Studies on Spawning and Larval Rearing of the Whelk, Babylonia Spirata (Linnaeus, 1758) (Neogastropoda: Buccinidae)

Total Page:16

File Type:pdf, Size:1020Kb

Studies on Spawning and Larval Rearing of the Whelk, Babylonia Spirata (Linnaeus, 1758) (Neogastropoda: Buccinidae) STUDIES ON SPAWNING AND LARVAL REARING OF THE WHELK, BABYLONIA SPIRATA (LINNAEUS, 1758) (NEOGASTROPODA: BUCCINIDAE) Thesis submitted to Mangalore University in partial fulfillment of the requirement for the award of the degree of Doctor of Philosophy Under the Faculty of Biosciences. By Sreejaya.R. M.Sc, Department of Post Graduate Studies and Research in Biosciences Mangalore University, Mangalagangothri Karnataka, India-574 199 December, 2008 Certificate This is to certify that this thesis entitled “Studies on spawning and larval rearing of the Whelk, Babylonia spirata (Linnaeus,1758) (Neogastropoda: Buccinidae)” is an authentic record of research work carried out by Sreejaya.R under my guidance and supervision in Central Marine Fisheries Research Institute, Cochin, in partial fulfillment of the requirement for the award of Ph.D degree under the Faculty of Biosciences in Mangalore University. The thesis or part thereof has not previously been presented for the award of any Degree in any University. Cochin Date: Dr.K.Sunilkumar Mohamed, Supervising Guide, Principal Scientist & Head, Molluscan Fisheries Division, Central Marine Fisheries Research Institute, Cochin-682 018. Declaration I do hereby declare that the thesis entitled ““Studies on spawning and larval rearing of the Whelk, Babylonia spirata (Linnaeus, 1758) (Neogastropoda: Buccidae)” is an authentic record of research work carried out by me under the guidance and supervision of Dr. K. Sunilkumar Mohamed, Principal Scientist & Head, Molluscan Fisheries Division, Central Marine Fisheries Research Institute, Kochi in partial fulfillment for the award of Ph.D degree under the Faculty of Biosciences of Mangalore University and no part thereof has been previously formed the basis for the award of any diploma or degree, in any University. Cochin Date: (Sreejaya.R) Acknowledgement First of all, I bow before the God almighty and praise him for the gracious love and blessing showered on me. I express my deepest sense of appreciation and gratitude to Dr. K. Sunilkumar Mohamed, (Supervising guide), Principal Scientist and Head, Molluscan Fisheries Division of CMFRI for his guidance, valuable suggestions, criticism, and constant help during the course of my work, documentation and preparation of thesis. I sincerely express my heartfelt gratitude and indebtedness to Dr. V. Kripa, Principal Scientist, Tuticorin Research Center of CMFRI for her guidance, affectionate advice, constant encouragement, help, criticism and moral support during the course of my investigation and documentation. I am extremely thankful and indebted to Dr.P.Vijayagopal, Senior Scientist, CMFRI, Kochi for the critical reading of the final draft of this thesis and his comments and valuable suggestions helped me much during the final stages of thesis preparation. I owe my thanks to Dr. Mohan Joseph Modayil, Former Director, CMFRI, and to the present Director of CMFRI Dr. G. Syda Rao for extending all the facilities of CMFRI for the successful completion of my research work. It is a great pleasure for me to express a deep sense of gratitude and indebtedness to Dr. K. K. Appukuttan, former Head and Principal Scientist, Molluscan Fisheries Division of CMFRI for his suggestions, encouragement, and providing me the facility to carry out my work during the course of this study. I am obliged to Shri. P. Radhakrishnan, Technical officer, Molluscan Fisheries Division of CMFRI for his assistance in field work, constant encouragement and moral support during the course of the study. I acknowledge deep sense of gratitude to Shri. Mathew Joseph, Technical officer, Shri. P.S. Alloycious and Smt. Jenni. S. Sharma Technical Assistants of Molluscan Fisheries Division of CMFRI for providing facilities in lab, hatchery complex of CMFRI and also for valuable guidance, critical comments and suggestions during the experimental works. My special thanks owe to Dr. P. Laxmilatha, Senior Scientist, CMFRI Calicut , Dr.T.S.Velayudhan, Principal Scientist, Dr. Shoji Joseph, Senior Scientist , Dr. Reetha Jayasankar, Principal Scientist, Dr. L. Krishnan, Principal Scientist, CMFRI for their timely help rendered during the course of my investigation. My special thanks are due to Smt. N. Ambika, Shri. M. N. Sathyan, Shri. B.Zainudheen, Smt. S.Prasannakumari, Smt. P.P.Sheela, Shri. P.B.Jeevaraj, staff of Molluscan Fisheries Division, CMFRI for their great help and constant encouragement in carrying out my work. I am grateful to OIC library, other staff members in the library and staff members of accounts and administrative wing, canteen, security and other staff members of CMFRI, Cochin, for their sincere help and cooperation extended during the course of my study. I express my deepest sense of gratitude to the SIC and staff of Marine hatchery complex, CMFRI for providing all facilities to carry out the experiments. I am grateful to my colleagues Mrs. Anjana Mohan, Mrs. Leena Ravi, Dr. N.P. Anikumari, DR. R. Jugnu, Miss. Neetha Susan David, Dr. Ramalinga, Mr. M. Vinod, Dr. Shaji, Dr. S. Balu, Dr. R Girish, Mr. A. A. Shiju, Mr. Madhupal, Dr. K.P.Abdurahiman, Mr. Anoop. A. Krishnan for their wholehearted co-operation and support rendered during the tenure of my research. My sincere thanks are to Dr. Satish Sahayak, Research Scholar, CMFRI for assisting and taking the microphotographs during the period of investigation. I greatly acknowledge the financial assistance from the AP Cess fund of Indian Council of Agricultural Research in the form of SRF fellowship for the project “Development of seafarming techniques for commercially important whelk, Babylonia spp”. I express my deepest sense of gratitude to Dr. P. N. Radhakrishnan, SIC and staff of Calicut Research centre of CMFRI for their help and providing the facilities for carrying out the work. I thank Mr. Shaji, Mr. Marshal and those who have helped me for collecting the live samples from the Neendakara and Sakthikulangara harbour. My Sincere thanks are to Shi. T. Haridasan, Shri.P. Dasan, Mr. K.E.Joseph Victor, Smt. P.Swrnalatha, Mr.V.A. Kunhikoya, Mr.A. Anasukoya , Mr.N.P. Ramachandran, Mr.M.K.Chandran, and other staff members in the Research Centre of CMFRI, Calicut for their help in carrying out the experiments in the hatchery complex at Calicut. Above all, words are inadequate to express my love and indebtedness to my very beloved father, Shri. K.N.Ramachandran Nair, my beloved mother, P. K. Sarasamma, my loving husband Mr. Sajeshkumar N. K, brother R. Jayadevan and sisters R. Sreedhanya, and R. Sreevidhya, mother-in- law Mrs.J. Rajam and sister-in-law, Mrs. Sreeja. K for their whole-hearted support, love, encouragement and kind help. I am ever be indebted to my little kid Rakendu. S for her endurance and cooperation made during the period of documentation. (Sreejaya. R) Dedicated to My Family Contents Page No. Acronymes 1 Preface 2 - 4 Chapter 1. Introduction and Review of literature 5 - 33 1.1 General Introduction 1.2 Review of Literature Chapter 2. Broodstock maintenance and rearing of Babylonia spirata 34 - 59 2.1 Materials and methods 2.1.1 Standardization of transportation method of broodstock of B. spirata 2.1.2 Determination of substratum preference of adult B. spirata 2.1.3 Food and feeding of B. spirata broodstock 2.1.4 Salinity tolerance of B. spirata broodstock 2.1.5 Temperature tolerance and behavioural responses of B. spirata to different temperatures 2.2 Results 2.3 Discussion Chapter 3. Spawning of Babylonia spirata 60 - 76 3.1 Materials and Methods 3.1.1 Broodstock acclimatization and spawning 3.1.2 Effect of size of brooder on fecundity and size of egg 3.1.3 Requirement of substratum for spawning 3.2 Results 3.3 Discussion Chapter 4. Egg capsules of Babylonia spirata and its rearing 77 - 101 4.1 Materials and methods 4.1.1 Morphology of the egg capsule 4.1.2 Variation in the dimension of the egg capsule 4.1.3 Percentage of hatching of the veliger 4.1.4 Effect of water treatment during incubation of egg capsule 4.1.5 Water exchange during incubation 4.1.6 Effect of salinity on egg capsule 4.1.7 Effect of salinity on hatching 4.1.8 Effect of salinity on growth and development during incubation 4.1.9 Effect of temperature on growth and development 4.1.10 Effect of aeration on growth and development 4.1.11 Effect of light on growth and development of the veliger 4.1.12 Changes in the weight of the egg capsule during the period of development of the embryo 4.2 Results 4.3. Discussion Chapter 5. Intra capsular development of Babylonia spirata 102 - 126 5.1 Material and Methods 5.1.1 Development inside the egg capsule 5.1.2 Post hatching 5.1.3 Post settlement 5.2 Results 5.3 Discussion Chapter 6. Larval rearing of Babylonia spirata 127 - 163 6.1. Material and Methods 6.1.1. Salinity tolerance and effect of salinity on growth and settlement of hatched veliger 6.1.2. FEEDING THE VELIGER Culture of algal feed 6.1.2.1. Necessity of supplementary feed for the survival of newly hatched veliger 6.1.2.2. Ingestion rates (IR) by the veliger 6.1.2.3. Acceptance of different types of algal cells and its effect on growth and settlement of the veliger of B. spirata 6.1.2.4. Effect of combination of algal feed on the growth and settlement of veliger of B. spirata 6.1.2.5. Effect of low and high concentration of the algal feed on growth and settlement of veliger of B. spirata. 6.1.2.6. Effect of temperature on IR of algal feed, growth and settlement of veliger of B. spirata 6.1.3. Effect of stocking density on growth and settlement of veliger of B. spirata 6.1.4. Effect of substratum on growth and settlement of veliger of B.
Recommended publications
  • BIBLIOGRAPHICAL SKETCH Kevin J. Eckelbarger Professor of Marine
    BIBLIOGRAPHICAL SKETCH Kevin J. Eckelbarger Professor of Marine Biology School of Marine Sciences University of Maine (Orono) and Director, Darling Marine Center Walpole, ME 04573 Education: B.Sc. Marine Science, California State University, Long Beach, 1967 M.S. Marine Science, California State University, Long Beach, 1969 Ph.D. Marine Zoology, Northeastern University, 1974 Professional Experience: Director, Darling Marine Center, The University of Maine, 1991- Prof. of Marine Biology, School of Marine Sciences, Univ. of Maine, Orono 1991- Director, Division of Marine Sciences, Harbor Branch Oceanographic Inst. (HBOI), Ft. Pierce, Florida, 1985-1987; 1990-91 Senior Scientist (1981-90), Associate Scientist (1979-81), Assistant Scientist (1973- 79), Harbor Branch Oceanographic Inst. Director, Postdoctoral Fellowship Program, Harbor Branch Oceanographic Inst., 1982-89 Currently Member of Editorial Boards of: Invertebrate Biology Journal of Experimental Marine Biology & Ecology Invertebrate Reproduction & Development For the past 30 years, much of his research has concentrated on the reproductive ecology of deep-sea invertebrates inhabiting Pacific hydrothermal vents, the Bahamas Islands, and methane seeps in the Gulf of Mexico. The research has been funded largely by NSF (Biological Oceanography Program) and NOAA and involved the use of research vessels, manned submersibles, and ROV’s. Some Recent Publications: Eckelbarger, K.J & N. W. Riser. 2013. Derived sperm morphology in the interstitial sea cucumber Rhabdomolgus ruber with observations on oogenesis and spawning behavior. Invertebrate Biology. 132: 270-281. Hodgson, A.N., K.J. Eckelbarger, V. Hodgson, and C.M. Young. 2013. Spermatozoon structure of Acesta oophaga (Limidae), a cold-seep bivalve. Invertertebrate Reproduction & Development. 57: 70-73. Hodgson, A.N., V.
    [Show full text]
  • Delongueville-Scaillet
    NOVAPEX / Société 13(3), 10 octobre 2012 77 Illustration de Buccinum cyaneum Bruguière, 1792 dans l’Atlantique Nord-Est Christiane DELONGUEVILLE Avenue Den Doorn, 5 – B - 1180 Bruxelles - [email protected] Roland SCAILLET Avenue Franz Guillaume, 63 – B - 1140 Bruxelles - [email protected] MOTS-CLEFS Buccinidae, Buccinum cyaneum , illustration, individus vivants KEY-WORDS Buccinidae, Buccinum cyaneum , illustration, live specimens RÉSUMÉ Buccinum cyaneum en provenance de diverses localités de l’Atlantique Nord-Est est illustré. Des spécimens vivants sont également représentés. ABSTRACT Buccinum cyaneum from different North-East Atlantic localities are illustrated. Live specimens are also presented. INTRODUCTION Buccinum cyaneum Bruguière, 1792 est un petit représentant de la famille des Buccinidae qui ne dépasse généralement pas une hauteur de 5 à 6 cm. La coquille se caractérise par une absence de plis verticaux, du moins dans la grande majorité des cas. Elle porte des côtes spirales espacées, principalement sur le dernier tour. Son opercule est pointu avec un nucleus décentré (Macpherson 1971). Buccinum cyaneum dépose des capsules ovigères à la surface lisse en amas semi-circulaires de 41 à 48 mm de diamètre (Thorson 1935). Dans celles-ci de petites coquilles s’y développent (Delongueville & Scaillet 2001). Il existe de nombreuses variétés qui ont donné lieu à la multiplication des synonymes, le plus connu est Buccinum groenlandicum Chemnitz, 1788. Certaines variétés sont illustrées dans Fraussen & Poppe (1994). Buccinum cyaneum vit à la limite des zones boréale et arctique. Sa distribution est assez vaste. On le trouve en Amérique du Nord de la Nouvelle Ecosse (Whiteaves 1901) jusqu’à l’ile d’Ellesmere, à l’ouest et au sud-est du Groenland, en Islande (Macpherson 1971), aux iles Féroé (Sneli et al.
    [Show full text]
  • A Quick Guide to Cooking with Ausab Abalone in Brine
    A Quick Guide to Cooking With Ausab Abalone in Brine Ausab Canned Abalone is a versatile product that requires minimal effort to create the perfect meal at home. The abalone is completely cleaned and cooked, and ready to eat. With a unique umami flavor, it can be used in many different ways. The meat is smooth and tender, and the perfect balance between sweet and salty. Ensure the canned abalone is stored in a well ventilated, cool place out of direct sunlight. How to Prepare the Abalone The abalone is canned, ready to eat with mouth attached. To preserve it’s tender texture, it is best to use the abalone when just heated through. This can be achieved by using the abalone at the end of cooking, or slowly heated in the can. To safely heat the abalone in it’s can follow these steps: 1. Leave the can unopened and remove all labels. 2. Place the can into a pot of water so that it is fully submerged and is horizontal. 3. Bring the water to a gentle simmer and leave submerged for 15 – 20 minutes. 4. Remove the pot from the heat and wait for the water to cool before carefully lifting the can out of the water with large tongs. 5. Open the can once it is cool enough to handle. 6. The abalone can be served whole or sliced thinly. Abalone Recipes Ausab Canned Abalone can be pan fried, used in soups or grilled. Teriyaki Abalone Serves 4 1 x Ausab Canned Abalone in Brine 250ml Light Soy Sauce 200ml Mirin 200ml Sake 60g Sugar 1.
    [Show full text]
  • CHEMICAL STUDIES on the MEAT of ABALONE (Haliotis Discus Hannai INO)-Ⅰ
    Title CHEMICAL STUDIES ON THE MEAT OF ABALONE (Haliotis discus hannai INO)-Ⅰ Author(s) TANIKAWA, Eiichi; YAMASHITA, Jiro Citation 北海道大學水産學部研究彙報, 12(3), 210-238 Issue Date 1961-11 Doc URL http://hdl.handle.net/2115/23140 Type bulletin (article) File Information 12(3)_P210-238.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP CHEMICAL STUDIES ON THE MEAT OF ABALONE (Haliotis discus hannai INo)-I Eiichi TANIKAWA and Jiro YAMASHITA* Faculty of Fisheries, Hokkaido University There are about 90 existing species of abalones (Haliotis) in the world, of which the distribution is wide, in the Pacific, Atlantic and Indian Oceans. Among the habitats, especially the coasts along Japan, the Pacific coast of the U.S.A. and coasts along Australia have many species and large production. In Japan from ancient times abalones have been used as food. Japanese, as well as American, abalones are famous for their large size. Among abalones, H. gigantea (" Madaka-awabi "), H. gigantea sieboldi (" Megai-awabi "), H. gigantea discus (" Kuro-awabi") and H. discus hannai (" Ezo-awabi") are important in commerce. Abalone is prepared as raw fresh meat (" Sashimi") or is cooked after cut­ ting it from the shell and trimming the visceral mass and then mantle fringe from the large central muscle which is then cut transversely into slices. These small steaks may be served at table as raw fresh meat (" Sashimi") or may be fried, stewed, or minced and made into chowder. A large proportion of the abalones harvested in Japan are prepared as cooked, dried and smoked products for export to China.
    [Show full text]
  • Geometric Morphometric Analysis Reveals That the Shells of Male and Female Siphon Whelks Penion Chathamensis Are the Same Size and Shape Felix Vaux A, James S
    MOLLUSCAN RESEARCH, 2017 http://dx.doi.org/10.1080/13235818.2017.1279474 Geometric morphometric analysis reveals that the shells of male and female siphon whelks Penion chathamensis are the same size and shape Felix Vaux a, James S. Cramptonb,c, Bruce A. Marshalld, Steven A. Trewicka and Mary Morgan-Richardsa aEcology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand; bGNS Science, Lower Hutt, New Zealand; cSchool of Geography, Environment & Earth Sciences, Victoria University, Wellington, New Zealand; dMuseum of New Zealand Te Papa Tongarewa, Wellington, New Zealand ABSTRACT ARTICLE HISTORY Secondary sexual dimorphism can make the discrimination of intra and interspecific variation Received 11 July 2016 difficult, causing the identification of evolutionary lineages and classification of species to be Final version received challenging, particularly in palaeontology. Yet sexual dimorphism is an understudied research 14 December 2016 topic in dioecious marine snails. We use landmark-based geometric morphometric analysis to KEYWORDS investigate whether there is sexual dimorphism in the shell morphology of the siphon whelk Buccinulidae; conchology; Penion chathamensis. In contrast to studies of other snails, results strongly indicate that there fossil; geometric is no difference in the shape or size of shells between the sexes. A comparison of morphometrics; mating; P. chathamensis and a related species demonstrates that this result is unlikely to reflect a paleontology; reproduction; limitation of the method. The possibility that sexual dimorphism is not exhibited by at least secondary sexual some species of Penion is advantageous from a palaeontological perspective as there is a dimorphism; snail; true whelk rich fossil record for the genus across the Southern Hemisphere.
    [Show full text]
  • Full Text in Pdf Format
    Vol. 23: 265–274, 2015 AQUATIC BIOLOGY Published online April 1 doi: 10.3354/ab00626 Aquat Biol OPENPEN ACCESSCCESS Reproduction reduces HSP70 expression capacity in Argopecten purpuratus scallops subject to hypoxia and heat stress Katherina Brokordt*, Hernán Pérez, Catalina Herrera, Alvaro Gallardo Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile ABSTRACT: In scallops, gonad production is highly demanding energetically, and reproduction usually occurs during spring−summer, a period of strong environmental changes. The synthesis of heat-shock proteins (HSPs) is a major mechanism of stress tolerance in animals, including scal- lops, and HSP expression contributes considerably to cellular energy demand. Therefore, repro- ductive investment may limit the availability of energy (in terms of ATP) for the expression of HSP in organisms exposed to environmental stress. We evaluated the stress response capacity of adult Argopecten purpuratus scallops to high temperature and hypoxia. Stress response capacity was assessed through gene expression (for temperature stress) and protein induction of 70 kD HSP at 3 reproductive stages: immature, mature and spawned. We also evaluated the effect of reproduc- tive status on the cellular ATP provisioning capacity through citrate synthase activity. Immature scallops exposed to thermal stress showed 1.3- and 1.5-fold increases in hsp70 mRNA and HSP70 protein levels, respectively, and those exposed to hypoxia doubled their level of HSP70 compared to non-stressed immature scallops. However, following gonad maturation and spawning, hsp70 mRNA increased by only 0.49- and 0.65-fold, respectively, after thermal stress and HSP70 protein levels of scallops exposed to thermal and hypoxia stressors did not differ from those of non- stressed animals.
    [Show full text]
  • Circular 162. the Soft-Shell Clam
    HE OFT­ iHELL 'LAM UNITED STATES DEPARTMENT 8F THE INTERIOR FISH AND WILDLIFE SERVICE BUREAU OF COMMERCIAL FISHERIES Circular 162 CONTENTS Page 1 Intr oduc tion. • • • . 2 Natural history • . ~ . 2 Distribution. 3 Taxonomy. · . Anatomy. • • • •• . · . 3 4 Life cycle. • • • • • . • •• Predators, diseases, and parasites . 7 Fishery - methods and management .•••.••• • 9 New England area. • • • • • . • • • • • . .. 9 Chesapeake area . ........... 1 1 Special problem s of paralytic shellfish poisoning and pollution . .............. 13 Summary . .... 14 Acknowledgment s •••• · . 14 Selected bibliography •••••• 15 ABSTRACT Describes the soft- shell cla.1n industry of the Atlantic coast; reviewing past and present economic importance, fishery methods, fishery management programs, and special problems associated with shellfish culture and marketing. Provides a summary of soft- shell clam natural history in- eluding distribution, taxonomy, anatomy, and life cycle. l THE SOFT -SHELL CLAM by Robert W. Hanks Bureau of Commercial Fisheries Biological Labor ator y U.S. Fish and Wildlife Serv i c e Boothbay Harbor, Maine INTRODUCTION for s a lted c l a m s used as bait by cod fishermen on t he G r and Bank. For the next The soft-shell clam, Myaarenaria L., has 2 5 years this was the most important outlet played an important role in the history and for cla ms a nd was a sour ce of wealth to economy of the eastern coast of our country . some coastal communities . Many of the Long before the first explorers reached digg ers e a rne d up t o $10 per day in this our shores, clams were important in the busin ess during October to March, when diet of some American Indian tribes.
    [Show full text]
  • Diversity of Malacofauna from the Paleru and Moosy Backwaters Of
    Journal of Entomology and Zoology Studies 2017; 5(4): 881-887 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2017; 5(4): 881-887 Diversity of Malacofauna from the Paleru and © 2017 JEZS Moosy backwaters of Prakasam district, Received: 22-05-2017 Accepted: 23-06-2017 Andhra Pradesh, India Darwin Ch. Department of Zoology and Aquaculture, Acharya Darwin Ch. and P Padmavathi Nagarjuna University Nagarjuna Nagar, Abstract Andhra Pradesh, India Among the various groups represented in the macrobenthic fauna of the Bay of Bengal at Prakasam P Padmavathi district, Andhra Pradesh, India, molluscs were the dominant group. Molluscs were exploited for Department of Zoology and industrial, edible and ornamental purposes and their extensive use has been reported way back from time Aquaculture, Acharya immemorial. Hence the present study was focused to investigate the diversity of Molluscan fauna along Nagarjuna University the Paleru and Moosy backwaters of Prakasam district during 2016-17 as these backwaters are not so far Nagarjuna Nagar, explored for malacofauna. A total of 23 species of molluscs (16 species of gastropods belonging to 12 Andhra Pradesh, India families and 7 species of bivalves representing 5 families) have been reported in the present study. Among these, gastropods such as Umbonium vestiarium, Telescopium telescopium and Pirenella cingulata, and bivalves like Crassostrea madrasensis and Meretrix meretrix are found to be the most dominant species in these backwaters. Keywords: Malacofauna, diversity, gastropods, bivalves, backwaters 1. Introduction Molluscans are the second largest phylum next to Arthropoda with estimates of 80,000- 100,000 described species [1]. These animals are soft bodied and are extremely diversified in shape and colour.
    [Show full text]
  • Physiological Effects and Biotransformation of Paralytic
    PHYSIOLOGICAL EFFECTS AND BIOTRANSFORMATION OF PARALYTIC SHELLFISH TOXINS IN NEW ZEALAND MARINE BIVALVES ______________________________________________________________ A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Environmental Sciences in the University of Canterbury by Andrea M. Contreras 2010 Abstract Although there are no authenticated records of human illness due to PSP in New Zealand, nationwide phytoplankton and shellfish toxicity monitoring programmes have revealed that the incidence of PSP contamination and the occurrence of the toxic Alexandrium species are more common than previously realised (Mackenzie et al., 2004). A full understanding of the mechanism of uptake, accumulation and toxin dynamics of bivalves feeding on toxic algae is fundamental for improving future regulations in the shellfish toxicity monitoring program across the country. This thesis examines the effects of toxic dinoflagellates and PSP toxins on the physiology and behaviour of bivalve molluscs. This focus arose because these aspects have not been widely studied before in New Zealand. The basic hypothesis tested was that bivalve molluscs differ in their ability to metabolise PSP toxins produced by Alexandrium tamarense and are able to transform toxins and may have special mechanisms to avoid toxin uptake. To test this hypothesis, different physiological/behavioural experiments and quantification of PSP toxins in bivalves tissues were carried out on mussels ( Perna canaliculus ), clams ( Paphies donacina and Dosinia anus ), scallops ( Pecten novaezelandiae ) and oysters ( Ostrea chilensis ) from the South Island of New Zealand. Measurements of clearance rate were used to test the sensitivity of the bivalves to PSP toxins. Other studies that involved intoxication and detoxification periods were carried out on three species of bivalves ( P.
    [Show full text]
  • Antimicrobial Activity of Protein Hydrolysate from Marine Molluscs Babylonia Spirata (Linnaeus, 1758)
    Journal of Applied Pharmaceutical Science Vol. 6 (07), pp. 073-077, July, 2016 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2016.60711 ISSN 2231-3354 Antimicrobial Activity of Protein Hydrolysate from Marine Molluscs Babylonia spirata (Linnaeus, 1758) Amutha Kuppusamy*, Selvakumari Ulagesan Department of Biotechnology, Vels University, Chennai, Tamil Nadu, India. ABSTRACT ARTICLE INFO Article history: The present study is to investigate the antimicrobial activity of protein hydrolysate of marine water mollusks Received on: 22/02/2016 Babylonia spirata (Linnaeus, 1758). Protein hydrolysate was prepared from tissue of Babylonia spirata by Revised on: 10/03/2016 enzymatic hydrolysis. Enzyme digestion were carried out with the enzyme Trypsin. The protein concentration Accepted on: 08/05/2016 was estimated by Bradford’s method and the protein quantification was done by using SDS PAGE analysis. Available online: 28/07/2016 Antibacterial assay was carried out against four bacterial pathogens by agar well diffusion method and antifungal activity was performed against three human pathogenic fungal strains. 2.6mg/ml protein Key words: concentration was estimated by Bradford’s method and 40 to 200 kDa protein bands were resulted in SDS Gastropods, Babylonia PAGE analysis. In antimicrobial activity, the maximum zone of inhibition was observed against Staphylococcus spirata, Enzymatic digestion, aureus22.16 +1.04mm at 1000µg/ml concentration and the maximum zone of inhibition was observed in Protein hydrolysate, Aspergillus fumigatus13.5+0.5 in 1000µg/ml concentration. These results are signify that the protein Antimicrobial activity. hydrolysate of marine molluscs Babylonia spirata express remarkable antimicrobial activity. INTRODUCTION predominantly for their antimicrobial, cytotoxic, anti-tumor and The marine environment is a huge source to discover anti-inflammatory, anti- leukemic, antineoplastic and antiviral bioactive natural products.
    [Show full text]
  • The Immune Response of the Scallop Argopecten Purpuratus Is Associated with Changes in the Host Microbiota Structure and Diversity T
    Fish and Shellfish Immunology 91 (2019) 241–250 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article The immune response of the scallop Argopecten purpuratus is associated with changes in the host microbiota structure and diversity T K. Muñoza, P. Flores-Herreraa, A.T. Gonçalvesb, C. Rojasc, C. Yáñezc, L. Mercadoa, K. Brokordtd, ∗ P. Schmitta, a Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile b Laboratorio de Biotecnología y Genómica Acuícola – Centro Interdisciplinario para la Investigación Acuícola (INCAR), Universidad de Concepción, Concepción, Chile c Laboratorio de Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile d Laboratory of Marine Physiology and Genetics (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Coquimbo, Chile ARTICLE INFO ABSTRACT Keywords: All organisms live in close association with a variety of microorganisms called microbiota. Furthermore, several 16S rDNA deep amplicon sequencing studies support a fundamental role of the microbiota on the host health and homeostasis. In this context, the aim Host-microbiota interactions of this work was to determine the structure and diversity of the microbiota associated with the scallop Argopecten Scallop purpuratus, and to assess changes in community composition and diversity during the host immune response. To Innate immune response do this, adult scallops were immune challenged and sampled after 24 and 48 h. Activation of the immune Antimicrobial effectors response was established by transcript overexpression of several scallop immune response genes in hemocytes and gills, and confirmed by protein detection of the antimicrobial peptide big defensin in gills of Vibrio-injected scallops at 24 h post-challenge.
    [Show full text]
  • Ancillariidae
    WMSDB - Worldwide Mollusc Species Data Base Family: ANCILLARIIDAE Author: Claudio Galli - [email protected] (updated 06/lug/2017) Class: GASTROPODA --- Taxon Tree: CAENOGASTROPODA-NEOGASTROPODA-OLIVOIDEA ------ Family: ANCILLARIIDAE Swainson, 1840 (Sea) - Alphabetic order - when first name is in bold the species has images DB counters=528, Genus=16, Subgenus=11, Species=356, Subspecies=20, Synonyms=124, Images=342 abdoi, Ancillus abdoi Awad & Abed, 1967 † (FOSSIL) abessensis , Alocospira abessensis Lozouet, 1992 † (FOSSIL) abyssicola , Amalda abyssicola Schepman, 1911 acontistes , Ancilla acontistes Kilburn, 1980 acuminata , Ancilla acuminata (Sowerby, 1859) acuta , Amalda acuta Ninomiya, 1991 acutula , Eoancilla acutula Stephenson, 1941 † (FOSSIL) adansoni , Ancilla adansoni Blainville, 1825 - syn of: Anolacia mauritiana (Sowerby, 1830) adelaidensis , Ancilla adelaidensis Ludbrook, 1958 † (FOSSIL) adelphae , Ancilla adelphae Bourguignat, 1880 - syn of: Ancilla adelphe Kilburn, 1981 adelphe , Ancilla adelphe Kilburn, 1981 aegyptica, Ancilla aegyptica Oppenheim, 1906 † (FOSSIL) africana , Vanpalmeria africana Adegoke, 1977 † (FOSSIL) agulhasensis , Ancilla agulhasensis Thiele, 1925 - syn of: Ancilla ordinaria Smith, 1906 akontistes , Turrancilla akontistes (Kilburn, 1980) akontistes , Ancilla akontistes Kilburn, 1980 - syn of: Turrancilla akontistes (Kilburn, 1980) alazana , Ancillina alazana Cooke, 1928 † (FOSSIL) alba , Ancilla alba Perry, 1811 - syn of: Bullia vittata (Linnaeus, 1767) albanyensis , Amalda albanyensis Ninomiya,
    [Show full text]