Family Genus Species Native/ Alien Common Name Ferns
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Columbines School of Botanical Studies Wild Food Tending Economic Botanical Survey Trip #9: North Umpqua Watershed
Columbines School of Botanical Studies Wild Food Tending Economic Botanical Survey Trip #9: North Umpqua Watershed August 8-9, 2019 Abundance Phenology d – dominant (defines the plant community) L - In Leaf a - abundant (codominant of the overstory or dominant of lower layer) FL - In Flower c – common (easily seen) FR - In Fruit o – occasional (walk around to see) SN - Senescent r – rare (trace, must search for it) Uses Genus Name Notes Abundance Phenology Food: Roots Brodiaea sp. incl Dichelostemma Brodiaea sp., Triteleia sp. Camassia leichtlinii Great Camas a FR-SN Camassia quamash ssp. intermedia Camas c FR-SN Camassia sp. Common Camas Cirsium vulgare Bull Thistle Daucus carota Wild Carrot a Hypochaeris radicata False Dandelion Lilium sp. Lily Osmorhiza berteroi (O. chilensis) Sweet Cicely Perideridia howellii Yampah Perideridia montana (P. gairdneri) Late Yampah c FL Taraxacum officinalis Dandelion r FL Typha latifolia Cattail FL Food: Greens and Potherbs Berberis aquifolium Tall Oregon Grape Berberis nervosa Oregon Grape Castilleja miniata Paintbrush cf. Potentilla sp. Potentilla Chamaenerion angustifolium Fireweed (Epilobium a.) Cirsium vulgare Bull Thistle Daucus carota Wild Carrot a Erythranthe guttata (Mimulus g.) Yellow Monkeyflower Fragaria sp. Wild Strawberry Gallium sp. Bedstraw, Cleavers Hypochaeris radicata False Dandelion Columbines School of Botanical Studies Wild Food Tending Economic Botanical Survey Trip #9: North Umpqua Watershed Uses Genus Name Notes Abundance Phenology Leucanthemum vulgare Ox Eye Daisy c FL (Chrysanthemum l.) Osmorhiza berteroi (O. chilensis) Sweet Cicely Perideridia howellii Yampah Perideridia montana (P. gairdneri) Late Yampah c FL Plantago lanceolata Plantain Prunella vulgaris Self Heal, Heal All Rosa sp. Wild Rose Rubus ursinus Blackberry Rumex obtusifolius Bitter Dock Sidalcea sp. -
Guidelines for Determining Significance and Report Format and Content Requirements
COUNTY OF SAN DIEGO GUIDELINES FOR DETERMINING SIGNIFICANCE AND REPORT FORMAT AND CONTENT REQUIREMENTS BIOLOGICAL RESOURCES LAND USE AND ENVIRONMENT GROUP Department of Planning and Land Use Department of Public Works Fourth Revision September 15, 2010 APPROVAL I hereby certify that these Guidelines for Determining Significance for Biological Resources, Report Format and Content Requirements for Biological Resources, and Report Format and Content Requirements for Resource Management Plans are a part of the County of San Diego, Land Use and Environment Group's Guidelines for Determining Significance and Technical Report Format and Content Requirements and were considered by the Director of Planning and Land Use, in coordination with the Director of Public Works on September 15, 2O1O. ERIC GIBSON Director of Planning and Land Use SNYDER I hereby certify that these Guidelines for Determining Significance for Biological Resources, Report Format and Content Requirements for Biological Resources, and Report Format and Content Requirements for Resource Management Plans are a part of the County of San Diego, Land Use and Environment Group's Guidelines for Determining Significance and Technical Report Format and Content Requirements and have hereby been approved by the Deputy Chief Administrative Officer (DCAO) of the Land Use and Environment Group on the fifteenth day of September, 2010. The Director of Planning and Land Use is authorized to approve revisions to these Guidelines for Determining Significance for Biological Resources and Report Format and Content Requirements for Biological Resources and Resource Management Plans except any revisions to the Guidelines for Determining Significance presented in Section 4.0 must be approved by the Deputy CAO. -
Chromosome Numbers in Compositae, XII: Heliantheae
SMITHSONIAN CONTRIBUTIONS TO BOTANY 0 NCTMBER 52 Chromosome Numbers in Compositae, XII: Heliantheae Harold Robinson, A. Michael Powell, Robert M. King, andJames F. Weedin SMITHSONIAN INSTITUTION PRESS City of Washington 1981 ABSTRACT Robinson, Harold, A. Michael Powell, Robert M. King, and James F. Weedin. Chromosome Numbers in Compositae, XII: Heliantheae. Smithsonian Contri- butions to Botany, number 52, 28 pages, 3 tables, 1981.-Chromosome reports are provided for 145 populations, including first reports for 33 species and three genera, Garcilassa, Riencourtia, and Helianthopsis. Chromosome numbers are arranged according to Robinson’s recently broadened concept of the Heliantheae, with citations for 212 of the ca. 265 genera and 32 of the 35 subtribes. Diverse elements, including the Ambrosieae, typical Heliantheae, most Helenieae, the Tegeteae, and genera such as Arnica from the Senecioneae, are seen to share a specialized cytological history involving polyploid ancestry. The authors disagree with one another regarding the point at which such polyploidy occurred and on whether subtribes lacking higher numbers, such as the Galinsoginae, share the polyploid ancestry. Numerous examples of aneuploid decrease, secondary polyploidy, and some secondary aneuploid decreases are cited. The Marshalliinae are considered remote from other subtribes and close to the Inuleae. Evidence from related tribes favors an ultimate base of X = 10 for the Heliantheae and at least the subfamily As teroideae. OFFICIALPUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. SERIESCOVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllumjaponicum Siebold and Zuccarini. Library of Congress Cataloging in Publication Data Main entry under title: Chromosome numbers in Compositae, XII. -
New Zealand Garden Journal, 2002, Vol.5 (2) 2A
Fixation with Gunnera Paul Stock1 There are 30-40 species of Gunnera There are two types of cell on a example, the native Gunnera species (family Gunneraceae) distributed Nostoc filament: vegetative cells and are commonly used as ground cover naturally almost exclusively heterocysts. The heterocysts contain in rock gardens. throughout the southern hemisphere. the enzyme nitrogenase, which The nitrogen-fixing symbiosis + The largest and most famous are converts N2 gas into NH4 , a process between white clover (Trifolium repens) Gunnera manicata (giant ornamental known as nitrogen fixation. The and the bacterium Rhizobium has a rhubarb, native to mountain swamps ammonium is then assimilated by high profile in New Zealand because of Brazil) and G. tinctoria (Chilean Gunnera. There is a huge increase in of its commercial significance to the rhubarb) (Figure 1). They have large the frequency of heterocysts in pastoral industry. While the Gunnera- (1.0-2.4m diameter) leaves with prickly symbiotic Nostoc (up to 80% of cells) Nostoc symbiosis does not have the petioles attached to a stout rhizome. compared to free-living Nostoc forms same profile, it is the subject of some A vertical section through the stem of (5% of cells) (Figure 2B). How does attention as researchers continue to G. tinctoria (Figure 2A) reveals dark this occur and what is its significance? unlock the mysteries of how green nodules. If you examine one of As stated earlier, Gunnera provides symbioses involving nitrogen fixers these nodules under a microscope carbohydrate to Nostoc. Therefore operate. you will find beads or filaments of the less cellular machinery is required for blue green alga (cyanobacterium) photosynthesis, which is located in Growing gunneras Nostoc. -
Perennials 2016
Shady Acres Perennial Nursery 1958 - 2016 New Berlin, WI years58 in the Green Industry Perennials 2016 www.ShadyAcresNursery.com 262-679-1610 e-mail: [email protected] Planting Guide Perennial Border Shade r Sun e d Perennials r o Perennials B l a i n Hosta n e r e Ferns P Woodlands Groundcovers Store Cashier Clematis Grasses Shade Garden Shade Herbs Sunny Garden & Offices Shade Annuals More Shade Gazebo Create-a- Potting Soil Container Cocoa Bean Mulch Entrance Mushroom Compost Cotton Burr ~ Parking Area ~ Compost Pine Needle 0 Mulch Garbe Enterprises, Inc. dba Shady Acres Perennial Nursery 5725 South Martin Road New Berlin, Wisconsin 53146-5112 phone: 262-679-1610 e-mail: [email protected] web: www.ShadyAcresNursery.com Welcome to Shady Acres Perennial Nursery ~ 2016 Gardening Season ~ Shady Acres is your destination for locally grown perennials. Since 1958, our family-owned business has been serving the green industry. Perennials are our specialty, and we are known for our outstanding selection of top-quality plants. We offer over 1200 varieties including perennials for sun or shade, ornamental grasses, native plants, groundcovers and fresh herbs! We invite you to browse our garden center, where all the plants we grow are arranged in an easy-to-find fashion. Perennials are the perfect choice for enhancing your outdoor areas. A garden that changes through all four seasons will bring years of beauty and enjoyment. Stroll through our many display gardens to see mature perennials growing in a garden environment. Come often to observe how the foliage and flowers change throughout the season. -
Vegetation Ecology and Change in Terrestrial Ecosystems 35
Chapter 4—Vegetation Ecology and Change in Terrestrial Ecosystems 35 CHAPTER 4 Vegetation Ecology and Change in Terrestrial Ecosystems John B. Taft1, Roger C. Anderson2, and Louis R. Iverson3 with sidebar by William C. Handel1 1. Illinois Natural History Survey 2. Department of Biology, Illinois State University 3. USDA Forest Service OBJECTIVES What are the major vegetation types that have occurred in Illinois and how have they changed since the last ice age and more specifically since European-Americans settled the region? Ecological factors influencing trends, composition, and diversity in prairie, savanna, open woodland, and forest communities are examined. Historical and contemporary changes will be explored with reference to the proportion and characteristics of habitats remaining in a relatively undegraded condition. While Illinois is a focus for this chapter, the processes and factors explaining vegetational variation have relevance to the entire Midwest and in many cases beyond. INTRODUCTION key step in conserving biodiversity. The following chapter explores the dominant types of native terrestrial vegetation Vegetation change is a major focus of ecological monitoring and changes as they have occurred in Illinois primarily since and research and has both temporal and spatial aspects. Of Pleistocene glaciation with a focus on the post-European course, all change is measured through time. Change can settlement period. be evaluated on a time scale of thousands of years, such as following Pleistocene glaciation, or in the time frame of an In thE FOrMEr tIME annual species. An example of a spatial aspect of vegetation The last glacial episode, known as Wisconsinan glaciation, change is the emergence of forest where once prairie covered the northeastern quarter of Illinois from about occurred (see Fig. -
ETHNOGRAPHIC OVERVIEW DRAFT #2 Colorado National Monument Sally Mcbeth February 26, 2010
ETHNOGRAPHIC OVERVIEW DRAFT #2 Colorado National Monument Sally McBeth February 26, 2010 written in consultation with the Northern Ute ETHNOGRAPHIC OVERVIEW DRAFT #2 Colorado National Monument Sally McBeth February 26, 2010 written in consultation with the Northern Ute Submitted to the National Park Service Cooperative Agreement # H1200040001 (phases I and II) and H1200090004 (phase III) ACKNOWLEDGMENTS The generosity of many Ute friends, whose willingness to share their stories, remembrances, and recollections with me cannot go unacknowledged. I treasure their rich and profound understandings of ancestral landscape shared with me over the past three years. These friends include, but are not limited to Northern Ute tribal members (alphabetically): Loya Arrum, Betsy Chapoose, Clifford Duncan, Kessley LaRose, Roland McCook, Venita Taveapont, and Helen Wash. Their advice and suggestions on the writing of this final report were invaluable. Special thanks are due to Hank Schoch—without whose help I really would not have been able to complete (or even start) this project. His unflagging generosity in introducing me to the refulgent beauty and cultural complexity of Colorado National Monument cannot ever be adequately acknowledged. I treasure the memories of our hikes and ensuing discussions on politics, religion, and life. The critical readings by my friends and colleagues, Sally Crum (USFS), Dave Fishell (Museum of the West), Dave Price (NPS), Hank Schoch (NPS-COLM), Alan McBeth, and Mark Stevens were very valuable. Likewise the advice and comments of federal-level NPS staff Cyd Martin, Dave Ruppert, and especially Tara Travis were invaluable. Thanks, all of you. Former Colorado National Monument Superintendant Bruce Noble and Superintendant Joan Anzelmo provided tremendous support throughout the duration of the project. -
Protocol Information
Protocol Information Dave Skinner PMC Farm Manager Pullman Plant Materials Center Room 104 Hulbert Hall WSU Pullman, Washington 99163-6211 509-335-9689 509-335-2940 Fax [email protected] Family Scientific Name: Apiaceae Family Common Name: Parsley or Carrot Scientific Name: Perideridia gairdneri (Hook. & Arn.) Mathias Common Name: Gairdner's yampah, Western yampah, False caraway Species Code: PEGA3 Ecotype: Paradise Creek drainage near Pullman, Washington. General Distribution: Western North America from British Columbia east to Saskatchewan and south to New Mexico. Mean annual precipitation range is 14-24 inches (USDA NRCS 2006). In eastern Washington it is usually found in open mesic meadows and open forest. Wetland status is FACU (US Fish and Wildlife Service 1988). Propagation Goal: Plants Propagation Method: Seed Product Type: Container (plug) Time To Grow: 2 Years Propagule Collection: Fruit is a schizocarp. Seed is collected in September or early October when the inflorescence is dry and the seeds are brown in color. Seed can be stripped from the inflorescence or the entire inflorescence can be clipped from the plant. Harvested seed is stored in paper bags at room temperature until cleaned. 400,000 seeds/lb (USDA NRCS 2006). Propagule Processing: The inflorescence is rubbed by hand to free the seed, then cleaned with an air column separator. Clean seed is stored in controlled conditions at 40 degrees Fahrenheit and 40% relative humidity. Pre-Planting Treatments: Unpublished data from trials conducted at the Pullman Plant Materials Center revealed that no germination occurred without stratification or with 30 days stratification. 60 days of cold, moist stratification resulted in 38% germination. -
Federal Register / Vol. 62, No. 25 / Thursday, February 6, 1997 / Rules and Regulations
5542 Federal Register / Vol. 62, No. 25 / Thursday, February 6, 1997 / Rules and Regulations effective competitive opportunities test deemed granted as of the 28th day recreational activities, mining, road in § 63.18(h)(6)(i) of this chapter has without any formal staff action being construction and maintenance, a flood been satisfied on the route covered by taken: provided control project, and other human the alternative settlement arrangement; (1) The petition is not formally impacts. Potential threats include or opposed within the meaning of herbicide application to control (ii) The effective competitive § 1.1202(e) of this chapter; and herbaceous and weedy taxa. This rule opportunities test in § 63.18(h)(6)(i) of (2) The International Bureau has not implements the Federal protection and this chapter is satisfied on the route notified the filing carrier that grant of recovery provisions afforded by the Act covered by the alternative settlement the petition may not serve the public for these species. arrangement; or interest and that implementation of the EFFECTIVE DATE: March 10, 1997. (iii) The alternative settlement proposed alternative settlement ADDRESSES: The complete file for this arrangement is otherwise in the public arrangement must await formal staff interest. rule is available for public inspection, action on the petition. If objections or by appointment, during normal business (2) A certification as to whether the comments are filed, the petitioning alternative settlement arrangement hours at the U.S. Fish and Wildlife carrier may file a response pursuant to Service, Sacramento Field Office, 3310 affects more than 25 percent of the § 1.45 of this chapter. -
Recovery Strategy for the Lindley's False Silverpuffs (Uropappus
Species at Risk Act Recovery Strategy Series Recovery Strategy for the Lindley’s False Silverpuffs (Uropappus lindleyi) in Canada Lindley’s False Silverpuffs © Matt Fairbarns 2013 Recommended citation: Parks Canada Agency. 2013. Recovery Strategy for the Lindley’s False Silverpuffs (Uropappus lindleyi) in Canada. Species at Risk Act Recovery Strategy Series. Parks Canada Agency, Ottawa. vi + 29 pp. For copies of the recovery strategy, or for additional information on species at risk, including COSEWIC Status Reports, residence descriptions, action plans, and other related recovery documents, please visit the Species at Risk Public Registry (http://www.sararegistry.gc.ca). Cover illustration: Lindley’s False Silverpuffs photograph by Matt Fairbarns Également disponible en français sous le titre « Programme de rétablissement de la uropappe de Lindley (Uropappus lindleyi) au Canada » © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2013. All rights reserved. ISBN 978-1-100-22309-4 Catalogue no. En3-4/162-2013E-PDF Content (excluding the illustrations) may be used without permission, with appropriate credit to the source. Recovery Strategy for the Lindley’s False Silverpuffs in Canada 2013 PREFACE The federal, provincial, and territorial government signatories under the Accord for the Protection of Species at Risk (1996) agreed to establish complementary legislation and programs that provide for effective protection of species at risk throughout Canada. Under the Species at Risk Act (S.C. 2002, c.29) (SARA), the federal competent ministers are responsible for the preparation of recovery strategies for listed Extirpated, Endangered, and Threatened species and are required to report on progress within five years. -
SAN DIEGO COUNTY NATIVE PLANTS in the 1830S
SAN DIEGO COUNTY NATIVE PLANTS IN THE 1830s The Collections of Thomas Coulter, Thomas Nuttall, and H.M.S. Sulphur with George Barclay and Richard Hinds James Lightner San Diego Flora San Diego, California 2013 SAN DIEGO COUNTY NATIVE PLANTS IN THE 1830s Preface The Collections of Thomas Coulter, Thomas Nuttall, and Our knowledge of the natural environment of the San Diego region H.M.S. Sulphur with George Barclay and Richard Hinds in the first half of the 19th century is understandably vague. Referenc- es in historical sources are limited and anecdotal. As prosperity peaked Copyright © 2013 James Lightner around 1830, probably no more than 200 inhabitants in the region could read and write. At most one or two were trained in natural sciences or All rights reserved medicine. The best insights we have into the landscape come from nar- No part of this document may be reproduced or transmitted in any form ratives of travelers and the periodic reports of the missions’ lands. They without permission in writing from the publisher. provide some idea of the extent of agriculture and the general vegeta- tion covering surrounding land. ISBN: 978-0-9749981-4-5 The stories of the visits of United Kingdom naturalists who came in Library of Congress Control Number: 2013907489 the 1830s illuminate the subject. They were educated men who came to the territory intentionally to examine the flora. They took notes and col- Cover photograph: lected specimens as botanists do today. Reviewing their contributions Matilija Poppy (Romneya trichocalyx), Barrett Lake, San Diego County now, we can imagine what they saw as they discovered plants we know.