Environmental Assessment-Preliminary

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Assessment-Preliminary United States Department of Agriculture Forest Service Forest Plans Amendment Forest Management Direction for Large Diameter Trees in Eastern Oregon Environmental Assessment-Preliminary Pacific Northwest Region (R6) Oregon and Washington August 2020 Photo Credit: Mark Penninger, U.S. Fish & Wildlife, La Grande, OR Field Office USFS-Pacific Northwest Region-6 Responsible Official Delegated by the Regional Forester Shane Jeffries, Forest Supervisor Ochoco National Forest 3160 NE 3rd Street Prineville, Oregon Phone: 541-416-6500 U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication for program information (e.g. Braille, large print, audiotape, etc.) please contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW., Washington, DC 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. 1 Adapting the Wildlife Standard of the Eastside Screens 1 TABLE OF CONTENTS 1.0 Introduction ........................................................................................................................ 4 1.1 Forest Service Planning Framework ................................................................................ 4 1.2 History of the Eastside Screens ....................................................................................... 5 1.3 Public Input ...................................................................................................................... 6 1.4 Purpose and Need for Action .......................................................................................... 7 1.5 Need for Change .............................................................................................................. 7 1.6 Goals ................................................................................................................................ 8 1.7 Decision to be Made ........................................................................................................ 8 2 Proposed action and alternatives ............................................................................................ 8 2.1 Current Management Alternative ................................................................................... 9 2.2 Old Tree and Large Tree Guideline with Adaptive Management (Proposed Action) .... 10 2.3 Old Tree Standard Alternative ....................................................................................... 11 2.4 Adaptive Management Alternative ............................................................................... 12 2.5 Alternatives Considered but Not Fully Analyzed ........................................................... 12 2.6 Change Common to All Action Alternatives .................................................................. 13 2.7 Compliance with NFMA-Substantive Requirements ..................................................... 13 3 Affected Environment and Environmental Effects of the Proposed Action and Alternatives 15 3.1 Vegetation ..................................................................................................................... 15 3.1.1 Introduction ......................................................................................................... 15 3.1.2 Effects Analysis Scale and Applicability ............................................................... 16 3.1.3 Analysis Methods ................................................................................................ 16 3.1.4 Assumptions ........................................................................................................ 23 3.1.5 Affected Environment ......................................................................................... 27 3.1.6 Environmental Effects ......................................................................................... 35 3.1.7 Vegetation Effects Summary ............................................................................... 41 3.2 Social and Economic Resources ..................................................................................... 42 2 USFS-Pacific Northwest Region-6 3.2.1 Introduction ......................................................................................................... 42 3.2.2 Analysis Area ....................................................................................................... 42 3.2.3 Affected Environment ......................................................................................... 43 3.2.4 Environmental Effects ......................................................................................... 64 3.3 Aquatic Resources (Fisheries) ........................................................................................ 69 3.4 Wildlife .......................................................................................................................... 72 3.4.1 Affected Environment ......................................................................................... 72 3.4.2 Environmental Effects ......................................................................................... 79 3.5 Botany ............................................................................................................................ 88 3.5.1 Affected Environment ......................................................................................... 88 3.5.2 Environmental Effects ......................................................................................... 90 3.6 Cumulative Effects ....................................................................................................... 105 4 Public Involvement and Agencies and Persons Consulted .................................................. 107 4.1 Tribes ........................................................................................................................... 107 4.2 Stakeholder Engagement ............................................................................................ 107 4.3 Other Agencies ............................................................................................................ 107 5 Literature Cited .................................................................................................................... 108 6 Appendix A-Botany Sensitive Species List ........................................................................... 125 7 Appendix B-Alternatives Crosswalk ..................................................................................... 142 8 Appendix C-1995 Eastside Screens ...................................................................................... 153 9 Appendix D-Wildlife Effects Table ....................................................................................... 167 10 Appendix E – Description of the Viability Outcomes .......................................................... 174 3 Adapting the Wildlife Standard of the Eastside Screens 1.0 INTRODUCTION 1.1 FOREST SERVICE PLANNING FRAMEWORK National forests and grasslands are required to have a Land and Resource Management Plan (LRMP). Those plans inform the overall management of each unit and all projects on each unit must be in conformance with the associated LRMP. When plan components (desired conditions, goals, standards, and/or guidelines) need to be changed for any reason the planning unit must complete a plan amendment (36 CFR 219). The amendment process is intended to help keep plans current and responsive as conditions change or updated science changes our understanding. The Eastside Screens were adopted in 1994-95 (see below) and amended the underlying forest plans which were published in either 1989 or 1990, depending on the forest. They consisted of three components for screening proposed timber sales: riparian screen, ecosystem screen, and the wildlife screen. The Inland Native Fish Strategy (INFISH) and Pacific Anadromous Fish Strategy (PACFISH) now operate in place of the riparian screen. Under the ecosystem screen, the Forest Service compares current conditions of a proposed timber sale area with the historical range of variability (HRV). Under the wildlife screen, the Forest Service imposes certain harvesting restrictions according to whether or not the condition of a sale area is within the HRV for late and old structure (LOS) forest1. Subsection 2 of the Wildlife Screen’s Scenario A stipulates that: Outside of LOS, many types of timber sale activities are allowed. The intent is still to maintain and/or enhance LOS components in stands subject to timber harvest as much as possible, by adhering to the following standards: a) Maintain all remnant late and old seral and/or structural live trees ≥ 21-inch dbh2 that currently exist within stands proposed for harvest activities. The amendment analyzed in this document specifically addresses this portion of subsection two and a portion of subsection four (see Appendix B). These portions are commonly referred
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • June 9, 2020 LIST of ABSENTEE VOTERS HOLDING BALLOTS – NAMES
    WARSAW CENTRAL SCHOOL BUDGET/BOARD VOTE – June 9, 2020 LIST OF ABSENTEE VOTERS HOLDING BALLOTS – NAMES Abbasey, Salman Aumer, Andrew J. Bauer, James E. Abbott, John Axtell, Paula A. Bauer, Janet M. Ackerman, James Backlas, Frederick A. Jr Bauer, Michael Ackerman, Susan M. Bagg , Robert L. Bauer, Michelle Adolf, Jeremy J. Bagg, Kenneth G. Baxter, Susan Agrawal, Rajendra Bagg, Patty Bayliss, Bruce A. Aguado, Andrew E. Bagley, Raymond F. Bayoumi, Ahmed Ahl, Florence Bailey, Betty J. Beach, Douglas A. Aker, James D. Bailey, Judith L. Beach, Robert L. Akin, Claudia J. Bailey, Lyndsay Beals, Duane M. Alband, Jeffrey L. Bailey, Richard L. Beals, Shane Alcaraz, Christina M. Bailey, Stephen Beardsley, Peter G. Alderson, Donald P. Bailey, Stephen Beck, Michael J. Aldinger, Suzanne Bailey, Tara L. Beckstrand, Benjamine C. Aldrich, Heather L. Baize, Mary A. Beckstrand, Denise C. Aldrich, Jordan A. Baker, Arlene W. Beilein, Paul T. Aldrich, Kathryn J. Baker, Charles O. Beinhauer, Joseph F. Alexander, Christopher J. Baker, Frederic Belden, Barbara A. Alexander, Tara Baker, Gregory S. Belden, James C. Allen, Patricia A. Baker, Karen Bell, David K. Allison, Eddie R. Baker, Kirk E. Bell, Kathleen D. Almeter, David J Baker, Kristina Bell, Lorraine F. Almeter, George Anna Baker, Nichlos Bell, Milda Almeter, Nathan A. Baker, Peggy J. Bell, Mildred E. Almeter, Steven A. Baker, Roger O. Bellaire, Donald Ames, Gregory K. Baker, Shawn R. Bellaire, Donald W. Sr Ames, Richard A. Bakowski, Christopher Belles, Cody J. Andalora, Ingeburg Ballard, Joanne R. Bellinger, Heather Andalora, Orah Ballerstein, Lisa Bender, Gloria Andrews, Lee H. Ballew, Marjorie Bender, Sidney Antinore, Hope Bannister, Jeffrey H.
    [Show full text]
  • Guidelines for Determining Significance and Report Format and Content Requirements
    COUNTY OF SAN DIEGO GUIDELINES FOR DETERMINING SIGNIFICANCE AND REPORT FORMAT AND CONTENT REQUIREMENTS BIOLOGICAL RESOURCES LAND USE AND ENVIRONMENT GROUP Department of Planning and Land Use Department of Public Works Fourth Revision September 15, 2010 APPROVAL I hereby certify that these Guidelines for Determining Significance for Biological Resources, Report Format and Content Requirements for Biological Resources, and Report Format and Content Requirements for Resource Management Plans are a part of the County of San Diego, Land Use and Environment Group's Guidelines for Determining Significance and Technical Report Format and Content Requirements and were considered by the Director of Planning and Land Use, in coordination with the Director of Public Works on September 15, 2O1O. ERIC GIBSON Director of Planning and Land Use SNYDER I hereby certify that these Guidelines for Determining Significance for Biological Resources, Report Format and Content Requirements for Biological Resources, and Report Format and Content Requirements for Resource Management Plans are a part of the County of San Diego, Land Use and Environment Group's Guidelines for Determining Significance and Technical Report Format and Content Requirements and have hereby been approved by the Deputy Chief Administrative Officer (DCAO) of the Land Use and Environment Group on the fifteenth day of September, 2010. The Director of Planning and Land Use is authorized to approve revisions to these Guidelines for Determining Significance for Biological Resources and Report Format and Content Requirements for Biological Resources and Resource Management Plans except any revisions to the Guidelines for Determining Significance presented in Section 4.0 must be approved by the Deputy CAO.
    [Show full text]
  • C6 Noncarice Sedge
    CYPERACEAE etal Got Sedge? Part Two revised 24 May 2015. Draft from Designs On Nature; Up Your C 25 SEDGES, FOINS COUPANTS, LAÎCHES, ROUCHES, ROUCHETTES, & some mostly wet things in the sedge family. Because Bill Gates has been shown to eat footnotes (burp!, & enjoy it), footnotes are (italicized in the body of the text) for their protection. Someone who can spell caespitose only won way has know imagination. Much of the following is taken verbatim from other works, & often not credited. There is often not a way to paraphrase or rewrite habitat or descriptive information without changing the meaning. I am responsible for any mistakes in quoting or otherwise. This is a learning tool, & a continuation of an idea of my friend & former employer, Jock Ingels, LaFayette Home Nursery, who hoped to present more available information about a plant in one easily accessible place, instead of scattered though numerous sources. This is a work in perpetual progress, a personal learning tool, full uv misstakes, & written as a personal means instead of a public end. Redundant, repetitive, superfluous, & contradictory information is present. It is being consolidated. CYPERACEAE Sauergrasgewächse SEDGES, aka BIESIES, SEGGEN Formally described in 1789 by De Jussieu. The family name is derived from the genus name Cyperus, from the Greek kupeiros, meaning sedge. Many species are grass-like, being tufted, with long, thin, narrow leaves, jointed stems, & branched inflorescence of small flowers, & are horticulturally lumped with grasses as graminoids. Archer (2005) suggests the term graminoid be used for true grasses, & cyperoid be used for sedges. (If physical anthropologists have hominoids & hominids, why don’t we have graminoids & graminids?) There are approximately 104 genera, 4 subfamilies, 14 tribes, & about 5000 species worldwide, with 27 genera & 843 species in North America (Ball et al 2002).
    [Show full text]
  • GREAT PLAINS REGION - NWPL 2016 FINAL RATINGS User Notes: 1) Plant Species Not Listed Are Considered UPL for Wetland Delineation Purposes
    GREAT PLAINS REGION - NWPL 2016 FINAL RATINGS User Notes: 1) Plant species not listed are considered UPL for wetland delineation purposes. 2) A few UPL species are listed because they are rated FACU or wetter in at least one Corps region.
    [Show full text]
  • A Study About the Temporal Constraints on the Martian Yardangs’ Development in Medusae Fossae Formation
    remote sensing Article A Study about the Temporal Constraints on the Martian Yardangs’ Development in Medusae Fossae Formation Jia Liu 1,2 , Zongyu Yue 1,3,*, Kaichang Di 1,3 , Sheng Gou 1,4 and Shengli Niu 4 1 State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (J.L.); [email protected] (K.D.); [email protected] (S.G.) 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 CAS Center for Excellence in Comparative Planetology, Hefei 230026, China 4 State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-64889553 Abstract: The age of Mars yardangs is significant in studying their development and the evolution of paleoclimate conditions. For planetary surface or landforms, a common method for dating is based on the frequency and size distribution of all the superposed craters after they are formed. However, there is usually a long duration for the yardangs’ formation, and they will alter the superposed craters, making it impossible to give a reliable dating result with the method. An indirect method by analyzing the ages of the superposed layered ejecta was devised in the research. First, the layered ejecta that are superposed on and not altered by the yardangs are identified and mapped. Then, the ages of the layered ejecta are derived according to the crater frequency and size distribution on them. These ages indicate that the yardangs ceased development by these times, and the ages are valuable for studying the evolution of the yardangs.
    [Show full text]
  • Binary Asteroids and the Formation of Doublet Craters
    ICARUS 124, 372±391 (1996) ARTICLE NO. 0215 Binary Asteroids and the Formation of Doublet Craters WILLIAM F. BOTTKE,JR. Division of Geological and Planetary Sciences, California Institute of Technology, Mail Code 170-25, Pasadena, California 91125 E-mail: [email protected] AND H. JAY MELOSH Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721 Received April 29, 1996; revised August 14, 1996 found we could duplicate the observed fraction of doublet cra- At least 10% (3 out of 28) of the largest known impact craters ters found on Earth, Venus, and Mars. Our results suggest on Earth and a similar fraction of all impact structures on that any search for asteroid satellites should place emphasis Venus are doublets (i.e., have a companion crater nearby), on km-sized Earth-crossing asteroids with short-rotation formed by the nearly simultaneous impact of objects of compa- periods. 1996 Academic Press, Inc. rable size. Mars also has doublet craters, though the fraction found there is smaller (2%). These craters are too large and too far separated to have been formed by the tidal disruption 1. INTRODUCTION of an asteroid prior to impact, or from asteroid fragments dispersed by aerodynamic forces during entry. We propose that Two commonly held paradigms about asteroids and some fast rotating rubble-pile asteroids (e.g., 4769 Castalia), comets are that (a) they are composed of non-fragmented after experiencing a close approach with a planet, undergo tidal chunks of rock or rock/ice mixtures, and (b) they are soli- breakup and split into multiple co-orbiting fragments.
    [Show full text]
  • Floristic Quality Assessment Report
    FLORISTIC QUALITY ASSESSMENT IN INDIANA: THE CONCEPT, USE, AND DEVELOPMENT OF COEFFICIENTS OF CONSERVATISM Tulip poplar (Liriodendron tulipifera) the State tree of Indiana June 2004 Final Report for ARN A305-4-53 EPA Wetland Program Development Grant CD975586-01 Prepared by: Paul E. Rothrock, Ph.D. Taylor University Upland, IN 46989-1001 Introduction Since the early nineteenth century the Indiana landscape has undergone a massive transformation (Jackson 1997). In the pre-settlement period, Indiana was an almost unbroken blanket of forests, prairies, and wetlands. Much of the land was cleared, plowed, or drained for lumber, the raising of crops, and a range of urban and industrial activities. Indiana’s native biota is now restricted to relatively small and often isolated tracts across the State. This fragmentation and reduction of the State’s biological diversity has challenged Hoosiers to look carefully at how to monitor further changes within our remnant natural communities and how to effectively conserve and even restore many of these valuable places within our State. To meet this monitoring, conservation, and restoration challenge, one needs to develop a variety of appropriate analytical tools. Ideally these techniques should be simple to learn and apply, give consistent results between different observers, and be repeatable. Floristic Assessment, which includes metrics such as the Floristic Quality Index (FQI) and Mean C values, has gained wide acceptance among environmental scientists and decision-makers, land stewards, and restoration ecologists in Indiana’s neighboring states and regions: Illinois (Taft et al. 1997), Michigan (Herman et al. 1996), Missouri (Ladd 1996), and Wisconsin (Bernthal 2003) as well as northern Ohio (Andreas 1993) and southern Ontario (Oldham et al.
    [Show full text]
  • Geologic Studies of Planetary Surfaces Using Radar Polarimetric Imaging 2
    Geologic studies of planetary surfaces using radar polarimetric imaging 2 4 Lynn M. Carter NASA Goddard Space Flight Center 8 Donald B. Campbell 9 Cornell University 10 11 Bruce A. Campbell 12 Smithsonian Institution 13 14 14 Abstract: Radar is a useful remote sensing tool for studying planetary geology because it is 15 sensitive to the composition, structure, and roughness of the surface and can penetrate some 16 materials to reveal buried terrain. The Arecibo Observatory radar system transmits a single 17 sense of circular polarization, and both senses of circular polarization are received, which allows 18 for the construction of the Stokes polarization vector. From the Stokes vector, daughter products 19 such as the circular polarization ratio, the degree of linear polarization, and linear polarization 20 angle are obtained. Recent polarimetric imaging using Arecibo has included Venus and the 21 Moon. These observations can be compared to radar data for terrestrial surfaces to better 22 understand surface physical properties and regional geologic evolution. For example, 23 polarimetric radar studies of volcanic settings on Venus, the Moon and Earth display some 24 similarities, but also illustrate a variety of different emplacement and erosion mechanisms. 25 Polarimetric radar data provides important information about surface properties beyond what can 26 be obtained from single-polarization radar. Future observations using polarimetric synthetic 27 aperture radar will provide information on roughness, composition and stratigraphy that will 28 support a broader interpretation of surface evolution. 29 2 29 1.0 Introduction 30 31 Radar polarimetry has the potential to provide more information about surface physical 32 properties than single-polarization backscatter measurements, and has often been used in remote 33 sensing observations of Solar System objects.
    [Show full text]
  • Project Description the Interpretation of This No Action Alternative Is That the Proposed Action Would Not Take Place. Under Th
    United States Forest Bend/Fort Rock 63095 Deschutes Market Road Department of Service Ranger District Bend, Oregon 97701 Agriculture __________________________________________________________________________________ File Code: 2670 Date: 16 August 2013 Subject: Biological Evaluation –Threatened, Endangered, and Sensitive Plants Welcome Station Trail Connections To: The Record This is a biological evaluation to document consideration of Threatened, Endangered, and Sensitive (TES) plants related to the Welcome Station Trail Connections. It is prepared in compliance with the Forest Service Manual (FSM) 2672.4 and the Endangered Species Act of 1973 (Subpart B; 402.12, section 7 consultation). Effects of this activity are evaluated for those TES plant species on the current Regional Forester’s Sensitive Species List (FSM 2670.44, December, 2011) that are documented or suspected to occur on the Deschutes National Forest. Finding: The proposed action will have no impact on Proposed, Endangered, Threatened, or Sensitive plant species. Project Description ALTERNATIVE 1 – NO ACTION The interpretation of this no action alternative is that the proposed action would not take place. Under this alternative, a non-motorized paved and trailhead between Bend and the Cascade Lakes Scenic Byway Welcome Station (Welcome Station) would not be constructed along with key mountain bike trails connecting the Welcome Station to the Wanoga and Phil’s trails systems. This alternative serves as a baseline from which the interdisciplinary team can evaluate the proposed action. ALTERNATIVE 2 – PROPOSED ACTION Alternative 2 would allow for additional paved non-motorized trails, designated single-track mountain bike trails, and a trailhead facility on National Forest System lands adjacent to and around Cascade Lakes Scenic Byway Welcome Station.
    [Show full text]