Supporting Information for Proteomics DOI 10.1002/Pmic.200400942

Total Page:16

File Type:pdf, Size:1020Kb

Supporting Information for Proteomics DOI 10.1002/Pmic.200400942 Supporting Information for Proteomics DOI 10.1002/pmic.200400942 Wei-Jun Qian, Jon M. Jacobs, David G. Camp II, Matthew E. Monroe, Ronald J. Moore, Marina A. Gritsenko, Steve E. Calvano, Stephen F. Lowry, Wenzhong Xiao, Lyle L. Moldawer, Ronald W. Davis, Ronald G. Tompkins and Richard D. Smith Comparative proteome analyses of human plasma following in vivo lipopolysaccharide administration using multidimensional separations coupled with tandem mass spectrometry ã 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de Supplemental Table 1: List of 804 identified plasma proteins. Note: Reference IDs correspond to either SwissProt, NCBI, or PIR database entries. For each protein, one representive peptide sequence and the peptide charge_state, SEQUEST Xcorr, and Delcn are listed. The number of different peptides identifying each specific protein is also indicated. To facilitate comparison of protein abundances between the untreated and treated samples, the numbers of peptide hit, the protein abundance ratio (treated/untreated) calculated from peptide peak area ratios, and the standard deviation of peptide peak area ratios for each protein are also listed. No abundance ratio is shown if the protein has no common peptide identified in the two samples. Whether the same protein ID was reported in reference 16 and reference 27 (195 proteins observed from two different sources) is also indicated. Reference Description # of different Representitive peptide Charge_state Xcorr DelCn peptides Peptide Hits Peptide Protein Standard ID overlapped with ID overlapped with reference (untreated) hits abundance ratio deviation reference [16]-- Shen et al. [27]-- Anderson et al. SW:ALBU_HUMAN serum albumin precursor 360 K.EFNAETFTFHADICTLSEK.E 1 6.942 1 7858 7141 1.23 0.29 YES YES SW:CO3_HUMAN complement c3 precursor 224 R.IFTVNHK.L 1 6.929 0.597 [contains: c3a anaphylatoxin] 916 848 0.91 0.19 YES YES SW:APB_HUMAN apolipoprotein b-100 precursor 219 K.KLTISEQNIQR.A 1 6.975 1 (apo b-100) [contains: 574 525 1.03 0.44 YES YES SW:A2MG_HUMAN alpha-2-macroglobulin precursor 211 K.KDNSVHWERPQKPK.A 1 5.715 0.526 (alpha-2-m) 1030 959 1.09 0.24 YES YES SW:CO4_HUMAN complement c4 precursor 160 R.NVNFQK.A 1 7.054 0.574 [contains: c4a anaphylatoxin] 532 492 1.06 0.36 YES YES SW:TRFE_HUMAN serotransferrin precursor 150 R.AIAANEADAVTLDAGLVYDAYLAPNN 3 7.436 0.563 (siderophilin) (beta-1-metal 979 998 1.14 0.42 YES YES Reference Description # of different Representitive peptide Charge_state Xcorr DelCn peptides Peptide Hits Peptide Protein Standard ID overlapped with ID overlapped with reference (untreated) hits abundance ratio deviation reference [16]-- Shen et al. [27]-- Anderson et al. SW:FINC_HUMAN fibronectin precursor (fn) (cold- 100 R.TKTETITGFQVDAVPANGQTPIQR.T 1 5.206 0.517 insoluble globulin) (cig) 328 343 1.17 0.45 YES YES SW:A1AT_HUMAN alpha-1-antitrypsin precursor 92 K.LSITGTYDLK.S 1 6.618 0.617 (alpha-1 protease inhibitor) 504 516 1.11 0.46 YES YES SW:CERU_HUMAN ceruloplasmin precursor (ec 1 89 R.SVPPSASHVAPTETFTYEWTVPK.E 1 6.884 0.58 275 307 1.05 0.38 YES YES SW:FIBA_HUMAN fibrinogen alpha/alpha-e chain 83 R.GDFSSANNR.D 1 6.430 0.583 precursor 285 325 1.34 0.37 YES YES SW:FIBG_HUMAN fibrinogen gamma chain 81 K.FFTSHNGMQFSTWDNDNDKFEGN 1 5.993 0.616 precursor 277 276 1.17 0.51 YES SW:FIBB_HUMAN fibrinogen beta chain precursor 81 R.TPCTVSCNIPVVSGK.E 1 6.520 0.565 327 345 1.23 0.43 YES YES SW:VTDB_HUMAN vitamin d-binding protein 68 R.VCSQYAAYGEK.K 1 5.895 0.587 precursor (dbp) (group-specific 188 180 1.28 0.4 YES YES SW:CFAH_HUMAN complement factor h precursor (h 65 K.SPPEISHGVVAHMSDSYQYGEEVTY 1 6.001 0.578 factor 1) 168 166 1.29 0.38 YES YES Reference Description # of different Representitive peptide Charge_state Xcorr DelCn peptides Peptide Hits Peptide Protein Standard ID overlapped with ID overlapped with reference (untreated) hits abundance ratio deviation reference [16]-- Shen et al. [27]-- Anderson et al. SW:APA1_HUMAN apolipoprotein a-i precursor (apo- 63 R.AHVDALR.T 1 3.407 0.429 ai) 282 269 1.12 0.43 YES YES SW:PLMN_HUMAN plasminogen precursor (ec 3 57 K.LSSPAVITDK.V 1 6.902 0.537 106 107 1.19 0.44 YES YES SW:HPTR_HUMAN haptoglobin-related protein 57 K.KQLVEIEK.V 1 5.728 1 precursor 222 216 1.27 0.48 YES SW:HEMO_HUMAN hemopexin precursor (beta-1b- 54 R.GECQAEGVLFFQGDR.E 1 4.730 0.419 glycoprotein) 169 161 1.23 0.33 YES YES SW:ITH4_HUMAN inter-alpha-trypsin inhibitor heavy 53 K.VRPQQLVK.H 1 5.178 0.526 chain h4 precursor 147 127 1.14 0.59 YES YES SW:CFAB_HUMAN complement factor b precursor 53 R.DLLYIGK.D 1 6.242 0.676 (ec 3 127 127 1.12 0.33 YES YES SW:HPT2_HUMAN haptoglobin-2 precursor 52 K.DYAEVGR.V 1 6.203 0.564 337 301 1.64 0.41 YES YES SW:CO5_HUMAN complement c5 precursor 46 K.TLLPVSKPEIR.S 1 5.604 0.525 [contains: c5a anaphylatoxin] 134 107 0.88 0.37 YES YES Reference Description # of different Representitive peptide Charge_state Xcorr DelCn peptides Peptide Hits Peptide Protein Standard ID overlapped with ID overlapped with reference (untreated) hits abundance ratio deviation reference [16]-- Shen et al. [27]-- Anderson et al. SW:ITH2_HUMAN inter-alpha-trypsin inhibitor heavy 41 K.TQVADAK.R 1 2.081 0.302 chain h2 precursor 146 133 0.94 0.33 YES YES SW:C4BP_HUMAN c4b-binding protein alpha chain 40 R.GSSVIHCDADSK.W 1 7.339 0.589 precursor (c4bp) (proline-rich 94 90 1.35 0.48 YES YES SW:A2HS_HUMAN alpha-2-hs-glycoprotein 39 K.AALAAFNAQNNGSNFQLEEISR.A 1 4.231 0.513 precursor (fetuin-a) (alpha-2-z- 155 150 1.18 0.47 YES YES SW:KNG_HUMAN kininogen precursor (alpha-2-thiol 38 K.KYNSQNQSNNQFVLYR.I 1 5.150 0.572 proteinase inhibitor) [contains: 86 83 0.9 0.32 YES YES SW:A1AH_HUMAN alpha-1-acid glycoprotein 2 38 K.SDVVYTDWK.K 1 5.890 0.565 precursor (agp 2) (orosomucoid 2) 163 150 0.95 0.45 YES SW:TTHY_HUMAN transthyretin precursor 37 R.GSPAINVAVHVFR.K 1 5.968 0.52 (prealbumin) (tbpa) (ttr) (attr) 199 190 1.33 0.33 YES YES SW:ITH1_HUMAN inter-alpha-trypsin inhibitor heavy 36 K.QLVHHFEIDVDIFEPQGISK.L 1 6.657 0.536 chain h1 precursor 120 108 1 0.34 YES YES SW:VTNC_HUMAN vitronectin precursor (serum 36 K.PFDAFTDLK.N 1 4.306 0.482 spreading factor) (s-protein) 61 57 0.98 0.28 YES YES Reference Description # of different Representitive peptide Charge_state Xcorr DelCn peptides Peptide Hits Peptide Protein Standard ID overlapped with ID overlapped with reference (untreated) hits abundance ratio deviation reference [16]-- Shen et al. [27]-- Anderson et al. SW:A1BG_HUMAN alpha-1b-glycoprotein 34 R.LETPDFQLFK.N 1 5.732 0.531 126 112 1.19 0.53 YES YES SW:THRB_HUMAN prothrombin precursor (ec 3 34 K.GQPSVLQVVNLPIVER.P 1 6.745 0.595 64 75 1.42 0.32 YES YES SW:GELS_HUMAN gelsolin precursor, plasma (actin- 33 K.FDLVPVPTNLYGDFFTGDAYVILK.T 2 4.156 0.543 depolymerizing factor) (adf) 127 126 0.96 0.33 YES YES SW:APOH_HUMAN beta-2-glycoprotein i precursor 32 K.ATVVYQGER.V 1 5.582 0.514 (apolipoprotein h) (apo-h) (b2gpi) 80 71 1.36 0.4 YES YES SW:HRG_HUMAN histidine-rich glycoprotein 29 K.NLVINCEVFDPQEHENINGVPPHLGH 1 6.094 0.512 precursor (histidine-proline rich 82 85 1.03 0.42 YES YES SW:ANT3_HUMAN antithrombin-iii precursor (atiii) 28 K.ANRPFLVFIR.E 2 3.688 0.213 106 98 0.91 0.31 YES YES SW:AACT_HUMAN alpha-1-antichymotrypsin 27 K.ITLLSALVETR.T 1 7.016 0.587 precursor (act) 94 98 1.19 0.49 YES YES SW:APA4_HUMAN apolipoprotein a-iv precursor 26 K.SLAELGGHLDQQVEEFR.R 1 6.241 0.507 (apo-aiv) 69 49 0.95 0.34 YES YES Reference Description # of different Representitive peptide Charge_state Xcorr DelCn peptides Peptide Hits Peptide Protein Standard ID overlapped with ID overlapped with reference (untreated) hits abundance ratio deviation reference [16]-- Shen et al. [27]-- Anderson et al. SW:IC1_HUMAN plasma protease c1 inhibitor 26 K.YPVAHFIDQTLK.A 1 4.724 0.481 precursor (c1 inh) (c1inh) 70 79 0.95 0.33 YES YES SW:AFAM_HUMAN afamin precursor (alpha-albumin) 25 R.RHPDLSIPELLR.I 1 7.072 0.555 (alpha-alb) 131 100 1.02 0.4 YES YES SW:CO6_HUMAN complement component c6 23 K.IEEADCK.N 1 5.490 0.437 precursor 37 34 1.36 0.18 YES YES SW:APL1_HUMAN apolipoprotein l1 precursor 23 R.ANLQSVPHASASRPR.V 1 5.635 0.613 (apolipoprotein l-i) (apolipoprotein 68 52 1.18 0.38 YES YES PIR1:I38344 titin, cardiac muscle [validated] - 23 K.RVDLIQDLPRVELQIK.E 1 2.584 0.145 human 22 15 0.5 0.31 YES SW:APA2_HUMAN apolipoprotein a-ii precursor 23 K.AGTELVNFLSYFVELGTQPAT.Q 2 5.268 0.407 (apo-aii) (apoa-ii) 184 175 0.75 0.27 YES YES SW:CLUS_HUMAN clusterin precursor (complement- 22 R.IDSLLENDR.Q 1 5.611 0.541 associated protein sp-40,40) 82 80 0.82 0.23 YES YES GP:AF384856_1 Homo sapiens peptidoglycan 19 R.GSQTQSHPDLGTEGCWDQLSAPR.T 1 5.812 0.574 recognition protein L precursor 62 64 1.05 0.32 YES Reference Description # of different Representitive peptide Charge_state Xcorr DelCn peptides Peptide Hits Peptide Protein Standard ID overlapped with ID overlapped with reference (untreated) hits abundance ratio deviation reference [16]-- Shen et al.
Recommended publications
  • Temporary Disruption of the Retinal Basal Lamina and Its Effect on Retinal Histogenesis
    Developmental Biology 238, 79–96 (2001) doi:10.1006/dbio.2001.0396, available online at http://www.idealibrary.com on Temporary Disruption of the Retinal Basal Lamina and Its Effect on Retinal Histogenesis Willi Halfter,*,1 Sucai Dong,* Manimalha Balasubramani,* and Mark E. Bier† *Department of Neurobiology, University of Pittsburgh, 1402 E Biological Science Tower, Pittsburgh, Pennsylvania 15261; and †Department of Chemistry, Mellon Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-2683 An experimental paradigm was devised to remove the retinal basal lamina for defined periods of development: the basal lamina was dissolved by injecting collagenase into the vitreous of embryonic chick eyes, and its regeneration was induced by a chase with mouse laminin-1 and ␣2-macroglobulin. The laminin-1 was essential in reconstituting a new basal lamina and could not be replaced by laminin-2 or collagen IV, whereas the macroglobulin served as a collagenase inhibitor that did not directly contribute to basal lamina regeneration. The regeneration occurred within 6 h after the laminin-1 chase by forming a morphologically complete basal lamina that included all known basal lamina proteins from chick embryos, such as laminin-1, nidogen-1, collagens IV and XVIII, perlecan, and agrin. The temporary absence of the basal lamina had dramatic effects on retinal histogenesis, such as an irreversible retraction of the endfeet of the neuroepithelial cells from the vitreal surface of the retina, the formation of a disorganized ganglion cell layer with an increase in ganglion cells by 30%, and the appearance of multiple retinal ectopias. Finally, basal lamina regeneration was associated with aberrant axons failing to correctly enter the optic nerve.
    [Show full text]
  • In Normal Conditions After Heat Stress
    1 Transcriptome analysis of yamame (Oncorhynchus masou) in normal conditions after heat stress Waraporn Kraitavin1, Kazutoshi Yoshitake1, Yoji Igarashi1, Susumu Mitsuyama1, Shigeharu Kinoshita1, Daisuke Kambayashi2, Shugo Watabe3 and Shuichi Asakawa1* 1 Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan; [email protected] (S.A.) 2 Kobayashi Branch, Miyazaki Prefectural Fisheries Research Institute, Kobayashi, Miyazaki 886-0005, Japan 3 School of Marine Biosciences, Kitasato University, Minami, Sagamihara, Kanagawa 252-0313, Japan; [email protected] * Correspondence: [email protected] (S.A.) 2 A B *HT represents high-temperature tolerant, NT represents non-high-temperature tolerant Figure S1. The pheatmap repeatability analysis of mRNA libraries between samples using the Pearson correlation, (A) gill and (B) fin 3 A B *HT represents high-temperature tolerant, NT represents non-high-temperature tolerant Figure S2. The PCA analysis of mRNA libraries between samples, (A) gill and (B) fin. 4 Table S1. List of the differentially expressed genes of the gill in yamame Gene_id Annotation HT_TPM NT_TPM log2(FoldChange) P - value TRINITY_DN100000_c0_g1_i2 VDAC2 27.57 17.15 0.71 0.00 TRINITY_DN100006_c4_g1_i1 0.65 2.69 -1.93 0.00 TRINITY_DN100021_c0_g1_i2 CXL14 0.13 4.06 -4.96 0.00 TRINITY_DN100027_c4_g2_i1 PEAK1 1.31 4.44 -1.77 0.00 TRINITY_DN100027_c4_g3_i1 0.17 2.38 -3.18 0.00 TRINITY_DN100035_c6_g6_i2 2.13 13.97 -2.68 0.00 TRINITY_DN100055_c1_g2_i1 3BHS 0.22
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • 140503 IPF Signatures Supplement Withfigs Thorax
    Supplementary material for Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis Daryle J. DePianto1*, Sanjay Chandriani1⌘*, Alexander R. Abbas1, Guiquan Jia1, Elsa N. N’Diaye1, Patrick Caplazi1, Steven E. Kauder1, Sabyasachi Biswas1, Satyajit K. Karnik1#, Connie Ha1, Zora Modrusan1, Michael A. Matthay2, Jasleen Kukreja3, Harold R. Collard2, Jackson G. Egen1, Paul J. Wolters2§, and Joseph R. Arron1§ 1Genentech Research and Early Development, South San Francisco, CA 2Department of Medicine, University of California, San Francisco, CA 3Department of Surgery, University of California, San Francisco, CA ⌘Current address: Novartis Institutes for Biomedical Research, Emeryville, CA. #Current address: Gilead Sciences, Foster City, CA. *DJD and SC contributed equally to this manuscript §PJW and JRA co-directed this project Address correspondence to Paul J. Wolters, MD University of California, San Francisco Department of Medicine Box 0111 San Francisco, CA 94143-0111 [email protected] or Joseph R. Arron, MD, PhD Genentech, Inc. MS 231C 1 DNA Way South San Francisco, CA 94080 [email protected] 1 METHODS Human lung tissue samples Tissues were obtained at UCSF from clinical samples from IPF patients at the time of biopsy or lung transplantation. All patients were seen at UCSF and the diagnosis of IPF was established through multidisciplinary review of clinical, radiological, and pathological data according to criteria established by the consensus classification of the American Thoracic Society (ATS) and European Respiratory Society (ERS), Japanese Respiratory Society (JRS), and the Latin American Thoracic Association (ALAT) (ref. 5 in main text). Non-diseased normal lung tissues were procured from lungs not used by the Northern California Transplant Donor Network.
    [Show full text]
  • Signal Transduction in L-DOPA-Induced Dyskinesia: from Receptor Sensitization to Abnormal… Et Al
    Journal of Neural Transmission https://doi.org/10.1007/s00702-018-1847-7 NEUROLOGY AND PRECLINICAL NEUROLOGICAL STUDIES - REVIEW ARTICLE Signal transduction in L‑DOPA‑induced dyskinesia: from receptor sensitization to abnormal gene expression Giada Spigolon1 · Gilberto Fisone1 Received: 1 November 2017 / Accepted: 23 January 2018 © The Author(s) 2018. This article is an open access publication Abstract A large number of signaling abnormalities have been implicated in the emergence and expression of L-DOPA-induced dyskinesia (LID). The primary cause for many of these changes is the development of sensitization at dopamine receptors located on striatal projection neurons (SPN). This initial priming, which is particularly evident at the level of dopamine D1 receptors (D1R), can be viewed as a homeostatic response to dopamine depletion and is further exacerbated by chronic administration of L-DOPA, through a variety of mechanisms afecting various components of the G-protein-coupled receptor machinery. Sensitization of dopamine receptors in combination with pulsatile administration of L-DOPA leads to intermit- tent and coordinated hyperactivation of signal transduction cascades, ultimately resulting in long-term modifcations of gene expression and protein synthesis. A detailed mapping of these pathological changes and of their involvement in LID has been produced during the last decade. According to this emerging picture, activation of sensitized D1R results in the stimulation of cAMP-dependent protein kinase and of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa. This, in turn, activates the extracellular signal-regulated kinases 1 and 2 (ERK), leading to chromatin remodeling and aberrant gene transcription. Dysregulated ERK results also in the stimulation of the mammalian target of rapamycin complex 1, which promotes protein synthesis.
    [Show full text]
  • Spatial Distribution of Leading Pacemaker Sites in the Normal, Intact Rat Sinoa
    Supplementary Material Supplementary Figure 1: Spatial distribution of leading pacemaker sites in the normal, intact rat sinoatrial 5 nodes (SAN) plotted along a normalized y-axis between the superior vena cava (SVC) and inferior vena 6 cava (IVC) and a scaled x-axis in millimeters (n = 8). Colors correspond to treatment condition (black: 7 baseline, blue: 100 µM Acetylcholine (ACh), red: 500 nM Isoproterenol (ISO)). 1 Supplementary Figure 2: Spatial distribution of leading pacemaker sites before and after surgical 3 separation of the rat SAN (n = 5). Top: Intact SAN preparations with leading pacemaker sites plotted during 4 baseline conditions. Bottom: Surgically cut SAN preparations with leading pacemaker sites plotted during 5 baseline conditions (black) and exposure to pharmacological stimulation (blue: 100 µM ACh, red: 500 nM 6 ISO). 2 a &DUGLDFIoQChDQQHOV .FQM FOXVWHU &DFQDG &DFQDK *MD &DFQJ .FQLS .FQG .FQK .FQM &DFQDF &DFQE .FQM í $WSD .FQD .FQM í .FQN &DVT 5\U .FQM &DFQJ &DFQDG ,WSU 6FQD &DFQDG .FQQ &DFQDJ &DFQDG .FQD .FQT 6FQD 3OQ 6FQD +FQ *MD ,WSU 6FQE +FQ *MG .FQN .FQQ .FQN .FQD .FQE .FQQ +FQ &DFQDD &DFQE &DOP .FQM .FQD .FQN .FQG .FQN &DOP 6FQD .FQD 6FQE 6FQD 6FQD ,WSU +FQ 6FQD 5\U 6FQD 6FQE 6FQD .FQQ .FQH 6FQD &DFQE 6FQE .FQM FOXVWHU V6$1 L6$1 5$ /$ 3 b &DUGLDFReFHSWRUV $GUDF FOXVWHU $GUDD &DY &KUQE &KUP &KJD 0\O 3GHG &KUQD $GUE $GUDG &KUQE 5JV í 9LS $GUDE 7SP í 5JV 7QQF 3GHE 0\K $GUE *QDL $QN $GUDD $QN $QN &KUP $GUDE $NDS $WSE 5DPS &KUP 0\O &KUQD 6UF &KUQH $GUE &KUQD FOXVWHU V6$1 L6$1 5$ /$ 4 c 1HXURQDOPURWHLQV
    [Show full text]
  • Supp Table 6.Pdf
    Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin
    [Show full text]
  • Egfr Activates a Taz-Driven Oncogenic Program in Glioblastoma
    EGFR ACTIVATES A TAZ-DRIVEN ONCOGENIC PROGRAM IN GLIOBLASTOMA by Minling Gao A thesis submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March 2020 ©2020 Minling Gao All rights reserved Abstract Hyperactivated EGFR signaling is associated with about 45% of Glioblastoma (GBM), the most aggressive and lethal primary brain tumor in humans. However, the oncogenic transcriptional events driven by EGFR are still incompletely understood. We studied the role of the transcription factor TAZ to better understand master transcriptional regulators in mediating the EGFR signaling pathway in GBM. The transcriptional coactivator with PDZ- binding motif (TAZ) and its paralog gene, the Yes-associated protein (YAP) are two transcriptional co-activators that play important roles in multiple cancer types and are regulated in a context-dependent manner by various upstream signaling pathways, e.g. the Hippo, WNT and GPCR signaling. In GBM cells, TAZ functions as an oncogene that drives mesenchymal transition and radioresistance. This thesis intends to broaden our understanding of EGFR signaling and TAZ regulation in GBM. In patient-derived GBM cell models, EGF induced TAZ and its known gene targets through EGFR and downstream tyrosine kinases (ERK1/2 and STAT3). In GBM cells with EGFRvIII, an EGF-independent and constitutively active mutation, TAZ showed EGF- independent hyperactivation when compared to EGFRvIII-negative cells. These results revealed a novel EGFR-TAZ signaling axis in GBM cells. The second contribution of this thesis is that we performed next-generation sequencing to establish the first genome-wide map of EGF-induced TAZ target genes.
    [Show full text]
  • Supplementary Table 2
    Ayrault et al. Supplementary Table S2 Term Count % PValue GO:0007155~cell adhesion 55 13.06% 3.97E-15 1417231_at Cldn2 11.31 CLAUDIN 2 1418153_at Lama1 8.17 LAMININ, ALPHA 1 1434601_at Amigo2 7.78 ADHESION MOLECULE WITH IG LIKE DOMAIN 2 1456214_at Pcdh7 7.26 PROTOCADHERIN 7 1437442_at Pcdh7 6.41 PROTOCADHERIN 7 1445256_at Vcl 6.36 VINCULIN 1427009_at Lama5 5.7 LAMININ, ALPHA 5 1453070_at Pcdh17 5.17 PROTOCADHERIN 17 1428571_at Col9a1 4.59 PROCOLLAGEN, TYPE IX, ALPHA 1 1416039_x_at Cyr61 4.56 CYSTEINE RICH PROTEIN 61 1437932_a_at Cldn1 4.53 CLAUDIN 1 1456397_at Cdh4 4.44 CADHERIN 4 1427010_s_at Lama5 4.23 LAMININ, ALPHA 5 1449422_at Cdh4 3.71 CADHERIN 4 1452784_at Itgav 3.01 INTEGRIN ALPHA V 1435603_at Sned1 2.87 SUSHI, NIDOGEN AND EGF-LIKE DOMAINS 1 1438928_x_at Ninj1 2.85 NINJURIN 1 1441498_at Ptprd 2.69 PROTEIN TYROSINE PHOSPHATASE, RECEPTOR TYPE, D 1419632_at Tecta -33.82 TECTORIN ALPHA 1455056_at Lmo7 -14.83 LIM DOMAIN ONLY 7 1450637_a_at Aebp1 -10.7 AE BINDING PROTEIN 1 1421811_at Thbs1 -10.27 THROMBOSPONDIN 1 1434667_at Col8a2 -8.51 PROCOLLAGEN, TYPE VIII, ALPHA 2 1418304_at Pcdh21 -7.26 PROTOCADHERIN 21 1451454_at Pcdh20 -6.63 PROTOCADHERIN 20 1424701_at Pcdh20 -6.54 PROTOCADHERIN 20 1451758_at Lamc3 -6.15 LAMININ GAMMA 3 1422514_at Aebp1 -5.74 AE BINDING PROTEIN 1 1422694_at Ttyh1 -5.62 TWEETY HOMOLOG 1 (DROSOPHILA) 1425594_at Lamc3 -5.43 LAMININ GAMMA 3 1431152_at Hapln3 -5.39 HYALURONAN AND PROTEOGLYCAN LINK PROTEIN 3 1418424_at Tnfaip6 -5.17 TUMOR NECROSIS FACTOR ALPHA INDUCED PROTEIN 6 1451769_s_at Pcdha4;pcdha10;pcdha1;pcdha2;pcdhac1;pcdha6;pcdha8;pcdhac2;pcdha5;pcdha7;pcdha9;pcdha12;pcdha3-4.99
    [Show full text]
  • Systematic Elucidation of Neuron-Astrocyte Interaction in Models of Amyotrophic Lateral Sclerosis Using Multi-Modal Integrated Bioinformatics Workflow
    ARTICLE https://doi.org/10.1038/s41467-020-19177-y OPEN Systematic elucidation of neuron-astrocyte interaction in models of amyotrophic lateral sclerosis using multi-modal integrated bioinformatics workflow Vartika Mishra et al.# 1234567890():,; Cell-to-cell communications are critical determinants of pathophysiological phenotypes, but methodologies for their systematic elucidation are lacking. Herein, we propose an approach for the Systematic Elucidation and Assessment of Regulatory Cell-to-cell Interaction Net- works (SEARCHIN) to identify ligand-mediated interactions between distinct cellular com- partments. To test this approach, we selected a model of amyotrophic lateral sclerosis (ALS), in which astrocytes expressing mutant superoxide dismutase-1 (mutSOD1) kill wild-type motor neurons (MNs) by an unknown mechanism. Our integrative analysis that combines proteomics and regulatory network analysis infers the interaction between astrocyte-released amyloid precursor protein (APP) and death receptor-6 (DR6) on MNs as the top predicted ligand-receptor pair. The inferred deleterious role of APP and DR6 is confirmed in vitro in models of ALS. Moreover, the DR6 knockdown in MNs of transgenic mutSOD1 mice attenuates the ALS-like phenotype. Our results support the usefulness of integrative, systems biology approach to gain insights into complex neurobiological disease processes as in ALS and posit that the proposed methodology is not restricted to this biological context and could be used in a variety of other non-cell-autonomous communication
    [Show full text]
  • Ultrarare Heterozygous Pathogenic Variants of Genes Causing Dominant Forms of Early-Onset Deafness Underlie Severe Presbycusis
    Ultrarare heterozygous pathogenic variants of genes causing dominant forms of early-onset deafness underlie severe presbycusis Sophie Bouchera,b,c,d, Fabienne Wong Jun Taia, Sedigheh Delmaghania, Andrea Lellia, Amrit Singh-Estivaleta,b, Typhaine Duponta, Magali Niasme-Grarea,e, Vincent Michela, Nicolas Wolfff, Amel Bahloula, Yosra Bouyacouba, Didier Bouccarag, Bernard Fraysseh, Olivier Deguineh, Lionel Colleti, Hung Thai-Vana,j,k, Eugen Ionescuj, Jean-Louis Kemenyl, Fabrice Giraudetm,n, Jean-Pierre Lavieilleo, Arnaud Devèzeo, Anne-Laure Roudevitch-Pujolp, Christophe Vincentq, Christian Renardr, Valérie Franco-Vidals, Claire Thibult-Apts, Vincent Darrouzets, Eric Bizaguett, Arnaud Coezt,u,v, Hugues Aschardw, Nicolas Michalskia, Gaëlle M. Lefevrea, Anne Auboisp, Paul Avana,m,n,x,1, Crystel Bonneta,b,1, and Christine Petita,y,1,2 aInstitut de l’Audition, Institut Pasteur, INSERM, 75012 Paris, France; bComplexité du Vivant, Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, 75005 Paris, France; cCentre Hospitalier Universitaire, Service d’Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, 49100 Angers, France; dFaculté de Médecine, Unité de Formation et de Recherche Santé, Université d’Angers, 49100 Angers, France; eService de Biochimie et Biologie Moléculaire, Hôpital d’Enfants Armand-Trousseau, Assistance Publique-Hôpitaux de Paris (AP-HP), 75012 Paris, France; fUnité Récepteurs-Canaux, Institut Pasteur, 75015 Paris, France; gHôpital Beaujon, Hôpitaux Universitaires Paris Nord val-de-Seine, AP-HP, 92110 Clichy,
    [Show full text]
  • Expansion, Folding, and Abnormal Lamination of the Chick Optic Tectum After Intraventricular Injections of FGF2
    Expansion, folding, and abnormal lamination of the chick optic tectum after intraventricular injections of FGF2 Luke D. McGowan1, Roula A. Alaama, Amanda C. Freise, Johnny C. Huang, Christine J. Charvet, and Georg F. Striedter Department of Neurobiology and Behavior, University of California, Irvine, CA 92697 Edited by John C. Avise, University of California, Irvine, Irvine, CA, and approved May 3, 2012 (received for review February 21, 2012) Comparative research has shown that evolutionary increases in human cortical evolution and expansion in terms of delayed and brain region volumes often involve delays in neurogenesis. How- prolonged precursor proliferation (15, 16). ever, little is known about the influence of such changes on The present study began as an attempt to phenocopy natural subsequent development. To get at this question, we injected variation in telencephalon size among birds. Specifically, we rea- FGF2—which delays cell cycle exit in mammalian neocortex—into soned that FGF2 injections into ventricles of embryonic chicks the cerebral ventricles of chicks at embryonic day (ED) 4. This ma- should, by analogy to the work in mammals (14), increase telen- nipulation alters the development of the optic tectum dramatically. cephalon volume, effectively creating chickens with a telencepha- By ED7, the tectum of FGF2-treated birds is abnormally thin and has lon as large as that of parrots and songbirds (7, 9). However, our a reduced postmitotic layer, consistent with a delay in neurogenesis. FGF2 injections did not significantly alter telencephalon de- FGF2 treatment also increases tectal volume and ventricular surface velopment. Instead, they increased the size of the optic tectum, area, disturbs tectal lamination, and creates small discontinuities disrupted tectal lamination, and created tectal gyri and sulci.
    [Show full text]