Association of 19Q, 8Q24 Regions and Mismatch Repair (MMR) Genes with Prostate Cancer in Caucasians

Total Page:16

File Type:pdf, Size:1020Kb

Association of 19Q, 8Q24 Regions and Mismatch Repair (MMR) Genes with Prostate Cancer in Caucasians Association of 19q, 8q24 regions and Mismatch Repair (MMR) Genes with Prostate Cancer in Caucasians A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in the Department of Environmental Health of the College of Medicine June, 2008 by Prodipto Pal M.B.B.S., University of Calcutta, Calcutta, India, 2000 Committee: Dr. Ranjan Deka, Ph.D. (Chair) Dr.Ranajit Chakraborty, Ph.D. Dr. Charles Ralph Buncher D.Sc. Dr. Daniel Woo, M.S., M.D. Dr. Divakar Choubey, Ph.D. ABSTRACT Prostate cancer (PCa) is the most commonly diagnosed visceral malignancy with over one-third of all incident cancers and the second leading cause of cancer deaths in men in the United States. Age, ethnicity and family history are among the classical epidemiological risk factors. Both environmental and genetic factors contribute to the etiopathogenesis of PCa. The region on 19q11-13, identified through linkage and association studies, was previously shown to harbor genes for PCa susceptibility as well as for biologic aggressiveness. Recently, admixture mapping and a number of independently performed genome-wide association studies (GWAS) further identified strong association signals on chromosome 8q24. The only biologically plausible candidate gene for cancers on 8q24 is the myc oncogene, located ~500 kb downstream to the identified region. The myc protein is a key regulator of cell cycle, growth and differentiation, apoptosis, genomic instability and angiogenesis. At the cellular level, myc synergistically interacts with mutL homolog 1 (MLH1), one of the key genes in mismatch repair (MMR) of DNA. Mutations in MMR pathway is implicated in the development of familial hereditary non-polyposis coli (HNPCC). Moreover, recently performed GWAS studies identified risk alleles for colorectal cancers on the same 8q24 region. It is possible that both prostate and colorectal adenocarcinomas share a common genetic origin, through interactions with myc and the MMR pathway. We have performed a comprehensive association analysis with PCa susceptibility primarily using tagging variants on 19q, 8q24 and the MMR pathway among men of European descent. Approximately two hundred single nulcleotide polymorphisms (SNPs) were analyzed in a sample of 590 histologically verified PCa cases and 567 ethnically matched controls. iii Multiple variants on chromosomes 19q and 8q24 show significant association with PCa susceptibility and/or aggressiveness. We further observe significant genetic contribution with tagging variants on MLH1 and mut S homolog 3 (MSH3), in the MMR repair pathway. Analyses reveal no population substructuring in our samples that could have confounded association results. These findings suggest a plausible biologic role for genetic variants on 19q, 8q24 and MMR pathway genes in the etiology of PCa among men of European ancestry. iv This page is intentionally left black v Acknowledgements The following work towards this dissertation is the culmination of several years of work, during which I received help, support and guidance from many persons. It is my pleasure to express my most sincere gratitude to all who have helped me achieve this goal. I am grateful to Dr. Ranjan Deka for his persistent and whole-hearted support at the time of need. Dr Deka has been the truest of advisors, with insightful scientific knowledge, passion for research and enthusiastic approach. I thank Dr Deka for helping me in my transition from a clinician to a researcher. I am thankful to Dr. Ranajit Chakraborty, Dr. Charles Ralph Buncher, Dr Daniel Woo and Dr. Divakar Choubey for kindly accepting to serve in my dissertation committee. Their valuable suggestions during committee meetings, and also while preparing manuscripts, have helped me gain new insights towards research. I am also thankful to Dr William Catalona at Northwestern University, Chicago who have graciously provided the samples for this study. I would like to express my thanks to all my co-workers at the Center for Genome Information, Complex Disease Genomics Lab, without whose help this work would not have been accomplished. My heart-felt thanks are due to my colleagues Dr Gyungun Sun and Dr Subbarao Indugula, who taught me everything that I know about laboratory work. I am especially grateful to two of my colleagues and friend, Dr Saurav Guha, post- doctoral fellow at Dr Chakraborty’s lab and my fellow graduate student Huifeng Xi, both of whom have helped me tremendously in the data analysis for this project. vi I wish to thank the faculty, staff and students of the Department of Environmental Health for being with me during one of the most important phases of my life and career. Lastly, and by no means the least, I wish to dedicate this dissertation to the dearest thing in my life, my family, my mother and father and my sister. They have guided me through the most difficult of times. I would not have been the person who I am today without them, and I owe them everything. vii Role in the study This research was developed as a part of a larger ongoing research at the Complex Disease Genetic lab at Center for Genome Inforamation, Department of Environmental Health, University of Cincinnati, of which Dr. Ranjan Deka is the principal investigator. The details of the research were planned by Prodipto Pal under the guidance of Dr. Ranjan Deka. Subjects for the study were recruited from out-patient clinics of the Washington University, St Louis by Dr. William Catalona’s group. Study design, hypothesis and specific aim development, database creation and maintenance, SNP-selection, Genotyping and statistical analysis were performed by primarily Prodipto Pal and in part by Huifeng Xi. Prodipto Pal has written this dissertation under the guidance of Dr. Ranjan Deka. Revisions and suggestions from Dr. Ralph Buncher, Dr. Ranajit Chakraborty, Dr. Daniel Woo and Dr. Divakar Choubey have been incorporated in this work. viii TABLE OF CONTENTS ABSTRACT .......................................................................................................... iii ACKNOWLEDGEMENTS ....................................................................................vi ROLE IN THE STUDY........................................................................................ viii TABLE OF CONTENTS .......................................................................................ix ABBREVIATIONS .............................................................................................. xiii CHAPTER 1 Introduction ....................................................................................1 1.1 HYPOTHESIS AND SPECIFIC AIMS .............................................................1 1.2 BACKGROUND AND SIGNIFICANCE............................................................3 1.3 MATERIALS AND METHODS.........................................................................8 1.3.1 Subjects – cases and controls..........................................................8 1.3.2 SNP selection strategy ...................................................................10 1.3.3 DNA analysis and Genotyping........................................................12 1.3.4 Statistical analysis ..........................................................................13 1.4 REFERENCES..............................................................................................18 CHAPTER 2 Association of Genetic Variants on 19q11-13 with Prostate Cancer in Men of European Origin....................................................................................31 2.1 ASSOCIATION WITH HPN ...........................................................................31 2.1.1 INTRODUCTION ...................................................................................31 2.1.2 MATERIALS AND METHODS ...............................................................32 2.1.2a Subjects........................................................................................32 ix 2.1.2b SNP selection and DNA analysis .................................................33 2.1.2c Statistical analysis ........................................................................34 2.1.3 RESULTS ..............................................................................................35 2.1.4 DISCUSSION.........................................................................................36 2.1.5 TABLES AND FIGURES........................................................................40 2.1.6 REFERENCES ......................................................................................43 2.2 ASSOCIATION WITH KLK3 and KLK2 .........................................................48 2.2.1 INTRODUCTION ...................................................................................48 2.2.2 METHODS .............................................................................................49 2.2.2a Subjects........................................................................................49 2.2.2b SNP selection and DNA analysis .................................................50 2.2.2c Statistical analysis ........................................................................52 2.2.3 RESULTS ..............................................................................................53 2.2.4 DISCUSSION.........................................................................................55 2.2.5 TABLES AND FIGURES........................................................................61
Recommended publications
  • PARSANA-DISSERTATION-2020.Pdf
    DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks.
    [Show full text]
  • Haplotype and Linkage Disequilibrium Architecture for Human Cancer-Associated Genes
    Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Haplotype and Linkage Disequilibrium Architecture for Human Cancer-Associated Genes Penelope E. Bonnen,1 Peggy J. Wang,1 Marek Kimmel,2 Ranajit Chakraborty,3 and David L. Nelson1,4 1Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA; 2Department of Statistics, Rice University, Houston, Texas 77030, USA; 3Center for Genome Information, Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267, USA To facilitate association-based linkage studies we have studied the linkage disequilibrium (LD) and haplotype architecture around five genes of interest for cancer risk: ATM, BRCA1, BRCA2, RAD51, and TP53. Single nucleotide polymorphisms (SNPs) were identified and used to construct haplotypes that span 93–200 kb per locus with an average SNP density of 12 kb. These markers were genotyped in four ethnically defined populations that contained 48 each of African Americans, Asian Americans, Hispanic Americans, and European Americans. Haplotypes were inferred using an expectation maximization (EM) algorithm, and the data were analyzed using DЈ, R2, Fisher’s exact P-values, and the four-gamete test for recombination. LD levels varied widely between loci from continuously high LD across 200 kb to a virtual absence of LD across a similar length of genome. LD structure also varied at each gene and between populations studied. This variation indicates that the success of linkage-based studies will require a precise description of LD at each locus and in each population to be studied. One striking consistency between genes was that at each locus a modest number of haplotypes present in each population accounted for a high fraction of the total number of chromosomes.
    [Show full text]
  • Meta-Analysis of Nasopharyngeal Carcinoma
    BMC Genomics BioMed Central Research article Open Access Meta-analysis of nasopharyngeal carcinoma microarray data explores mechanism of EBV-regulated neoplastic transformation Xia Chen†1,2, Shuang Liang†1, WenLing Zheng1,3, ZhiJun Liao1, Tao Shang1 and WenLi Ma*1 Address: 1Institute of Genetic Engineering, Southern Medical University, Guangzhou, PR China, 2Xiangya Pingkuang associated hospital, Pingxiang, Jiangxi, PR China and 3Southern Genomics Research Center, Guangzhou, Guangdong, PR China Email: Xia Chen - [email protected]; Shuang Liang - [email protected]; WenLing Zheng - [email protected]; ZhiJun Liao - [email protected]; Tao Shang - [email protected]; WenLi Ma* - [email protected] * Corresponding author †Equal contributors Published: 7 July 2008 Received: 16 February 2008 Accepted: 7 July 2008 BMC Genomics 2008, 9:322 doi:10.1186/1471-2164-9-322 This article is available from: http://www.biomedcentral.com/1471-2164/9/322 © 2008 Chen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Epstein-Barr virus (EBV) presumably plays an important role in the pathogenesis of nasopharyngeal carcinoma (NPC), but the molecular mechanism of EBV-dependent neoplastic transformation is not well understood. The combination of bioinformatics with evidences from biological experiments paved a new way to gain more insights into the molecular mechanism of cancer. Results: We profiled gene expression using a meta-analysis approach. Two sets of meta-genes were obtained. Meta-A genes were identified by finding those commonly activated/deactivated upon EBV infection/reactivation.
    [Show full text]
  • Annual Scientific Report 2013 on the Cover Structure 3Fof in the Protein Data Bank, Determined by Laponogov, I
    EMBL-European Bioinformatics Institute Annual Scientific Report 2013 On the cover Structure 3fof in the Protein Data Bank, determined by Laponogov, I. et al. (2009) Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nature Structural & Molecular Biology 16, 667-669. © 2014 European Molecular Biology Laboratory This publication was produced by the External Relations team at the European Bioinformatics Institute (EMBL-EBI) A digital version of the brochure can be found at www.ebi.ac.uk/about/brochures For more information about EMBL-EBI please contact: [email protected] Contents Introduction & overview 3 Services 8 Genes, genomes and variation 8 Molecular atlas 12 Proteins and protein families 14 Molecular and cellular structures 18 Chemical biology 20 Molecular systems 22 Cross-domain tools and resources 24 Research 26 Support 32 ELIXIR 36 Facts and figures 38 Funding & resource allocation 38 Growth of core resources 40 Collaborations 42 Our staff in 2013 44 Scientific advisory committees 46 Major database collaborations 50 Publications 52 Organisation of EMBL-EBI leadership 61 2013 EMBL-EBI Annual Scientific Report 1 Foreword Welcome to EMBL-EBI’s 2013 Annual Scientific Report. Here we look back on our major achievements during the year, reflecting on the delivery of our world-class services, research, training, industry collaboration and European coordination of life-science data. The past year has been one full of exciting changes, both scientifically and organisationally. We unveiled a new website that helps users explore our resources more seamlessly, saw the publication of ground-breaking work in data storage and synthetic biology, joined the global alliance for global health, built important new relationships with our partners in industry and celebrated the launch of ELIXIR.
    [Show full text]
  • Roles of Nickel Binding Proteins in Helicobacter Species
    ROLES OF NICKEL BINDING PROTEINS IN HELICOBACTER SPECIES by SUSMITHA SESHADRI (Under the Direction of Robert J. Maier) ABSTRACT Proteins Hpn and Hpn-like of the gastric pathogen H. pylori were hypothesized to bind nickel since histidine residues make up 45% and 27% of their amino acid content, respectively. Characterization of an hpn, an hpn-like and an hpn, hpn-like double mutant revealed novel functions for these gene products in nickel detoxification and storage. Compared to the wild-type parent, mutant strains were more sensitive to elevated concentrations of nickel, cobalt, and cadmium, indicating roles for the two proteins in surviving metal toxicity. Under low nickel conditions, the mutants exhibited higher urease activities and had increased amount of Ni- associated with urease; but similar urease apo-protein levels to wild-type. The parent achieved mutant level urease activities under nickel supplementation and lower pH conditions while growth with a nickel chelator decreased mutant but not wild-type urease activities. These results strongly imply a role for these proteins as nickel reservoirs/storage proteins. H. hepaticus colonizes a non-acidic niche, hence nickel metabolism may be different than in H. pylori. A nikR mutant exhibited higher urease and hydrogenase activities under all supplemental nickel conditions, but there was no change in urease expression, and NikR did not bind pUreA or pHydA. Higher total nickel levels (detected by ICP-MS) in the nikR mutant implied possible higher nickel transporter (NikA) levels, which was later verified by qRT-PCR and binding of NikR to pNikA. Periplasmic nitrate reductase (NapA) was upregulated in the NikR strain.
    [Show full text]
  • A Highly Accurate Model for Screening Prostate Cancer Using Propensity Index Panel of Ten Genes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436371; this version posted March 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A highly accurate model for screening prostate cancer using propensity index panel of ten genes Shipra Jain#, Kawal Preet Kaur Malhotra#, Sumeet Patiyal#, Gajendra P. S. Raghava* Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi-110020, India. # - Contributed Equally * - Corresponding Author Mailing Address of Authors Shipra Jain: [email protected] ORCID ID: https://orcid.org/0000-0002-7045-5188 Kawal Preet Kaur Malhotra: [email protected] Sumeet Patiyal: [email protected] ORCID ID: https://orcid.org/0000-0003-1358-292X GPS Raghava: [email protected] ORCID ID: https://orcid.org/0000-0002-8902-2876 Corresponding Author Gajendra Pal Singh Raghava Head and Professor, Department of Computational Biology Office: A-302 R&D Block, Indraprastha Institute of Information Technology, Delhi Okhla Industrial Estate, Phase III, (Near Govind Puri Metro Station) New Delhi, India - 110020 Phone: 011-26907444 Email: [email protected] Website: http://webs.iiitd.edu.in/raghava/ Highlights ● Application of Machine learning techniques to identify Biomarkers for PRAD cancer. ● Highly accurate models developed for classifying prostate cancer vs. normal sample. ● Introducing Propensity index concept for enhancing model performance. ● Top 10 genes identified using feature selection techniques. bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436371; this version posted March 22, 2021.
    [Show full text]
  • The Human Genome Project
    TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 Contents FOREWORD . 2 THE GENOME PROJECT—WHY THE DOE? . 4 A bold but logical step INTRODUCING THE HUMAN GENOME . 6 The recipe for life Some definitions . 6 A plan of action . 8 EXPLORING THE GENOMIC LANDSCAPE . 10 Mapping the terrain Two giant steps: Chromosomes 16 and 19 . 12 Getting down to details: Sequencing the genome . 16 Shotguns and transposons . 20 How good is good enough? . 26 Sidebar: Tools of the Trade . 17 Sidebar: The Mighty Mouse . 24 BEYOND BIOLOGY . 27 Instrumentation and informatics Smaller is better—And other developments . 27 Dealing with the data . 30 ETHICAL, LEGAL, AND SOCIAL IMPLICATIONS . 32 An essential dimension of genome research Foreword T THE END OF THE ROAD in Little has been rapid, and it is now generally agreed Cottonwood Canyon, near Salt that this international project will produce Lake City, Alta is a place of the complete sequence of the human genome near-mythic renown among by the year 2005. A skiers. In time it may well And what is more important, the value assume similar status among molecular of the project also appears beyond doubt. geneticists. In December 1984, a conference Genome research is revolutionizing biology there, co-sponsored by the U.S. Department and biotechnology, and providing a vital of Energy, pondered a single question: Does thrust to the increasingly broad scope of the modern DNA research offer a way of detect- biological sciences.
    [Show full text]
  • The Multifunctional Role of EMP3 in the Regulation of Membrane Receptors Associated with IDH-Wild-Type Glioblastoma
    International Journal of Molecular Sciences Review The Multifunctional Role of EMP3 in the Regulation of Membrane Receptors Associated with IDH-Wild-Type Glioblastoma Antoni Andreu Martija 1,2,3 and Stefan Pusch 1,2,* 1 Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; [email protected] 2 Department of Neuropathology, Heidelberg University Medical Center, 69120 Heidelberg, Germany 3 Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany * Correspondence: [email protected]; Tel.: +49-6221-42-1473 Abstract: Epithelial membrane protein 3 (EMP3) is a tetraspan membrane protein overexpressed in isocitrate dehydrogenase-wild-type (IDH-wt) glioblastoma (GBM). Several studies reported high EMP3 levels as a poor prognostic factor in GBM patients. Experimental findings based on glioma and non-glioma models have demonstrated the role of EMP3 in the regulation of several membrane proteins known to drive IDH-wt GBM. In this review, we summarize what is currently known about EMP3 biology. We discuss the regulatory effects that EMP3 exerts on a variety of oncogenic receptors and discuss how these mechanisms may relate to IDH-wt GBM. Lastly, we enumerate the open questions towards EMP3 function in IDH-wt GBM. Keywords: EMP3; glioblastoma; membrane receptors Citation: Martija, A.A.; Pusch, S. The Multifunctional Role of EMP3 in the Regulation of Membrane Receptors 1. Introduction Associated with IDH-Wild-Type The diagnosis of glioblastoma (GBM) is applied to highly aggressive primary central Glioblastoma. Int. J. Mol. Sci. 2021, 22, nervous system (CNS) tumors. Histologically, GBM is characterized by diffusely infiltrating 5261.
    [Show full text]
  • Texas Genetics Society
    Texas Genetics Society Twenty-seventh Annual Meeting Schedule of Events and Presentations Thursday evening, March 23, 2000 5:00 - 8:00 Registration: Gallery 7:30 - 8:30 Keynote Address: Dr. William R. Brinkley, Dean, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston. Graduate Education in the Post-Genome Era 8:30 - 10:30 Reception: Houston I Room Friday, March 24, 2000 8:00 - 8:15 Welcome and Announcements 8:15 - 9:15 Contributed Paper Session I: Stephen P. Daiger, Chair 8:15 [1] Recombination (gene conversion) mediated expansions of TRS occur independently of TRS orientation. J.P. Jakupciak and R.D. Wells. Institute of Biosciences and Technology; Center for Genome Research; Texas A&M University Health Science Center System; Texas Medical Center, Houston, Texas. [G] 8:30 [2] Does p53 status predict genome-wide instability throughout development? A. Maleki,1 L.C. Strong,2 B.W. Brown,3 and M.J. Siciliano.1 Departments of 1Molecular Genetics, 2Experimental Pediatrics, and 3Biomathematics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas. [G] 8:45 [3] Mutations in a novel photoreceptor-pineal gene on 17p cause Leber congenital amaurosis (LCA4). Melanie M. Sohocki,1 Sara J. Bowne,1 Lori S. Sullivan,1,2 Seth Blackshaw,3 Constance L. Cepko,3 Annette M. Payne,4 Shomi S. Bhattacharya,4 Shagufta Khaliq,5 S. Qasim Mehdi,5 David G. Birch,6 Wilbur R. Harrison,7 Frederick F.B. Elder,7 John R. Heckenlively,8 and Stephen P. Daiger.1,2 1Human Genetics Center, School of Public Health, and 2Department of Ophthalmology and Visual Science, the University of Texas-Houston Science Center, Houston, Texas; 3Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts; 4Department of Molecular Genetics, Institute of Ophthalmology, University College, London, United Kingdom; 5Dr.
    [Show full text]
  • Complex Rearrangement of Chromosomes 19, 21, and 22 In
    Cancer Genetics and Cytogenetics 181 (2008) 81e92 Complex rearrangement of chromosomes 19, 21, and 22 in Ewing sarcoma involving a novel reciprocal inversioneinsertion mechanism of EWSeERG fusion gene formation: a case analysis and literature review Georges Mairea, Christopher W. Brownb,c,d, Jane Bayania, Carlos Pereirae, Denis H. Gravelf, John C. Bellc, Maria Zielenskae,g,h, Jeremy A. Squirea,h* aDivision of Applied Molecular Oncology, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, 610 University Avenue, Room 9-717, Toronto, Ontario M5G 2M9, Canada bOttawa Health Research Institute, Centre for Cancer Therapeutics, Ottawa, Ontario, Canada cDepartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada dDepartment of Orthopaedic Surgery, Ottawa Hospital and University of Ottawa, Ottawa, Ontario, Canada eDepartment of Pediatric Laboratory Medicine and Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada fDepartment of Pathology and Laboratory Medicine, Ottawa Hospital and University of Ottawa, Ottawa, Ontario, Canada gGenetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada hDepartment of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario, Canada Received 9 August 2007; received in revised form 5 November 2007; accepted 7 November 2007 Abstract EWSeERG Ewing sarcoma (ES) gene fusions often result from complex chromosomal rearrange- ments. We report an unusually aggressive case of ES with an EWSeERG fusion gene that appeared to be a result of a simple balanced and reciprocal translocation, t(19;22)(q13.2;q12.2). Subsequent molecular investigation of the primary tumor, the metastasis, and a cell line generated from this ES permitted reconstruction of each genomic step in the evolution of this complex EWSeERG fusion.
    [Show full text]
  • Microarray and Pattern Miner Analysis of AXL and VIM Gene Networks in MDA‑MB‑231 Cells
    MOLECULAR MEDICINE REPORTS 18: 4147-4155, 2018 Microarray and pattern miner analysis of AXL and VIM gene networks in MDA‑MB‑231 cells SUDHAKAR NATARAJAN1, VENIL N SUMANTRAN2, MOHAN RANGANATHAN1 and SURESH MADHESWARAN1 1Department of Biotechnology, Faculty of Engineering and Technology; 2Dr. A.P.J. Abdul Kalam Centre for Excellence in Innovation and Entrepreneurship, Dr. M.G.R. Educational and Research Institute, Tamil Nadu, Chennai 600095, India Received March 20, 2018; Accepted August 2, 2018 DOI: 10.3892/mmr.2018.9404 Abstract. MDA-MB-231 cells represent malignant triple-nega- migration, metastasis and chemoresistance, whereas the VIM tive breast cancer, which overexpress epidermal growth factor gene network regulates novel tumorigenic processes, such as receptor (EGFR) and two genes (AXL and VIM) associated lipogenesis, senescence and autophagy. Notably, these two with poor prognosis. The present study aimed to identify novel networks contain 12 genes not reported for TNBC. therapeutic targets and elucidate the functional networks for the AXL and VIM genes in MDA-MB-231 cells. We identi- Introduction fied 71 genes upregulated in MDA-MB-231 vs. MCF7 cells using BRB-Array tool to re-analyse microarray data from six Triple negative breast cancers (TNBC) lack expression of three GEO datasets. Gene ontology and STRING analysis showed important receptors (ER, PR, and HER2). These cancers account that 43/71 genes upregulated in MDA-MB-231 compared with for 10-15% of breast cancers, and are characterized by overex- MCF7 cells, regulate cell survival and migration. Another pression of epidermal growth factor receptor (EGFR), high 19 novel genes regulate migration, metastases, senescence, proliferative rate, and mutations in the p53 and BRCA1 tumour autophagy and chemoresistance.
    [Show full text]
  • Research2007herschkowitzetvolume Al
    Open Access Research2007HerschkowitzetVolume al. 8, Issue 5, Article R76 Identification of conserved gene expression features between comment murine mammary carcinoma models and human breast tumors Jason I Herschkowitz¤*†, Karl Simin¤‡, Victor J Weigman§, Igor Mikaelian¶, Jerry Usary*¥, Zhiyuan Hu*¥, Karen E Rasmussen*¥, Laundette P Jones#, Shahin Assefnia#, Subhashini Chandrasekharan¥, Michael G Backlund†, Yuzhi Yin#, Andrey I Khramtsov**, Roy Bastein††, John Quackenbush††, Robert I Glazer#, Powel H Brown‡‡, Jeffrey E Green§§, Levy Kopelovich, reviews Priscilla A Furth#, Juan P Palazzo, Olufunmilayo I Olopade, Philip S Bernard††, Gary A Churchill¶, Terry Van Dyke*¥ and Charles M Perou*¥ Addresses: *Lineberger Comprehensive Cancer Center. †Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. ‡Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA. reports §Department of Biology and Program in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. ¶The Jackson Laboratory, Bar Harbor, ME 04609, USA. ¥Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. #Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA. **Department of Pathology, University of Chicago, Chicago, IL 60637, USA. ††Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA. ‡‡Baylor College of Medicine, Houston, TX 77030, USA. §§Transgenic Oncogenesis Group, Laboratory of Cancer Biology and Genetics. Chemoprevention Agent Development Research Group, National Cancer Institute, Bethesda, MD 20892, USA. Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107, USA. Section of Hematology/Oncology, Department of Medicine, Committees on Genetics and Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
    [Show full text]