Download Download

Total Page:16

File Type:pdf, Size:1020Kb

Download Download ISJ 11: 204-212, 2014 ISSN 1824-307X RESEARCH REPORT Exposure to tributyltin chloride induces penis and vas deferens development and increases RXR expression in females of the purple snail (Plicopurpura pansa) D Domínguez-Ojeda1, AE Rojas-García2, ML Robledo-Marenco2, BS Barrón-Vivanco2, IM Medina-Díaz2 1Escuela Nacional de Ingeniería Pesquera, Universidad Autónoma de Nayarit, Bahía de Matanchén Km. 12, San Blas, 63740 Nayarit, México 2Laboratorio de Contaminación y Toxicología Ambiental, Universidad Autónoma de Nayarit, Av. de la Cultura s/n, Col. Los Fresnos, 63155 Tepic, Nayarit, México Accepted June 26, 2014 Abstract Tributyltin (TBT) and its derivatives are widely used as antifouling paints for ships, resulting in their being released into the marine environment. Aquatic invertebrates, particularly marine gastropods, are extremely sensitive to TBT and undergo changes in the imposition of male secondary sex characteristics in response to exposure. This study aimed to evaluate the development of imposex and the expression of the retinoid X receptor (RXR) in tissues of Plicopurpura pansa (males and females) exposed to tributyltin chloride (TBTCl). The histological results showed a penis-like structure in imposexed female and an undeveloped vas deferens that lacked circular muscular layers. TBTCl treatment increased the messenger RNA (mRNA) of RXR in females with imposex. The highest level of mRNA RXR was found in the digestive gland and penis-forming area in females under in vivo exposure compared with control females. These results indicate that TBTCl modulates mRNA levels of RXR in females. mRNA RXR in imposex females and females exposed to TBTCl only was similar to that of males, indicating that RXR might contribute to the development of imposex. To our knowledge, this study is the first to show that TBTCl induces imposex and biphallia in this snail species, and that this effect is accompanied by an increase in RXR expression. Key Words: tributyltin; imposex; retinoid X receptor (RXR); purple snail Introduction Organotin compounds have been widely used activity (the enzyme that converts androgens to as antifouling paints for ships and fishing nets since estrogens) (Matthiessen and Gibbs, 1998; McAllister the 1960s, resulting in their continuous release into and Kime, 2003). This worldwide phenomenon the marine environment (De Mora, 1996; Fent, represents one of the most detrimental 1996; Champ, 2000). Tributyltin (TBT) and its consequences of pollution by anthropogenic derivatives are endocrine disruptors that induce chemicals and has led these compounds to being deregulation of vertebrate and invertebrate banned from antifouling paints in a number of endocrine systems (Golub and Doherty, 2004). countries; however, organotin compounds remain in Aquatic invertebrates, particularly marine the environment (Nishikawa, 2006). gastropods, are extremely sensitive to organotin To date, very low concentrations of TBT have compounds such as TBT. Consequently, they been shown to induce imposex in marine undergo changes in imposition of male secondary gastropods (Smith, 1980, 1981; Bryan et al., 1993; sex characteristics in response to exposure Horiguchi et al., 1997; Matthiesen and Gibbs, 1998; (Maguire, 2000; Oetken et al., 2004; Sternberg et al., Nishikawa, 2006; Chacón et al., 2007; Oehlmann et 2010), which is caused by a decrease in aromatase al., 2007). These abnormalities are the result of a ___________________________________________________________________________ masculinization process by which male sex organs develop a notable penis and vas deferens. In certain Corresponding author: Irma Martha Medina Díaz species, the growth of the vas deferens disrupts the Laboratorio de Contaminación y Toxicología Ambiental structure and function of the oviducts, preventing Secretaría de Investigación y Posgrado normal breeding activity and causing population Universidad Autónoma de Nayarit decline (Bryan et al., 1986; Gibbs and Bryan, 1986; 63155 Tepic, Nayarit, México Nakanishi, 2008). At present, the effects associated E-mail: [email protected] with TBT have been reported in 268 species of 204 Table 1 Body size and weight of female and male purple snails used in flow-through exposure experiments (October to March, 2011) Control females Control males TBTCl-exposed females TBTCl-exposed males Shell height (cm) 3.14±0.346 3.16±0.249 3.085±0.33 3.185±0.27 Shell weight (g) 4.87±1.61 5.6±1.19 4.85±1.8 6.22±1.40 Mean ± Standard deviation (SD). There was no statistical differences between size and weight with exposure to tributyltin chloride (TBTCI). intertidal gastropods worldwide, belonging to the and Mason, 1996); 3) an increase in the level of an orders Vetigastropoda, Mesogastropoda, and alanine-proline-glycine-tryptophan amide Neogastropoda. Neogastropoda is the most affected neuropeptide in response to TBT, and 4) TBT order, which contains 214 species, of which 101 are interference in the release of penis part of the Muricidae family (Titley-O'Neal et al., morphogenetic/retrogressive factor from the 2011). The purple snail (Plicopurpura pansa) is part pedal/cerebropleural ganglia (Féral and Le Gall, of this affected group of species. This snail is an 1983). intertidal carnivorous gastropod that inhabits rocky Another important mechanism proposed to intertidal beaches exposed to strong wave action. It induce imposex development is through the retinoid is distributed in the Pacific Ocean, from the X receptor (RXR). This receptor is a member of the northwestern Mexican coast to northern Peru (Keen, nuclear receptor superfamily of ligand-activated 1971). In addition, this gastropod possesses both transcription factors that have been characterized in economic and cultural importance. a wide variety of metazoan phyla and is highly Alternative mechanisms by which TBT induces conserved (Bouton et al., 2005). RXR play a central imposex in gastropods include the following: 1) role in a variety of nuclear signaling pathway, have increase in androgen levels as a result of the TBT- multiple physiological functions, and play key roles mediated inhibition of aromatase (Spooner et al., in embryo patterning and organogenesis in 1991; Bettin et al., 1996); 2) TBT-mediated inhibition mammals. RXR is known to act both as a ligand- of the excretion of androgen sulfate conjugates, with dependent transcription factor and as a common a consequent increase in androgen levels (Ronis hetero- or homodimer partner for many non-steroid Fig. 1 Hematoxylin and eosin semi-thin cross-section of the male penis of the purple snail 2 months after treatment with 10 μg Sn/L of Tributyltin chloride (TBTCl). Abbreviations: it, interstitial tissue; ml, muscle layer; vd, vas deferens. 205 Fig. 2 Hematoxylin and eosin cross-section of the penis-like structure (2 mm in length) that developed behind the right tentacle of a female purple snail 2 months after treatment with 10 μg Sn/L of Tributyltin chloride (TBTCl). Abbreviations: it, interstitial tissue; ml, muscle layer; vd, vas deferens. nuclear receptors. Because 9-cis retinoic acid Materials and Methods effectively induces imposex, RXR may play an important role in the development of imposex in Collection of specimens gastropods (Mangelsdorf and Evans 1995; Morris- Experiments were performed with a Kay 1997; Bouton et al., 2005; Stenberg et al., gonochoristic prosobranch species, the purple snail, 2008). Recently, Horiguchi et al. (2010) suggested Plicopurpura pansa Neogastropoda: Thaididae. In that RXR might be involved in organotin-mediated March 2010, live female and male purple snails induction of male-type genitalia (penis and vas were collected by hand at low tide at Olas Altas, deferens) in female rock shells (Thais clavigera). Mazatlán, Sinaloa, Mexico (23°12’ 29.87’’ N, Although imposex studies have been completed 106°25’ 43.67’’ W). The specimens were in several gastropods, the development of imposex immediately transported to the laboratory in plastic by TBT in the purple snail (Plicopurpura pansa) has cage containing seawater from the collection site. not been previously described. The aim of the Once at the laboratory, the specimens were reared present study was to evaluate the development of for 2 weeks in a laboratory aquarium to acclimate to imposex and expression in the RXR gene (mRNA) artificial seawater (Red Sea Salt®, Israel). The of female and male P. pansa exposed to Tributyltin purple snails were fed with pieces of squid (Loligo chloride (TBTCl). spp.). Fig. 3 Temporal change in the incidence of imposex in female purple snails exposed to 10 μg Sn/L of Tributyltin (TBTCl) for 6 months in a flow-through system. 206 Fig. 4 Temporal change in the average penis length of female purple snails exposed to 10 μg Sn/L of Tributylin (TBTCl) for 6 months in a flow-through system. Histological procedure control males, and exposed males) with a flow- The soft tissues (penis and penis-like structure) through system of artificial seawater (Read Sea of males and imposexed females were extracted Salt®, Israel) by means of an aeration pump. The from the shell and were fixed with 10% temperature of the experimental seawater was formaldehyde for 12 h. After dehydration with maintained at 25 ± 1 °C and a salinity of 38 ± 2 Salt ethanol (70, 80, 90, 96, and 100%), the tissues were per unit (SPU). The purple snails in the two immersed in xylene and then embedded in paraffin exposure groups were removed each month for and sliced into 7 µm sections. The paraffin- imposex examination (presence or absence of embedded
Recommended publications
  • Cariotipos De Los Caracoles De Tinte Plicopurpura Pansa Y Plicopurpura Columellaris (Gastropoda: Muricidae)
    Cariotipos de los caracoles de tinte Plicopurpura pansa y Plicopurpura columellaris (Gastropoda: Muricidae) Lenin Arias-Rodriguez1,3, Juan P. González-Hermoso2, Horacio Fletes-Regalado2, Luz Estela Rodríguez-Ibarra1 & Gabriela Del Valle Pignataro1 1 Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad, Mazatlán, Sábalo-Cerritos S/N Estero del Yugo, A.P. 711, Mazatlán, Sinaloa, México. Tel. (669) 989-87-00. Fax (669) 989-87-01; [email protected] 2 Universidad Autónoma de Nayarit, Facultad de Ingeniería Pesquera, Bahia de Matanchan, Km 12, Carretera los Cocos, A.P. 10, San Blas Nayarit, Mexico. Tel/Fax. (323) 31-21-20. 3 División Académica de Ciencias Biológicas, UJAT. Carretera Villahermosa-Cárdenas Km 0.5 S/N. Entronque a Bosques de Saloya. C.P. 86150. Tel. (993) 354-4308. Villahermosa, Tabasco, México. Recibido 04-III-2006. Corregido 11-XII-2006. Aceptado 14-V-2007. Abstract: Karyotypes of the purple snails Plicopurpura pansa and Plicopurpura columellaris (Gastropoda: Muricidae). The karyotypes of the purple snails Plicopurpura pansa (Gould, 1853) and P. columellaris (Lamarck, 1816) were established from 17 and 13 adults, respectively; and from eight capsules with embryos of P. pansa. In P. pansa were counted 59 mitotic fields in the adults and 127 in embryos; and 118 fields in P. columellaris. Chromosome numbers from 30 to 42 were observed in both species. Such a variation was notori- ous in each sample and there was no evidence of any relationship with tissue (gill, muscle and stomach). Both species has a typical modal number of 2n=36 chromosomes. Five good quality chromosome spreads were selected from adults of each species to assemble the karyotype.
    [Show full text]
  • Imposex in Plicopurpura Pansa (Neogastropoda: Thaididae)
    Available online at www.sciencedirect.com View metadata, citation and similar papers at core.ac.uk brought to you by CORE Revista Mexicana de Biodiversidad provided by Elsevier - Publisher Connector Revista Mexicana de Biodiversidad 86 (2015) 531–534 www.ib.unam.mx/revista/ Research note Imposex in Plicopurpura pansa (Neogastropoda: Thaididae) in Nayarit and Sinaloa, Mexico Imposex en Plicopurpura pansa (Neogastropoda: Thaididae) en Nayarit and Sinaloa, México Delia Domínguez-Ojeda a, Olga Araceli Patrón-Soberano b, José Trinidad Nieto-Navarro a,∗, María de Lourdes Robledo-Marenco c, Jesús Bernardino Velázquez-Fernández c a Escuela Nacional de Ingeniería Pesquera, Universidad Autónoma de Nayarit, Bahía de Matanchén km 12, carretera a Los Cocos, 63740, San Blas, Nayarit, Mexico b División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la presa de San José, Núm. 2055, Lomas 4ta, Sección, 78216 San Luís Potosí, Mexico c Laboratorio de Contaminación y Toxicología Ambiental, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo, S/N, Los Fresnos, 63155, Tepic, Nayarit, Mexico Received 25 June 2014; accepted 10 February 2015 Available online 26 May 2015 Abstract Imposex is the development of male features in female prosobranch gastropods, caused by organotin compounds. In the Mexican Pacific coast, imposex was observed in Plicopurpura pansa. This snail has been used by indigenous people to dye cotton and traditional fabric clothing. During 2010 and 2011, 5 habitats were visited along the coastline of Nayarit and Sinaloa, Mexico. At low tide, 675 snails were collected. Shell length, sex ratio and imposex incidence were measured. Imposex incidences were higher in the samples collected near harbor areas.
    [Show full text]
  • Are the Traditional Medical Uses of Muricidae Molluscs Substantiated by Their Pharmacological Properties and Bioactive Compounds?
    Mar. Drugs 2015, 13, 5237-5275; doi:10.3390/md13085237 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Are the Traditional Medical Uses of Muricidae Molluscs Substantiated by Their Pharmacological Properties and Bioactive Compounds? Kirsten Benkendorff 1,*, David Rudd 2, Bijayalakshmi Devi Nongmaithem 1, Lei Liu 3, Fiona Young 4,5, Vicki Edwards 4,5, Cathy Avila 6 and Catherine A. Abbott 2,5 1 Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, G.P.O. Box 157, Lismore, NSW 2480, Australia; E-Mail: [email protected] 2 School of Biological Sciences, Flinders University, G.P.O. Box 2100, Adelaide 5001, Australia; E-Mails: [email protected] (D.R.); [email protected] (C.A.A.) 3 Southern Cross Plant Science, Southern Cross University, G.P.O. Box 157, Lismore, NSW 2480, Australia; E-Mail: [email protected] 4 Medical Biotechnology, Flinders University, G.P.O. Box 2100, Adelaide 5001, Australia; E-Mails: [email protected] (F.Y.); [email protected] (V.E.) 5 Flinders Centre for Innovation in Cancer, Flinders University, G.P.O. Box 2100, Adelaide 5001, Australia 6 School of Health Science, Southern Cross University, G.P.O. Box 157, Lismore, NSW 2480, Australia; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-2-8201-3577. Academic Editor: Peer B. Jacobson Received: 2 July 2015 / Accepted: 7 August 2015 / Published: 18 August 2015 Abstract: Marine molluscs from the family Muricidae hold great potential for development as a source of therapeutically useful compounds.
    [Show full text]
  • Spineless Spineless Rachael Kemp and Jonathan E
    Spineless Status and trends of the world’s invertebrates Edited by Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Spineless Spineless Status and trends of the world’s invertebrates of the world’s Status and trends Spineless Status and trends of the world’s invertebrates Edited by Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Disclaimer The designation of the geographic entities in this report, and the presentation of the material, do not imply the expressions of any opinion on the part of ZSL, IUCN or Wildscreen concerning the legal status of any country, territory, area, or its authorities, or concerning the delimitation of its frontiers or boundaries. Citation Collen B, Böhm M, Kemp R & Baillie JEM (2012) Spineless: status and trends of the world’s invertebrates. Zoological Society of London, United Kingdom ISBN 978-0-900881-68-8 Spineless: status and trends of the world’s invertebrates (paperback) 978-0-900881-70-1 Spineless: status and trends of the world’s invertebrates (online version) Editors Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Zoological Society of London Founded in 1826, the Zoological Society of London (ZSL) is an international scientifi c, conservation and educational charity: our key role is the conservation of animals and their habitats. www.zsl.org International Union for Conservation of Nature International Union for Conservation of Nature (IUCN) helps the world fi nd pragmatic solutions to our most pressing environment and development challenges. www.iucn.org Wildscreen Wildscreen is a UK-based charity, whose mission is to use the power of wildlife imagery to inspire the global community to discover, value and protect the natural world.
    [Show full text]
  • Aspectos Biológicos De Los Caracoles Plicopurpura Pansa Y Plicopurpura Columellaris Mediante Observaciones En Condiciones De Laboratorio REDVET
    REDVET. Revista Electrónica de Veterinaria E-ISSN: 1695-7504 [email protected] Veterinaria Organización España Domínguez-Ojeda, Delia; González -Vega, Humberto; Nieto-Navarro, José Trinidad; Ruiz-Velazco- Arce, Javier Marcial de Jesús Aspectos biológicos de los caracoles Plicopurpura pansa y Plicopurpura columellaris mediante observaciones en condiciones de laboratorio REDVET. Revista Electrónica de Veterinaria, vol. 10, núm. 2, febrero, 2009, pp. 1-7 Veterinaria Organización Málaga, España Disponible en: http://www.redalyc.org/articulo.oa?id=63617114004 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto REDVET. Revista electrónica de Veterinaria. ISSN: 1695-7504 2009 Vol. 10, Nº 2 REDVET Rev. electrón. vet. http://www.veterinaria.org/revistas/redvet - http://revista.veterinaria.org Vol. 10, Nº 2, Febrero/2009 – http://www.veterinaria.org/revistas/redvet/n020209.html Aspectos biológicos de los caracoles Plicopurpura pansa y Plicopurpura columellaris mediante observaciones en condiciones de laboratorio (Biological aspects of snails Plicopurpura pansa and Plicopurpura columellaris through observations in laboratory conditions) Domínguez-Ojeda, Delia: Escuela Nacional de Ingeniería Pesquera, Universidad Autónoma de Nayarit. Tepic, Nayarit; México. | González –Vega, Humberto: Escuela Nacional de Ingeniería Pesquera, Universidad Autónoma de Nayarit. Tepic, Nayarit; México. | Nieto-Navarro, José Trinidad: Escuela Nacional de Ingeniería Pesquera, Universidad Autónoma de Nayarit. Tepic, Nayarit; México. | Ruiz-Velazco-Arce, Javier Marcial de Jesús: Centro Multidisciplinario de Investigación Científica de La Universidad Autónoma de Nayarit. Tepic, Nayarit; México.
    [Show full text]
  • The History of the Sacred Purple: the Use of Muricidae As a Dye Source
    The Discovery of Purple by Theodoor van Thulden (1606-1669), painted 1636-1638, oil. The History of the Sacred Purple: The Use of Muricidae as a Dye Source By Her Ladyship Claire le Deyare Barony of Dragon’s Mist, Kingdom of An Tir [email protected] 1 Introduction When mentioning the color of purple cloth to someone in a historical context, all sorts of misconceptions come into play. Some refer to the color as royal purple, or Tyrian purple. Some people say it refers to a certain shade, rather than the whole color pallet. Others will tell you that it is the color of kings and that no one else can wear the color. All of these statements are both true, and untrue at the same time. The intent of this research paper is to help correct those misconceptions, as well as to give background and insight into what is arguably the world’s most famous and least understood dye. Historically, the word purple referred not to a particular shade of dye, but rather a family of dye colors that came from one particular type of animal, the marine snail Murex, commonly known as the rock snail (Cardon, 2007). The epicenter of their use, and where they are most famous, is the Mediterranean. But there are also other species that were historically used in China, Japan, Mexico, and parts of Central and South America (see Figure 1. Baker, 1974). Many species of molluscs in the family Muricidae are used for dye, there are now different genus names besides Murex used for the snails that were historically used for dye (Cardon, 2007).
    [Show full text]
  • Embriogénesis Y Desarrollo Larvario Intra-Capsular De Plicopurpura Pansa (Gould, 1853) (Prosobranchia, Muricidae) En Condiciones De Laboratorio
    Ciencias Marinas (2004), 30(2): 297–310 Embriogénesis y desarrollo larvario intra-capsular de Plicopurpura pansa (Gould, 1853) (Prosobranchia, Muricidae) en condiciones de laboratorio Embryonic and intracapsular larval development of Plicopurpura pansa (Gould, 1853) (Prosobranchia, Muricidae) under laboratory conditions Ludwig C.A. Naegel1 Ma. del Carmen Gómez del Prado-Rosas2 1 Departamento de Biología Experimental Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN) Apartado postal 592 La Paz, Baja California Sur, CP 23000, México E-mail: [email protected] 2 Departamento de Biología Marina Universidad Autónoma de Baja California Sur Apartado postal 19-B La Paz, Baja California Sur, México E-mail: [email protected] Recibido en abril de 2003; aceptado en diciembre de 2003 Resumen Se estudió el desarrollo de embriones del murícido marino Plicopurpura pansa (Gould, 1853) hasta su eclosión. Cada hembra depositó alrededor de 150 cápsulas con huevos en un periodo de desove de 10 semanas. Los huevos tuvieron segmentación espiral seguida de una gastrulación por epibolia con la formación de larvas trocóforas no típicas, y veliger. Los embriones se alimentaron del vitelo contenido en el huevo. No se observó la presencia de huevos nutritivos. En 13% de las cápsulas, se presentaron diferentes estadios de desarrollo embrionario o larval en una misma cápsula. El desarrollo intra-capsular terminó a una temperatura de 21–23ºC en un periodo de 5 a 8 semanas después de la puesta de la cápsula con la eclosión de larvas veliger planctotróficas. Palabras clave: gasterópodos, murícidos, Plicopurpura pansa, embriogénesis, desarrollo intra-capsular. Abstract The embryonic development of the marine muricid Plicopurpura pansa (Gould, 1853) until hatching is described.
    [Show full text]
  • Chec List Marine and Coastal Biodiversity of Oaxaca, Mexico
    Check List 9(2): 329–390, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution ǡ PECIES * S ǤǦ ǡÀ ÀǦǡ Ǧ ǡ OF ×±×Ǧ±ǡ ÀǦǡ Ǧ ǡ ISTS María Torres-Huerta, Alberto Montoya-Márquez and Norma A. Barrientos-Luján L ǡ ǡǡǡǤͶ͹ǡ͹ͲͻͲʹǡǡ ǡ ȗ ǤǦǣ[email protected] ćĘęėĆĈęǣ ϐ Ǣ ǡǡ ϐǤǡ ǤǣͳȌ ǢʹȌ Ǥͳͻͺ ǯϐ ʹǡͳͷ͹ ǡͳͷ ȋǡȌǤǡϐ ǡ Ǥǡϐ Ǣ ǡʹͶʹȋͳͳǤʹΨȌ ǡ groups (annelids, crustaceans and mollusks) represent about 44.0% (949 species) of all species recorded, while the ͹͸ʹ ȋ͵ͷǤ͵ΨȌǤǡ not yet been recorded on the Oaxaca coast, including some platyhelminthes, rotifers, nematodes, oligochaetes, sipunculids, echiurans, tardigrades, pycnogonids, some crustaceans, brachiopods, chaetognaths, ascidians and cephalochordates. The ϐϐǢ Ǥ ēęėĔĉĚĈęĎĔē Madrigal and Andreu-Sánchez 2010; Jarquín-González The state of Oaxaca in southern Mexico (Figure 1) is and García-Madrigal 2010), mollusks (Rodríguez-Palacios known to harbor the highest continental faunistic and et al. 1988; Holguín-Quiñones and González-Pedraza ϐ ȋ Ǧ± et al. 1989; de León-Herrera 2000; Ramírez-González and ʹͲͲͶȌǤ Ǧ Barrientos-Luján 2007; Zamorano et al. 2008, 2010; Ríos- ǡ Jara et al. 2009; Reyes-Gómez et al. 2010), echinoderms (Benítez-Villalobos 2001; Zamorano et al. 2006; Benítez- ϐ Villalobos et alǤʹͲͲͺȌǡϐȋͳͻ͹ͻǢǦ Ǥ ǡ 1982; Tapia-García et alǤ ͳͻͻͷǢ ͳͻͻͺǢ Ǧ ϐ (cf. García-Mendoza et al. 2004). ǡ ǡ studies among taxonomic groups are not homogeneous: longer than others. Some of the main taxonomic groups ȋ ÀʹͲͲʹǢǦʹͲͲ͵ǢǦet al.
    [Show full text]
  • Molluscan Communities of the Rocky Intertidal Zone at Two Sites with Different Wave Action on Isla La Roqueta, Acapulco, Guerrero, Mexico
    MOLLUSCAN COMMUNITIES OF THE ROCKY INTERTIDAL ZONE AT TWO SITES WITH DIFFERENT WAVE ACTION ON ISLA LA ROQUETA, ACAPULCO, GUERRERO, MEXICO ARCADIO VALDÉS-GONZÁLEZ,* PEDRO FLORES-RODRÍGUEZ,^'^ RAFAEL FLORES-GARZA* ^ AND SERGIO GARCÍA-IBÁÑEZ' ^Doctorado en Ciencias Biológicas, Especialidad en Ecología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México. C. P. 66450; ^Universidad Autónoma de Guerrero, Unidad Académica de Ecología Marina, Acapulco, Guerrero, México. C. P. 39390 Journal of Shellfish Research, Vol. 23, No. 3, 875-880, 2004. MOLLUSCAN COMMUNITIES OF THE ROCKY INTERTIDAL ZONE AT TWO SITES WITH DIFFERENT WAVE ACTION ON ISLA LA ROQUETA, ACAPULCO, GUERRERO, MEXICO ARCADIO VALDÉS-GONZÁLEZ,*'* PEDRO FLORES-RODRÍGUEZ,* ^ RAFAEL FLORES-GARZA*^ AND SERGIO GARCÍA-IBÁÑEZ' ^Doctorado en Ciencias Biológicas, Especialidad en Ecología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México. C. P. 66450; ^Universidad Autónoma de Guerrero, Unidad Académica de Ecología Marina, Acapulco, Guerrero, México. C. P. 39390 ABSTRACT Molluscan communities were studied on two shores, one exposed and the other sheltered from wave action by determining the diversity, richness, density, dominance, and similarity of the groups of species found in the upper part of middie intertidal zone. The sample área per location and date was 20 m^. The samples were taken quarterly during the year. Species richness was found to be 44 species for both sites combined. The exposed site had a greater richness (41 species) and lower density (64.2 organisms/m~), whereas the sheltered site showed a higher density (88.08 organisms/m") and smaller richness (33 species).
    [Show full text]
  • Marine Mollusks of Bahía Málaga, Colombia (Tropical Eastern Pacific)
    10TH ANNIVERSARY ISSUE Check List the journal of biodiversity data LISTS OF SPECIES Check List 11(1): 1497, January 2015 doi: http://dx.doi.org/10.15560/11.1.1497 ISSN 1809-127X © 2015 Check List and Authors Marine mollusks of Bahía Málaga, Colombia (Tropical Eastern Pacific) Luz Ángela López de Mesa1* and Jaime R. Cantera2 1 Texas A&M University-Corpus Christi, Biology, 6300 Ocean Dr. CS 239 annex, Corpus Christi, TX, USA 2 Universidad del Valle, Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Calle 13 # 100-00, Cali, Colombia * Corresponding author. E-mail: [email protected] Abstract: A checklist of mollusks reported in Bahía Málaga hence high biodiversity. Its littoral zone, with an area of 136 (Valle del Cauca, Colombia) was developed through recent km2, is composed of different ecosystems, such as rocky and samplings in the zone (2004–2012), together with bibliograph- sandy shores, muddy flats, and mangrove forests (Cantera ic and museums’ collections reviews. Species’ distributions 1991). in Bahía Málaga were established through 18 different sub- Rocky shores in Bahía Málaga may consist of cliffs and/or regions, which included the inner, middle and outer zones of boulders. The range in the size and texture of the particles the bay. A revision of the western American distribution for present in the rocky shores allow for a variety of microhabi- the species was also carried out. A total of 426 species were tats, making it a very diverse ecosystem (INVEMAR et al. found, of which 44 were new reports for the Colombian Pacific 2007). Sandy beaches consist of very fine particles that may coast.
    [Show full text]
  • Mollusca: Polyplacophora)
    Research Ideas and Outcomes 6: e60446 doi: 10.3897/rio.6.e60446 Project Report Large-scale project ‘Chiton of the Mexican Tropical Pacific’: Chiton articulatus (Mollusca: Polyplacophora) Omar Hernando Avila-Poveda ‡, § ‡ Facultad de Ciencias del Mar (FACIMAR), Universidad Autonoma de Sinaloa (UAS), Mazatlan, Sinaloa, Mexico § Direccion de Catedras-CONACYT, Consejo Nacional de Ciencia y Tecnologia (CONACYT), Ciudad de Mexico, Mexico Corresponding author: Omar Hernando Avila-Poveda ([email protected]) Reviewable v 1 Received: 06 Nov 2020 | Published: 10 Nov 2020 Citation: Avila-Poveda OH (2020) Large-scale project ‘Chiton of the Mexican Tropical Pacific’: Chiton articulatus (Mollusca: Polyplacophora). Research Ideas and Outcomes 6: e60446. https://doi.org/10.3897/rio.6.e60446 Abstract The marine mollusc, commonly called sea cockroach or chiton Chiton articulatus, is a mollusc belonging to the group known as Polyplacophora because its shell is composed of eight individual plates. This mollusc inhabits the rocky intertidal shore of the Mexican Tropical Pacific, where it is endemic. It has ecological, but also economic, importance. Ecologically, it is the preferred food of the snail Plicopurpura pansa, a protected species, in the cultural heritage of the country. Additionally, it is a basibiont (generates substrate for other individuals) that maintains the biodiversity of the Region. Economically, it has changed from artisanal consumption to become a culinary tourist attraction, offered at restaurants as an exotic and aphrodisiac dish, in tourist places like Huatulco or Acapulco. Despite being an exploited resource for decades, little is known about its life history. The Mexican Authorities have not yet recognised this mollusc as a fishing resource, so that it does not have any law that controls its extraction, sale and consumption, putting at risk the recruitment, survival and permanence of this species.
    [Show full text]
  • Tyrian Purple from Marine Muricids, Especially from Plicopurpura Pansa (Gould, 1853)
    Joumal of Shellfish Research, Vol. 21, No. I, 193-200, 2002. TYRIAN PURPLE FROM MARINE MURICIDS, ESPECIALLY FROM PLICOPURPURA PANSA (GOULD, 1853) LUDWIG C.A. NAEGEL1 AND CHRIS J, COOKSEY2 1Centro lnterdisciplinario de Ciencias Marinas, lnstitutoPolitécnico Nacional La Paz, B.C.S. 23000 México; 259 Swiss Avenue, Watjord, Herts WD18 7U. UnitedKingdom ABSTRACT A review of the !itemture discloses thnt most marine snails of the family Muricidne produce in the hypobrunchint glnnd a viseaus seceetion containing, besides mucus and biotogically active compounds, minute amounts of chromogens. 11tese chromogens develop enz.ymatlcnlly and under the influence of light and oxygen into a purple pigment known as ''Tyrian Purple", "Royal Purple" or shellfish purple.ln lhe hypobranchial gtand the enz.yme purpuraseis kept apart from the chromogens, so thnt no pigments are forrned under normat conditions. Different species of muricids produce different pigments, depending on the number nnd concentratien of different chromogeus and on the varying light intensity and oxygen availability during pigment formation. The main pigments obtained from the hypobranchial gland from muricids are indigoids. The pigment of P. pansa is mainty 6,6' -dibromindigo with smaller amounts of 6-bromoindigo and 6,6'-dibromoindirubin, simitar to lhnt of Murex brandaris. KEY WORDS: "Tyrian Purple", gastropoda, muricidae, Plicopu1pura pa11sa, hypobranchint gland INTRODUCTION The use of muricids for dyeing on the pacific coast of the Americas dates at least from pre-Columbian times. In the same A review of the hypobranchlal gland of muricids, its secretions, way as the now extinct Mediterranenn purple industry the exploi­ including "Tydan purple", seemed justified in view of the growing tation of the dye of marine snails led also on the pacificconstof the interest in natural dyes and marine products with pharmacological Americas to a product of high economie value.
    [Show full text]