Handbook of Local Area Network Testing

Total Page:16

File Type:pdf, Size:1020Kb

Handbook of Local Area Network Testing ® Advanced Test Equipment Rentals Handbook Of Local Area Established 1981 www.atecorp.com 800-404-ATEC (2832) Network Testing Wavetek Wandel Goltermann LAN HANDBOOK Wavetek Wandel Goltermann Sales Offices North & South America 9145 Balboa Ave. San Diego, CA 92123, U.S.A. Tel: (1) 858-279-2955 Fax: (1) 858-278-5141 Toll Free: (800) 854-2708 Germany Tel: (49) 89-996-410 Fax: (49) 89-996-41160 Asia Tel: (61) 3 9690 6700 Handbook ofLANTesting Fax: (61) 3 9690 6750 United Kingdom Tel: 0800-1693657 (Freefone) Fax: (49) 89-996-41413 Web Site: www.wwgsolutions.com E-mail: [email protected] $29.95 © 2000 Wavetek Wandel Goltermann • Specifications subject to change without notice. LASDHB010400AE LAN-Handbook.qxd 1/23/01 3:25 PM Page n1 Notice No part of this document may be reproduced in any form without the prior written consent of Wavetek Wandel Goltermann, LAN Division. Copyright ©2000 Wavetek Wandel Goltermann ALL RIGHTS RESERVED Printed in the USA First Edition April 2000 Appletalk is a registered trademark of Apple Computer, Inc. ARCNET is a registered trademark of Datapoint, Inc. DEC, DECnet, and VAX are trademarks of Digital Equipment Corporation. IBM is a trademark of International Business Machines Corporation. IPX and NETWARE are trademarks of Novell, Inc. Wavetek Wandel Goltermann and its logo and LANTech are trademarks of Wavetek Wandel Goltermann. LAN-Handbook.qxd 1/23/01 3:25 PM Page 1 TABLE OF CONTENTS Introduction/Handbook Overview . .3 Attenuation to Crosstalk Ratio (ACR) . .40 Section A: What is Data Communications? . .4 Limits for Attenuation and NEXT . .41 Section B: What is a Local Area Network? . .6 ELFEXT . .41 LAN Topologies . .6 Return Loss . .41 LAN Protocols . .7 Power Sum Measurements . .42 Section C: Why Standards Are Important . .10 Delay and Skew Test . .43 Section D: The Importance of Documentation . .14 Cable Structural Integrity . .44 Documenting the Hardware . .14 Connecting Point Issues . .45 Document Network Design Limitations . .15 Section H: Tests for Fiber Optic Cabling . .46 Careful Installation/Anticipate Failures . .15 Overview of Fiber Optic Cabling Technology . .46 Develop a Benchmark . .15 Differences between Single-mode and Multi-mode Fiber . .47 Section E: Overview of Testing Standards . .16 Budgeting . .48 The Evolution of Cabling Standards . .16 Bandwidth Budget . .48 TIA/EIA 568A & ISO 11801 . .17 Power Budget . .48 TSB67 . .17 Loss Budget . .48 TSB95 (CAT5) . .17 Standards for Optical Loss Budgets . .49 TIA/EIA 568A Addendum 5 (CAT5e) . .17 Fiber Optic Test Tools . .50 TIA/EIA 568A Draft 5 (CAT6) and ISO 11801 2nd Edition (Class-E) . .18 Basic Fault Finders . .51 TIA/EIA 568B Proposed (CAT7) and ISO Class-F . .18 Power Loss Meters . .51 Structured Cabling Concept . .18 Add-on Fiber Kits for Copper Test Equipment . .52 Test Configurations . .19 OTDR Testers . .52 Basic Link . .19 Optical Power Loss Measurement Procedures . .53 Channel Link . .19 Calculating Maximum Loss Budget . .53 Permanent Link . .20 Measuring Link Loss . .54 Overview of Test Requirements . .20 Loss Measurement Test Results Documentation . .56 Category 5 . .21 What Causes Failing Loss Measurements? . .56 Category 5e . .21 Summary . .57 Category 6 & Class E . .21 Section I: Testing Beyond the Physical Layer . .58 Category 6 / Class-E Implementation Issues . .22 Overview . .58 Future Cabling Standards: Category 7 / Class-F . .22 Importance of Higher Level Testing . .58 Maintaining Effectiveness in an Environment of Evolving Standards . .23 For Cable Installers . .58 Section F: Physical Layer Tools . .24 For Network Administrators . .58 Ohmmeter . .24 Review of the OSI Structure . .59 Terminators . .24 Key Elements.
Recommended publications
  • 1) What Is the Name of an Ethernet Cable That Contains Two
    1) What is the name of an Ethernet cable that contains two electrical conductors ? A coaxial cable 2) What are the names of the two common conditions that degrade the signals on c opper-based cables? Crosstal and attenuation 3) Which topology requires the use of terminators? Bus 4) Which of the following topologies is implemented only logically, not physical ly? Ring 5) How many wire pairs are actually used on a typical UTP Ethernet network? Two 6) What is the name of the process of building a frame around network layer info rmation? Data encapsulation 7) Which of the connectors on a network interface adapter transmits data in para llel? The System bus connector 8) Which two of the following hardware resources do network interface adapters a lways require? I/O port address and IRQ 9) What is the name of the process by which a network interface adapter determin es when it should transmit its data over the network? Media Access Control 10) Which bus type is preferred for a NIC that will be connected to a Fast Ether net network? PCI 11) A passive hub does not do which of the following? Transmit management information using SNMP 12) To connect two Ethernet hubs together, you must do which of the following? Connect the uplink port in one hub to a standard port on the other 13) Which term describes a port in a Token Ring MAU that is not part of the ring ? Intelligent 14) A hub that functions as a repeater inhibits the effect of____________? Attenuation 15) You can use which of the following to connect two Ethernet computers togethe r using UTP
    [Show full text]
  • Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern
    Switched, Fast, and Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern.. Page 1 of 36 [Figures are not included in this sample chapter] Switched, Fast, and Gigabit Ethernet - 3 - Ethernet, Fast Ethernet, and Gigabit Ethernet Standards This chapter discusses the theory and standards of the three versions of Ethernet around today: regular 10Mbps Ethernet, 100Mbps Fast Ethernet, and 1000Mbps Gigabit Ethernet. The goal of this chapter is to educate you as a LAN manager or IT professional about essential differences between shared 10Mbps Ethernet and these newer technologies. This chapter focuses on aspects of Fast Ethernet and Gigabit Ethernet that are relevant to you and doesn’t get into too much technical detail. Read this chapter and the following two (Chapter 4, "Layer 2 Ethernet Switching," and Chapter 5, "VLANs and Layer 3 Switching") together. This chapter focuses on the different Ethernet MAC and PHY standards, as well as repeaters, also known as hubs. Chapter 4 examines Ethernet bridging, also known as Layer 2 switching. Chapter 5 discusses VLANs, some basics of routing, and Layer 3 switching. These three chapters serve as a precursor to the second half of this book, namely the hands-on implementation in Chapters 8 through 12. After you understand the key differences between yesterday’s shared Ethernet and today’s Switched, Fast, and Gigabit Ethernet, evaluating products and building a network with these products should be relatively straightforward. The chapter is split into seven sections: l "Ethernet and the OSI Reference Model" discusses the OSI Reference Model and how Ethernet relates to the physical (PHY) and Media Access Control (MAC) layers of the OSI model.
    [Show full text]
  • Retrospective on Development of Radio and Wire Data Communication
    March, 2006 IEEE P802.15-06-0107-00-wng0 IEEE P802.15 Wireless Next Generation Networks Project IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title Retrospective on Development of Radio and Wire Data Communication Date 4 March 2006 Submitted Source Chandos A. Rypinski Voice: +1.415.435.0642 consultant Fax: [- ] Tiburon, CA 94920 USA E-mail: [email protected] Re: Call for contributions for 15WNG Erik Schylander, 13 Feb 2006 Abstract An account of: the development of phase shift keying and orthogonal frequency division multiplex with carriers positioned at spectral null of the adjacent carrier at Collins Radio 1954-58, the early development of 802.3 CSMA, 802.4 Token bus and 802.5 Token ring and the 802.4L radio PHY for token bus, the 802.6 and 802.9 committee’s working on voice-data integration, the start of 802.11 from 802.4L, the original functional targets and the DFW MAC adopted as a starting point the circumstances for the development 11A and 11B. Purpose The intent is show the effect of early and current decision-making as influenced by function goals and obscure design considerations. Possibly some future choices may be better made with knowledge of these examples. Notice This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
    [Show full text]
  • Ethernet/Category 5 Network Cabling Guide Prepared by SJ Wilkinson (August 2002) Based on Steve Derose’S Guide to CAT5 Network Wiring (See Later Web Reference)
    Ethernet/Category 5 Network Cabling Guide Prepared by SJ Wilkinson (August 2002) Based on Steve DeRose’s Guide to CAT5 Network Wiring (See later Web Reference) Networks A Local Area Network (LAN) can be as simple as two computers, each having a network interface card (NIC) or network adapter and running network software, connected together with a crossover cable. Here the crossover cable would have a plug at either end to connect into the NIC socket at the back of each computer. The next step up would be a network consisting of three or more computers and a hub. Each of the computers is plugged into the hub with a straight-thru cable (the crossover function is performed by the hub). For a small network the straight-thru cables would have plugs at either end – one to connect to the computer and one to the hub. For larger networks wall cabling, wall sockets and patch cables are used. A CAT5 "patch panel" is used at the hub end where all your wires come together and provides a group of sockets for further cables. Straight-thru patch cables connect computers to sockets (jacks). Straight-thru wall cables connect sockets to the patch panel. Straight-thru patch cables connect the patch panel to the hub. Patch panels often make network cabling neater but are not essential as (a) wiring a plug is no harder than wiring a panel; (b) you still need cables to go from the panel to the hub; and (c) it adds extra connections, so lowers reliability. 1 Planning your Network Pick a location for your hub, preferably centred to keep cable runs shorter.
    [Show full text]
  • Dodea FACILITIES MANAGEMENT GUIDE
    DoDEA FACILITIES MANAGEMENT GUIDE: TECHNOLOGY SYSTEMS DESIGN GUIDELINES DoDEA-NETWORK VERSION 2.0 DEPARTMENT OF DEFENSE EDUCATION ACTIVITY APRIL 14, 2016 UPDATED DRAFT DoDEA Technology Systems Design Guide – DoDEA Network Requirements TABLE OF CONTENTS Acronyms ........................................................................................................................................ 3 1.0 Purpose ........................................................................................................................ 5 2.0 Applicability ................................................................................................................. 5 3.0 References ................................................................................................................... 5 4.0 Responsibilities ............................................................................................................ 7 5.0 Data/Telecommunications Systems Summary ............................................................. 8 5.1 Outside Cable Plant .................................................................................................... 10 5.2 System Requirements ................................................................................................ 11 5.2.A Main Telecommunications Room (TR1) ........................................................................... 11 5.2.B Secondary Telecommunications Room (TR2) ................................................................... 13 5.2.C Video Distribution ............................................................................................................
    [Show full text]
  • Datacomm Products and Equipment Catalog
    DataComm Products and Equipment Catalog IDEAL DataComm 112060_DataComm08_COVER.indd2060_DataComm08_COVER.indd 2 11/8/08/8/08 99:41:29:41:29 AAMM The way every job should be IDEAL DataComm is dedicated to helping low voltage/datacomm professionals keep networks up and running. The system of products we have thoughtfully crafted ensures the highest-quality terminations with the ease-of-use you would expect from IDEAL. Our DataComm line includes a system solution for paired conductor, coax and fiber optic cabling. www.idealindustries.com Paired Conductor Products Wire Cutters . A-2 A Wire Strippers . .A-2 Crimp Tools . A-4 Punch Down Tools . A-5 Tool and Connector Kits . A-5 Wall Plates . A-9 Cables . .A-10 Connectors . A-10 Coaxial Termination Products Tool Selection Chart . B-2 B Wire Cutters . B-3 Wire Strippers . B-3 Crimp Tools . B-4 Compression Tools . .B-6 Connectors . B-7 Splitters . .B-8 Wall Plates . B-8 Tool and Connector Kits . B-9 BNC Coaxial Connectors . .B-12 Fiber Optic Products Wire Strippers . C-2 C Fiber Optic Accessories . C-3 Table of Contents Table Test Equipment Qualification Testers . .D-2 D Certification Testers . D-4 Hand-Held Testers . D-7 Related Products Resources . E-1 E Multi Media Installation Guide . .E-3 Technical Information . .E-12 Residential Coax Application Guide . .E-13 Index Alphabetical Index . F-1 F Catalog Number Index . F-3 For applicable GSA Contracts — contact IDEAL at 800-947-3614 New Products Mini Coax Stripper Grounding Block Q Adjustable stripper for Q Solid zinc alloy, mini coax cable nickel plated and Page B-3 chromate finished Page B-8 OmniSeal™ Pro Compression Tools Q Compression tools now offer additional features and increased connector Compression Connector compatibility Installation Kit Page B-6 Q Three tools in one handy pouch that clips easily to your belt.
    [Show full text]
  • Lan.Wiring.Jim.Trulove.Pdf
    LAN Wiring This page intentionally left blank LAN Wiring Third Edition James Trulove McGraw-Hill New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2006 by James Trulove. All rights reserved. Manufactured in the United States of America. Except as permit- ted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-148345-4 The material in this eBook also appears in the print version of this title: 0-07-145975-8. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use incor- porate training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw- hill.com or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent.
    [Show full text]
  • KNOW the LINGO – WHAT IS Category CABLE?
    KNOW THE LINGO – WHAT IS CategoRY CABLE? By: Joseph D. Cornwall, CTS-D Technology Evangelist—Lastar, Inc. Technical lingo is a kind of shorthand that’s used to express concepts common to that specific topic or area of study. Technical lingo is important because it provides a very precise or unique “shorthand” description of a device, effect or concept. Unfortunately, if you aren’t comfortable and familiar with the lingo of a topic it can be a tall hurdle to communicate efficiently with folks who consider the jargon of their field to be “self-explanatory.” In this series of articles we’ll lift the veils of misunderstanding from the lingo of the A/V industry. WHAT IS A CAT CABLE? The concept of Category cables was first set forth by the Electronic Industries Alliance (EIA) and is now maintained by the Telecommunications Industry Association (TIA). In 1991 the TIA/EIA-568-A standard was released (now revised to TIA/EIA-568-C) in an effort to define standards for telecommunications installations. In particular, the standard worked to define elements of balanced twisted pair cabling, fiber optic cabling and coaxial cabling, along with the associated connectors. The Cat cables discussed here are of the unshielded twisted pair (UTP) variety. You can’t be in the A/V or IT industry and not have heard of Cat5e and Cat6 cables. The Cat, as you might know, is short for “Category.” The term “Category” refers to the different levels of performance in signal bandwidth, attenuation and crosstalk associated with each cable’s design.
    [Show full text]
  • Cabling Network, Wireless & Fiber Optics Installation Standards
    PDHonline Course E449 (10 PDH) _____________________________________________________ Cabling Network, Wireless & Fiber Optics Installation Standards Instructor: Jurandir Primo, PE 2014 PDH Online | PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com An Approved Continuing Education Provider www.PDHcenter.com PDHonline Course E449 www.PDHonline.org CABLING NETWORK, WIRELESS & FIBER OPTICS INSTALLATION STANDARDS CONTENTS: I. INTRODUCTION II. ELECTRIC TRANSMISSION LINES III. WIRES AND CABLES IV. DEFINITIONS OF WIRES, CONDUCTORS AND CABLES V. INDUSTRIAL AND POWER CABLES VI. NETWORK CABLING SYSTEMS VII. TELEPHONE CABLING SYSTEMS VIII. DATA CENTERS INFRASTRUCTURE IX. WIRELESS NETWORK TECHNOLOGY X. CABLING AND WIRELESS STANDARDS XI. CABLING INSTALLATIONS & TESTING STANDARDS XII. INSTRUMENTATION CABLES XIII. VIDEO, TRAFFIC, RAILWAY & SUBSEA CABLES XIV. FIBER OPTICS OR OPTICAL FIBER CABLES XV. FIBER OPTICS TESTING STANDARDS XVI. FTTH SYSTEMS XVII. LINKS & REFERENCES ©2014 Jurandir Primo Page 1 of 111 www.PDHcenter.com PDHonline Course E449 www.PDHonline.org I. INTRODUCTION: Network, according to Thesaurus Dictionary is “any complex, interlocking system”. According to the Dictionary web, for radio and television, “is a group of tramsmitting stations linked by wire or microwaves so that the same program can be broadcast”, for electricity, “is an arrangement of con- ducting elements, as resistors,capacitors, or inductors, connected by conducting wire”. In telecommunications, network is a system containing any combination of computers, printers, terminals, audio, visual display devices and telephones, interconnected by cables to transmit or receive information. A network can consist of two computers, or millions of computers connected with cables or optical fibers, that are spread over a large geographical area, such as telephone lines, active equipment, radio, television and all visual or communication devices.
    [Show full text]
  • Getting Physical with Ethernet
    ETHERNET GETTING PHYSICAL STANDARDS • The Importance of Standards • Standards are necessary in almost every business and public service entity. For example, before 1904, fire hose couplings in the United States were not standard, which meant a fire department in one community could not help in another community. The transmission of electric current was not standardized until the end of the nineteenth century, so customers had to choose between Thomas Edison’s direct current (DC) and George Westinghouse’s alternating current (AC). IEEE 802 STANDARD • IEEE 802 is a family of IEEE standards dealing with local area networks and metropolitan area networks. • More specifically, the IEEE 802 standards are restricted to networks carrying variable-size packets. By contrast, in cell relay networks data is transmitted in short, uniformly sized units called cells. Isochronous , where data is transmitted as a steady stream of octets, or groups of octets, at regular time intervals, are also out of the scope of this standard. The number 802 was simply the next free number IEEE could assign,[1] though “802” is sometimes associated with the date the first meeting was held — February 1980. • The IEEE 802 family of standards is maintained by the IEEE 802 LAN/MAN Standards Committee (LMSC). The most widely used standards are for the Ethernet family, Token Ring, Wireless LAN, Bridging and Virtual Bridged LANs. An individual working group provides the focus for each area. Name Description Note IEEE 802.1 Higher Layer LAN Protocols (Bridging) active IEEE 802.2
    [Show full text]
  • Cat 6 Cable: Copper's Last Stand?
    Cat 6 Cable: Copper’s Last Stand? Cat 6 Cable is craft intensive! Advanced Installation & service skills are a MUST. 1 Cat6 Cable: Copper's Last Stand? Nope, Not yet! 10Gig IP to the rescue! What is Category 6? Unlike earlier cabling standards Category 6 is a 200MHz classification. The Category 6 standard is an integral part of the 2nd editions of the ISO 11801, TIA 568A and En5017. Initially there were only two parameters proposed for Category 6. These were that any Category 6 solution must use the existing RJ45 plug and jack format. The second was that the Powersum ACR must be positive to 200 MHz. As the standards have developed, additional parameters have been added. These standards continue to be developed and represent the pinnacle of performance for structured cabling systems. The intention behind the Category 6 standard is to provide the state-of-the-art 4-pair cabling system. The different and more stringent handling requirements for Category 6 components demand additional training, even for installers well used to the demands of Category 5e installation practices. Time, care and a high level of technical expertise are essential when installing Category 6. Even slight variations in the termination of links can have a massive effect on the overall performance of the system. It is for these reasons, that it is essential to select an installer who has an existing track record of successfully installing Category 6. With the comprehensive backing of Molex, under the Certified Installer (CI) program, SMT has the experience and track record you need to be sure that your Category 6 solution will perform for you now and in the future.
    [Show full text]
  • Twisted-Pair Cable • UTP—Unshielded Twisted-Pair • STP—Shielded Twisted-Pair
    The NIC must match the Address/Data Bus of the computer. ISA PCI 55 Installing the NIC in the computer. • NIC installed inside the computer. • Normally plugs into a bus slot. • Some are built right into the motherboard. • Plug-in boards must be configured correctly. 56 NIC Configuration Methods • Plug-and-Play • EEPROM • Jumper pins 57 Preparing to Install the NIC • Ensure there is an open bus slot. • Ensure the adapter is compatible. • Ensure there are system resources available. • Ensure all installation items are available. • Ensure all software is available. 58 Installing the NIC Hardware • Configure the NIC to available resources. • Use a ground strap. • Remove cover from the computer. • Remove rear panel slot cover plate. • Remove card from its antistatic bag and immediately plug it into motherboard. • Secure card slot cover plate to computer.59 Installing the NIC Software • Loading the device driver used by the NIC. • Loading any utilities supplied with the NIC. 60 NIC Device Driver • Supports communication between the NIC and OS. • Automatically installed and configured if both NIC and OS support PnP. • In other cases, driver loaded from floppy or CD supplied with NIC. 61 A more recent device driver may be available at the website of the NIC manufacturer. 62 Troubleshooting the NIC • Is NIC talking to the motherboard? • Is the NIC working internally? • Is the NIC communicating with the external network? 63 LEDs Link Activity 64 Twisted-Pair Cable • UTP—Unshielded Twisted-Pair • STP—Shielded Twisted-Pair 65 Twisted-Pair Cable Foil Foil Shield Wire Shield Braid Shield STP UTP STP 66 10BaseT Ethernet uses Unshielded Twisted Pair (UTP) cable.
    [Show full text]