER PUBLICATIONS (22) PCT Filed: Feb. 9, 2010 International Search Report of PCT/DE2010/0750 13, Aug. 11, 2010. (86). PCT No.: PCT/DE2010/075O13 (Continued) S371 (c)(1), Primary Examiner —Nathan Empie (2), (4) Date: Sep. 13, 2011 (74) Attorney, Agent, or Firm — Collard & Roe, P.C. (57) ABSTRACT (87) PCT Pub. No.: WO2010/088902 A method for producing alkali and alkaline earth alloys. It PCT Pub. Date: Aug. 12, 2010 also relates to the use of the alkali and alkaline earth compo sitions. In order to create a novel method for producing alkali (65) Prior Publication Data and alkaline earth alloys, it is proposed within the context of US 2012/O156379 A1 Jun.
    [Show full text]
  • Ara-A .4 H N U.S
    US006762424B2 (12) United States Patent (10) Patent N0.: US 6,762,424 B2 Wester (45) Date of Patent: Jul. 13, 2004 (54) PLASMA GENERATION (56) References Cited (75) Inventor: Neil Wester, Tempe, AZ (US) US. PATENT DOCUMENTS (73) AssigneeZ Intel Corporation, Santa Clara, CA 6,566,667 B1 * 5/2003 Partlo et al. .......... .. 250/504 R US ( ) * cited by examiner ( * ) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 Primary Examiner_Kiet T, Nguyen U.S.C. 154(1)) by 0 days. (74) Attorney, Agent, or Firm—Fish & Richardson PC. (21) App1.No.: 10/202,422 (57) ABSTRACT (22) Filed. JuL 23 2002 A photolithography tool includes an anode and a cathode ’ composed of a ?rst material and a second material. The (65) Prior Publication Data second material has a loWer Work function than the ?rst material. Electrons emitted from the cathode ioniZe a gas Us 2004/0016894 A1 Jan' 29’ 2004 into a plasma that generates EUV light. The EUV light is (51) Int. Cl.7 ................................................ .. H05H 1/34 focused on a mask to produce an image of a circuit pattern. (52) US, Cl, ____ __ 250/504 R; 250M931; The image is projected on a semiconductor Wafer to produce 378/119 a circuit. (58) Field of Search ........................ .. 250/504 R, 493.1; 378/119, 122 44 Claims, 3 Drawing Sheets 138 130 ~\\\\\\\\\\\ / n'x. ATTCL. / 140 7A ‘- 128 Ara-A .4 h N U.S. Patent Jul. 13, 2004 Sheet 1 of3 US 6,762,424 B2 emmm29..>5l Roz-on .EGEEE: sarcoma...“ xommurao U.S.
    [Show full text]
  • United States Patent (19) 11) 4411,818 Reuter Et Al
    United States Patent (19) 11) 4411,818 Reuter et al. 45) Oct. 25, 1983 (54 REACTIVATION OF 56) References Cited WANADUM-CONTAINING OXIDATION U.S. PATENT DOCUMENTS CATALYSTS 3,474,041 10/1969 Kerr ................................ 252/411 R 75 Inventors: Peter Reuter, Ludwigshafen; Kurt 4,007,136 2/1977 Blechschmitt et al. ............. 252/476 Blechschmitt, Schifferstadt; Friedrich 4,035,399 7/1977 Yokoyama .......................... 549/248 Wirth, Ludwigshafen, all of Fed. 4,036,783 7/1977 Blechschmitt et al. ............. 252/46 Rep. of Germany 4,123,442 10/1978 Bakshi ................................. 252A16 FOREIGN PATENT DOCUMENTS 73) Assignee: BASF Aktiengesellschaft, Fed. Rep. 2436009 2/1976 Fed. Rep. of Germany . of Germany 2510994 9/1976 Fed. Rep. of Germany . 368229 1/1973 U.S.S.R. .............................. 549/248 21 Appl. No.: 348,198 Primary Examiner-P. E. Konopka Attorney, Agent, or Firm-Keil & Witherspoon 22 Filed: Feb. 12, 1982 57 ABSTRACT (30) Foreign Application Priority Data A process for reactivating avanadium-containing oxi Mar. 4, 1981 (DE) Fed. Rep. of Germany ....... 3.08101 dation catalyst, wherein the catalyst is treated first at from 100 to 600' C., with a volatile phosphorus com 51) Int. Cl. ........................ B01J 23/92; B01J 21/20; pound in the presence of an oxygen-containing gas, and B01J 27/28; C07D 307/89 then at from 50 to 600 C. with sulfur trioxide or a 52 U.S.C. ...................................... 502/35; 260/369; mixture of a volatile sulfur compound and an oxygen 549/248; 549/257; 549/258; 549/259; 502/37 containing gas. 58) Field of Search ..................... 252/41 R, 416, 415; 549/248 4 Claims, No Drawings 4,411,818 2 Although German Published Application DAS No.
    [Show full text]
  • Kruta Balka Block with Kruta Balka Prospective Field
    State Geologic and Subsoil Survey of Ukraine KRUTA BALKA BLOCK WITH KRUTA BALKA PROSPECTIVE FIELD Mineral: main minerals - tantalum ores, niobium ores, lithium ores, rubidium ores, cesium-containing ores; accompanying minerals: feldspar, quartz, muscovite, granodiorite, vein quartz, amphibolite. Type, period of subsoil use: geological study, including exploration and production license of subsoil assets of national significance. Location: Berdyansk district of Zaporizhzhya region, 2.5 km southwest of Radyvonivka village and 5.5 km north of Osypenko village, on the right bank of Berda river. The T-08-19 highway is 150 m to the west and the M-14 highway is 2.6 km to the south. Block area: 146.69 ha. Geological summary: The structure of the complex rare-metal prospective field of the Kruta Balka involves rocks of the Archean (West Pryazovska series) and Lower Proterozoic (Central Pryazovska series) metamorphic complexes, weak metamorphosis of Lower Proterozoic intrusions of basic and ultrabasic composition, as well as vein formations (pegmatites and quartz veins). Within prospective field, METALLIC MINERALS conditionally, considering the morphology, material composition and chemistry of pegmatites, there are three ore-bearing zones, in which the blocking of reserves is performed separately. Within the first ore-bearing zone, the concentration of tantalum pentoxide varies from 0.001% to 0.268%, niobium pentoxide 0.001-0.036%, lithium oxide - 0.008%-4.0%, rubidium oxide - 0.006-0.094%, cesium oxide - 0.001-0.041%. The maximum concentrations of tantalum are typical for the zones of medium-coarse-grained albite (clevelandite) and the maximum lithium content is confined to the quartz-albite- spodumene zones.
    [Show full text]
  • Oxidation of Propane and Methanol Using Metal Oxide Catalysts
    Oxidation of propane and methanol using metal oxide catalysts Thesis submitted in accordance with the requirements of the University of Cardiff for the degree of Doctor of Philosophy by Marie Naomi Gilmour May 2010 UMI Number: U585B53 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U585B53 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 DECLARATION This work has not previously been accepted in substance for any degree and is not concurrently submitted in candidature for any degree. Signed ........... (candidate) Date ................ STATEMENT 1 This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged by explicit references. Signed .. (candidate) Date , .. Q M & / / Q . STATEMENT 2 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations. Signed . ............... (candidate) Date <Q. v? ./Q S /(0 . Summary The selective and nonselective oxidation of propane was investigated using a range of metal oxide catalysts.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Progress in Xenon and Proton Relaxation Based Sensing Permalink https://escholarship.org/uc/item/0f13c7g6 Author Gomes, Muller De Matos Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Progress in Xenon and Proton Relaxation Based Sensing by Muller De Matos Gomes A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Alexander Pines, Chair Professor David E. Wemmer Professor Jeffrey Reimer Summer 2017 Progress in Xenon and Proton Relaxation Based Sensing Copyright 2017 By Muller De Matos Gomes 1 Abstract Progress in Xenon and Proton Relaxation Based Sensing by Muller De Matos Gomes Doctor of Philosophy in Chemistry University of California, Berkeley Professor Alexander Pines, Chair In this dissertation, the sensitivity of xenon relaxation to changes in its environment is used to both develop new types of biosensors and also to develop new techniques that make use of xenon’s intrinsic interactions with its environment. A proton based relaxation experiment is also discussed due to its similarity to relaxation experiments done with xenon biosensors. Contrast agents are developed for xenon NMR. These agents consist of a cryptophane cage covalently attached to a DOTA chelating agent, allowing one to bring xenon close to chelated paramagnetic ions, enhancing the bulk relaxation of xenon. Both the T1 and T2 relaxivity of these contrast agents are tested. Adding paramagnetic metal ions seems to affect T1 more than T2 for most ions, possibly because the cage itself drastically affects the T2 of xenon because of the slow exchange rate and large chemical shift difference.
    [Show full text]