EMP3, a Myelin-Related Gene Located in the Critical 19Q13.3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PARSANA-DISSERTATION-2020.Pdf
DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks. -
Meta-Analysis of Nasopharyngeal Carcinoma
BMC Genomics BioMed Central Research article Open Access Meta-analysis of nasopharyngeal carcinoma microarray data explores mechanism of EBV-regulated neoplastic transformation Xia Chen†1,2, Shuang Liang†1, WenLing Zheng1,3, ZhiJun Liao1, Tao Shang1 and WenLi Ma*1 Address: 1Institute of Genetic Engineering, Southern Medical University, Guangzhou, PR China, 2Xiangya Pingkuang associated hospital, Pingxiang, Jiangxi, PR China and 3Southern Genomics Research Center, Guangzhou, Guangdong, PR China Email: Xia Chen - [email protected]; Shuang Liang - [email protected]; WenLing Zheng - [email protected]; ZhiJun Liao - [email protected]; Tao Shang - [email protected]; WenLi Ma* - [email protected] * Corresponding author †Equal contributors Published: 7 July 2008 Received: 16 February 2008 Accepted: 7 July 2008 BMC Genomics 2008, 9:322 doi:10.1186/1471-2164-9-322 This article is available from: http://www.biomedcentral.com/1471-2164/9/322 © 2008 Chen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Epstein-Barr virus (EBV) presumably plays an important role in the pathogenesis of nasopharyngeal carcinoma (NPC), but the molecular mechanism of EBV-dependent neoplastic transformation is not well understood. The combination of bioinformatics with evidences from biological experiments paved a new way to gain more insights into the molecular mechanism of cancer. Results: We profiled gene expression using a meta-analysis approach. Two sets of meta-genes were obtained. Meta-A genes were identified by finding those commonly activated/deactivated upon EBV infection/reactivation. -
Studies on the Roles of Translationally Recoded Proteins from Cyclooxygenase-1 and Nucleobindin Genes in Autophagy Jonathan J
Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2015-06-01 Studies on the Roles of Translationally Recoded Proteins from Cyclooxygenase-1 and Nucleobindin Genes in Autophagy Jonathan J. Lee Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Chemistry Commons BYU ScholarsArchive Citation Lee, Jonathan J., "Studies on the Roles of Translationally Recoded Proteins from Cyclooxygenase-1 and Nucleobindin Genes in Autophagy" (2015). All Theses and Dissertations. 6538. https://scholarsarchive.byu.edu/etd/6538 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Studies on the Roles of Translationally Recoded Proteins from Cyclooxygenase-1 and Nucleobindin Genes in Autophagy Jonathan J. Lee A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Daniel L. Simmons, Chair Richard K. Watt Joshua L. Andersen Barry M. Willardson Jeffery Barrow Department of Chemistry and Biochemistry Brigham Young University June 2015 Copyright © 2015 Jonathan J. Lee All Rights Reserved ABSTRACT Studies on the Roles of Translationally Recoded Proteins from Cyclooxygenase-1 and Nucleobindin Genes in Autophagy Jonathan J. Lee Department of Chemistry and Biochemistry, BYU Doctor of Philosophy Advances in next-generation sequencing and ribosomal profiling methods highlight that the proteome is likely orders of magnitude larger than previously thought. This expansion potentially occurs through translational recoding, a process that results in the expression of multiple variations of a protein from a single messenger RNA. -
The Multifunctional Role of EMP3 in the Regulation of Membrane Receptors Associated with IDH-Wild-Type Glioblastoma
International Journal of Molecular Sciences Review The Multifunctional Role of EMP3 in the Regulation of Membrane Receptors Associated with IDH-Wild-Type Glioblastoma Antoni Andreu Martija 1,2,3 and Stefan Pusch 1,2,* 1 Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; [email protected] 2 Department of Neuropathology, Heidelberg University Medical Center, 69120 Heidelberg, Germany 3 Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany * Correspondence: [email protected]; Tel.: +49-6221-42-1473 Abstract: Epithelial membrane protein 3 (EMP3) is a tetraspan membrane protein overexpressed in isocitrate dehydrogenase-wild-type (IDH-wt) glioblastoma (GBM). Several studies reported high EMP3 levels as a poor prognostic factor in GBM patients. Experimental findings based on glioma and non-glioma models have demonstrated the role of EMP3 in the regulation of several membrane proteins known to drive IDH-wt GBM. In this review, we summarize what is currently known about EMP3 biology. We discuss the regulatory effects that EMP3 exerts on a variety of oncogenic receptors and discuss how these mechanisms may relate to IDH-wt GBM. Lastly, we enumerate the open questions towards EMP3 function in IDH-wt GBM. Keywords: EMP3; glioblastoma; membrane receptors Citation: Martija, A.A.; Pusch, S. The Multifunctional Role of EMP3 in the Regulation of Membrane Receptors 1. Introduction Associated with IDH-Wild-Type The diagnosis of glioblastoma (GBM) is applied to highly aggressive primary central Glioblastoma. Int. J. Mol. Sci. 2021, 22, nervous system (CNS) tumors. Histologically, GBM is characterized by diffusely infiltrating 5261. -
Microarray and Pattern Miner Analysis of AXL and VIM Gene Networks in MDA‑MB‑231 Cells
MOLECULAR MEDICINE REPORTS 18: 4147-4155, 2018 Microarray and pattern miner analysis of AXL and VIM gene networks in MDA‑MB‑231 cells SUDHAKAR NATARAJAN1, VENIL N SUMANTRAN2, MOHAN RANGANATHAN1 and SURESH MADHESWARAN1 1Department of Biotechnology, Faculty of Engineering and Technology; 2Dr. A.P.J. Abdul Kalam Centre for Excellence in Innovation and Entrepreneurship, Dr. M.G.R. Educational and Research Institute, Tamil Nadu, Chennai 600095, India Received March 20, 2018; Accepted August 2, 2018 DOI: 10.3892/mmr.2018.9404 Abstract. MDA-MB-231 cells represent malignant triple-nega- migration, metastasis and chemoresistance, whereas the VIM tive breast cancer, which overexpress epidermal growth factor gene network regulates novel tumorigenic processes, such as receptor (EGFR) and two genes (AXL and VIM) associated lipogenesis, senescence and autophagy. Notably, these two with poor prognosis. The present study aimed to identify novel networks contain 12 genes not reported for TNBC. therapeutic targets and elucidate the functional networks for the AXL and VIM genes in MDA-MB-231 cells. We identi- Introduction fied 71 genes upregulated in MDA-MB-231 vs. MCF7 cells using BRB-Array tool to re-analyse microarray data from six Triple negative breast cancers (TNBC) lack expression of three GEO datasets. Gene ontology and STRING analysis showed important receptors (ER, PR, and HER2). These cancers account that 43/71 genes upregulated in MDA-MB-231 compared with for 10-15% of breast cancers, and are characterized by overex- MCF7 cells, regulate cell survival and migration. Another pression of epidermal growth factor receptor (EGFR), high 19 novel genes regulate migration, metastases, senescence, proliferative rate, and mutations in the p53 and BRCA1 tumour autophagy and chemoresistance. -
Research2007herschkowitzetvolume Al
Open Access Research2007HerschkowitzetVolume al. 8, Issue 5, Article R76 Identification of conserved gene expression features between comment murine mammary carcinoma models and human breast tumors Jason I Herschkowitz¤*†, Karl Simin¤‡, Victor J Weigman§, Igor Mikaelian¶, Jerry Usary*¥, Zhiyuan Hu*¥, Karen E Rasmussen*¥, Laundette P Jones#, Shahin Assefnia#, Subhashini Chandrasekharan¥, Michael G Backlund†, Yuzhi Yin#, Andrey I Khramtsov**, Roy Bastein††, John Quackenbush††, Robert I Glazer#, Powel H Brown‡‡, Jeffrey E Green§§, Levy Kopelovich, reviews Priscilla A Furth#, Juan P Palazzo, Olufunmilayo I Olopade, Philip S Bernard††, Gary A Churchill¶, Terry Van Dyke*¥ and Charles M Perou*¥ Addresses: *Lineberger Comprehensive Cancer Center. †Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. ‡Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA. reports §Department of Biology and Program in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. ¶The Jackson Laboratory, Bar Harbor, ME 04609, USA. ¥Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. #Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA. **Department of Pathology, University of Chicago, Chicago, IL 60637, USA. ††Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA. ‡‡Baylor College of Medicine, Houston, TX 77030, USA. §§Transgenic Oncogenesis Group, Laboratory of Cancer Biology and Genetics. Chemoprevention Agent Development Research Group, National Cancer Institute, Bethesda, MD 20892, USA. Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107, USA. Section of Hematology/Oncology, Department of Medicine, Committees on Genetics and Cancer Biology, University of Chicago, Chicago, IL 60637, USA. -
Original Article Nucleobindin 2 (NUCB2) in Renal Cell Carcinoma: a Novel Factor Associated with Tumor Development
Int J Clin Exp Med 2019;12(7):8686-8693 www.ijcem.com /ISSN:1940-5901/IJCEM0090807 Original Article Nucleobindin 2 (NUCB2) in renal cell carcinoma: a novel factor associated with tumor development Ziwei Wei*, Huan Xu*, Qiling Shi*, Long Li, Juan Zhou, Guopeng Yu, Bin Xu, Yushan Liu, Zhong Wang, Wenzhi Li Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China. *Equal contributors. Received January 3, 2019; Accepted May 8, 2019; Epub July 15, 2019; Published July 30, 2019 Abstract: This study aimed to examine the expression of NUCB2 in renal cell carcinoma (RCC) tissues and detect its effect on the apoptosis and proliferation of RCC cells both in vivo and vitro. NUCB2 was detected with higher expres- sion in the RCC tissues compared with the adjacent noncancerous tissues by immunohistochemical analysis (P < 0.05). Moreover, the protein levels of NUCB2 was significantly associated with perinephric tissues invasion, cancer- ous thrombus and distant metastasis. NUCB2 knock-down inhibited cell proliferation by arresting the cell cycle at S phase and increased the cell apoptosis detected by CCK-8 and flow cytometry analysis. Finally, the tumor-bearing mice models were constructed through injection of 786-O cells transfected with lentivirus carrying shRNAs targeting NUCB2 or ACTB cDNA plasmids. As expected, the mice in the NUCB2-shRNA group demonstrated a reduced tumor volume and growth rate compared with that in negative control group. This study observed the up-regulated expres- sion of NUCB2 in the ccRCC tissue and 786-O cell line. -
A Tool to Identify Coordinately Expressed Genes
The CO-Regulation Database (CORD): A Tool to Identify Coordinately Expressed Genes John P. Fahrenbach1*, Jorge Andrade2, Elizabeth M. McNally1,3 1 Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America, 2 Center for Research Informatics, The University of Chicago, Chicago, Illinois, United States of America, 3 Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America Abstract Background: Meta-analysis of gene expression array databases has the potential to reveal information about gene function. The identification of gene-gene interactions may be inferred from gene expression information but such meta-analysis is often limited to a single microarray platform. To address this limitation, we developed a gene-centered approach to analyze differential expression across thousands of gene expression experiments and created the CO-Regulation Database (CORD) to determine which genes are correlated with a queried gene. Results: Using the GEO and ArrayExpress database, we analyzed over 120,000 group by group experiments from gene microarrays to determine the correlating genes for over 30,000 different genes or hypothesized genes. CORD output data is presented for sample queries with focus on genes with well-known interaction networks including p16 (CDKN2A), vimentin (VIM), MyoD (MYOD1). CDKN2A, VIM, and MYOD1 all displayed gene correlations consistent with known interacting genes. Conclusions: We developed a facile, web-enabled program to determine gene-gene correlations across different gene expression microarray platforms. Using well-characterized genes, we illustrate how CORD’s identification of co-expressed genes contributes to a better understanding a gene’s potential function. The website is found at http://cord-db.org. -
Epithelial Membrane Protein 3 Regulates TGF-Β Signaling Activation in CD44-High Glioblastoma
www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 9), pp: 14343-14358 Research Paper Epithelial membrane protein 3 regulates TGF-β signaling activation in CD44-high glioblastoma Fu Jun1,*, Jidong Hong1,*, Qin Liu2, Yong Guo2, Yiwei Liao2, Jianghai Huang3, Sailan Wen3 and Liangfang Shen1 1 Department of Oncology, Xiangya Hospital, Central South University, Changsha, P. R China 2 Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, P. R China 3 Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, P. R China * These authors have contributed equally to this work Correspondence to: Liangfang Shen, email: [email protected] Keywords: gliblastoma; EMP3; TGF-β; TGFBR2; tumorigenesis Received: May 05, 2016 Accepted: July 19, 2016 Published: August 05, 2016 ABSTRACT Although epithelial membrane protein 3 (EMP3) has been implicated as a candidate tumor suppressor gene for low grade glioma, its biological function in glioblastoma multiforme (GBM) still remains poorly understood. Herein, we showed that EMP3 was highly expressed in CD44-high primary GBMs. Depletion of EMP3 expression suppressed cell proliferation, impaired in vitro tumorigenic potential and induced apoptosis in CD44-high GBM cell lines. We also identified TGF-β/Smad2/3 signaling pathway as a potential target of EMP3. EMP3 interacts with TGF-β receptor type 2 (TGFBR2) upon TGF-β stimulation in GBM cells. Consequently, the EMP3- TGFBR2 interaction regulates TGF-β/Smad2/3 signaling activation and positively impacts on TGF-β-stimulated gene expression and cell proliferation in vitro and in vivo. Highly correlated protein expression of EMP3 and TGF-β/Smad2/3 signaling pathway components was also observed in GBM specimens, confirming the clinical relevancy of activated EMP3/TGF-β/Smad2/3 signaling in GBM. -
Gene Section Review
Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL INIST-CNRS Gene Section Review EMP3 (epithelial membrane protein 3) Marta Mellai, Davide Schiffer Centro Ricerche di Neuro-Bio-Oncologia / Fondazione Policlinico di Monza / Consorzio di Neuroscienze, Universita di Pavia, Via Pietro Micca 29, 13100, Vercelli (Italy) Published in Atlas Database: November 2014 Online updated version : http://AtlasGeneticsOncology.org/Genes/EMP3ID44238ch19q13.html Printable original version : http://documents.irevues.inist.fr/bitstream/handle/2042/62497/11-2014-EMP3ID44238ch19q13.pdf DOI: 10.4267/2042/62497 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2015 Atlas of Genetics and Cytogenetics in Oncology and Haematology epigenetic silencing may exist to explain EMP3 Abstract down-regulation. Epithelial membrane protein 3 (EMP3) has recently Moreover, EMP3 may be involved in the prostate been proposed as a candidate tumor suppressor gene cancer suscpetibility. (TSG) for some kinds of solid tumors. EMP3 down- Keywords regulation has been explained by its epigenetic Epithelial membrane protein 3 (EMP3), tumor silencing through aberrant hypermethylation of the suppressor gene, solid tumors, promoter promoter region. hypermethylation, prognosis. EMP3 repression in cancer seems to be an organ- specific phenomenon, common in neuroblastoma Identity and gliomas, relatively common in breast cancer, and rare in esophageal squamous cell carcinoma Other names: YMP (ESCC). Among cancer-derived cell lines, it prevails HGNC (Hugo): EMP3 in neuroblastoma, breast cancer and ESCC whereas Location: 19q13.33 it is rare in glioma, non-small cell lung carcnoma (NSCLC), gastric and colon cancer-derived cell Local order lines. EMP3 is located centromeric to TMEM143 EMP3 expression level is associated with clinical (transmembrane protein 143) and telomeric to prognosis in neuoblastoma, ESCC, NSCLC and CCDC114 (coiled-coil domain-containing protein upper urinary tract urothelial carcinoma. -
Genome-Wide Analysis of Organ-Preferential Metastasis of Human Small Cell Lung Cancer in Mice
Vol. 1, 485–499, May 2003 Molecular Cancer Research 485 Genome-Wide Analysis of Organ-Preferential Metastasis of Human Small Cell Lung Cancer in Mice Soji Kakiuchi,1 Yataro Daigo,1 Tatsuhiko Tsunoda,2 Seiji Yano,3 Saburo Sone,3 and Yusuke Nakamura1 1Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; 2Laboratory for Medical Informatics, SNP Research Center, Riken (Institute of Physical and Chemical Research), Tokyo, Japan; and 3Department of Internal Medicine and Molecular Therapeutics, The University of Tokushima School of Medicine, Tokushima, Japan Abstract Molecular interactions between cancer cells and their Although a number of molecules have been implicated in microenvironment(s) play important roles throughout the the process of cancer metastasis, the organ-selective multiple steps of metastasis (5). Blood flow and other nature of cancer cells is still poorly understood. To environmental factors influence the dissemination of cancer investigate this issue, we established a metastasis model cells to specific organs (6). However, the organ specificity of in mice with multiple organ dissemination by i.v. injection metastasis (i.e., some organs preferentially permit migration, of human small cell lung cancer (SBC-5) cells. We invasion, and growth of specific cancer cells, but others do not) analyzed gene-expression profiles of 25 metastatic is a crucial determinant of metastatic outcome, and proteins lesions from four organs (lung, liver, kidney, and bone) involved in the metastatic process are considered to be using a cDNA microarray representing 23,040 genes and promising therapeutic targets. extracted 435 genes that seemed to reflect the organ More than a century ago, Stephen Paget suggested that the specificity of the metastatic cells and the cross-talk distribution of metastases was not determined by chance, but between cancer cells and microenvironment. -
LOH 19Q Indicates Shorter Disease Progression-Free Interval in Low-Grade Oligodendrogliomas with EMP3 Methylation
ONCOLOGY REPORTS 28: 2271-2277, 2012 LOH 19q indicates shorter disease progression-free interval in low-grade oligodendrogliomas with EMP3 methylation ALICE PASINI1-3*, PAOLO IORIO4,5*, EMANUELA BIANCHI4,6, SERENELLA CERASOLI4,5,7, ANNA M. CREMONINI4,8, MARINA FAEDI4,6, CARLO GUARNIERI3, GRAZIANO GUIDUCCI4,8, LUCA RICCIONI4,7, CHIARA MOLINARI9, CLAUDIA RENGUCCI9, DANIELE CALISTRI9 and EMANUELE GIORDANO1-3 1Laboratory of Cellular and Molecular Engineering ‘S. Cavalcanti’, 2School of Engineering, Biomedical Engineering, University of Bologna, Cesena; 3Department of Biochemistry ‘G. Moruzzi’, University of Bologna, Bologna; 4Gruppo Neuroncologico Romagnolo (GNR), Cesena; 5Clinical Pathology Unit, 6Oncology Unit, 7Pathology Unit, and 8Neurosurgery Unit, ‘M. Bufalini’ Hospital, Cesena; 9IRCCS Romagnolo Scientific Institute for the Study and Treatment of Cancer (IRST), Meldola, Italy Received June 15, 2012; Accepted August 3, 2012 DOI: 10.3892/or.2012.2047 Abstract. We previously described a cohort of grade II oligo- OII patients showed EMP3 hypermethylation. Concomitant dendroglioma (OII) patients, in whom the loss of heterozygosity LOH 19q and EMP3 gene promoter methylation was observed (LOH) 19q was present in the subgroup at a higher risk of in the OII patients at a higher risk of relapse. Our results suggest relapse. In this study, we evaluated the CpG methylation of that a total (cytogenetic and epigenetic) functional loss of both the putative tumor suppressor epithelial membrane protein 3 EMP3 alleles accounts for the reduced disease progression-free (EMP3, 19q13.3) gene promoter in the same OII cohort, to interval in OII patients. Although the small sample size limits investigate whether a correlation could be found between the strength of this study, our results support testing this hypoth- EMP3 cytogenetic and epigenetic loss and higher risk of esis in larger cohorts of patients, considering the methylation of relapse.