<<

Solar Axions Globular Cluster Supernova 1987A Dark Matter Long-Range Force

Axion Landscape

Georg G. Raffelt, Max-Planck-Institut für Physik, München Georg Raffelt, MPI Physics, Ultralight Frontier, MITP, 15–19 June 2015 High- and Low-Energy Frontiers in Particle Physics

Cosmological QCD Electroweak GUT Planck constant scale scale scale mass

10−6 10−3 1 103 106 109 1012 1015 1018 1021 1024 1027 eV

Heavy right-handed neutrinos (see-saw mechanism) ퟐ 풎푫 풎푫 푴 푴 WIMP dark matter (related to EW scale, perhaps SUSY)

Axion dark matter (related to Peccei-Quinn symmetry)

풎흅풇흅 풎풂 ∼ 풎흅, 풇흅 풇풂 풇풂

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Bestiarium of Low-Mass Bosons

Weakly Interacting Sub-eV Particles (WISPs)

• Axions (1 parameter family 푚푎푓푎 ∼ 푚휋푓휋) Solves strong CP problem Could be dark matter

• String axions (almost massless pseudoscalars in string theory) One of them may solve CP problem

• Axion-like particles () Generic two-photon vertex, could be dark matter (2 parameters 푚푎 and 푔푎훾)

• Hidden photons Low-mass gauge bosons from 푈′(1) (kinetic mixing parameter 휒 and mass 푚훾′)

• Chameleons Scalars in certain models of scalar-tensor gravity Motivated by dark energy Environment-dependent properties

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Plenitude of Axions – Axiverse

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP,[Joerg Mainz 15–19 Jaekel] June 2015 CP Violation in Particle Physics Discrete symmetries in particle physics

C – Charge conjugation, transforms particles to antiparticles violated by weak interactions

P – Parity, changes left-handedness to right-handedness violated by weak interactions

T – Time reversal, changes direction of motion (forward to backward)

CPT – exactly conserved in quantum field theory

CP – conserved by all gauge interactions violated by three-flavor quark mixing matrix  All measured CP-violating effects derive from a single phase in the quark mass matrix (Kobayashi-Maskawa phase), i.e. from complex Yukawa couplings

 Cosmic matter-antimatter asymmetry requires new ingredients M. Kobayashi T. Maskawa Physics Nobel Prize 2008

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 The CP Problem of Strong Interactions

Real quark Phase from Angle CP-odd mass Yukawa coupling variable quantity ∼ 퐄 ⋅ 퐁 휇휈 훼s 휇휈 ℒ = 휓 i퐷 − 푚 푒i휃푞 휓 − 1 퐺 퐺 − Θ 퐺 퐺 QCD 푞 푞 푞 4 휇휈푎 푎 8휋 휇휈푎 푎 푞 Remove phase of mass term by chiral transformation of quark fields

−푖훾5휃푞/2 휓푞 → 푒 휓푞

훼s ℒ = 휓 i퐷 − 푚 휓 − 1 퐺퐺 − Θ − arg det 푀 퐺퐺 QCD 푞 푞 푞 4 푞 8휋 푞 −휋 ≤Θ≤+휋  Θ can be traded between quark phases and 퐺퐺 term

 No physical impact if at least one 푚푞 = 0

 Induces a large neutron electric dipole moment (a T-violating quantity)

Experimental limits: 횯 < ퟏퟎ−ퟏퟏ Why so small?

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Strong CP Problem QCD vacuum energy 푉(Θ)

4 ΛQCD Equivalent Equivalent

Θ −2휋 −휋 +휋 +2휋 • CP conserving vacuum has Θ = 0 (Vafa and 1984) • QCD could have any −휋 ≤ Θ ≤ +휋, is “constant of nature” • Energy can not be minimized: Θ not dynamical Peccei-Quinn solution: Make 횯 dynamical, let system relax to lowest energy

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 37 Years of Axions

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 The Cleansing Axion

Frank Wilczek

“I named them after a laundry detergent, since they clean up a problem with an axial current.” (Nobel lecture 2004)

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Phenomenological Axion Properties

Gluon coupling (generic), defines normalization of axion scale 푓푎

훼푠 푎 ℒ푎퐺= 퐺퐺 8휋 푓푎

Mass (generic) depends on up/down quark masses

푚푢푚푑 푚휋 6 휇eV 푚푎 = ≈ 12 푚푢 + 푚푑 푓휋푓푎 푓푎 10 GeV

Axion-photon coupling (model dependent) Generic from 푎-휋-휂 mixing

푔푎훾 훼 퐸 푎 ℒ = − 퐹퐹 푎 = 푔 퐄 ⋅ 퐁 푎 = − 1.92 퐄 ⋅ 퐁 푎훾 4 푎훾 2휋 푁 푓 γ 푎

푎 Model-dependent, γ E/N = 0 (KSVZ), 8/3 (DFSZ), many others

Axion-nucleon coupling (model-dependent numerical factors 퐶푁) 푓 휕휇푎 • Axial-vector current ℒ = 퐶 Ψ 훾휇훾 Ψ 푎 푎푁 푁 푁 5 푁 • Spin-dependent int’n 2푓푎 푓 Axion-electron coupling in non-hadronic models is analogous with 퐶푒

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Axion Bounds and Searches

[GeV] fa 103 106 109 1012 1015

keV eV meV meV neV ma ADMX Search CAST CASPEr Experiments Tele (Seattle & Yale)

scope Hadronic axions

Too much String Too Too much much CDM cold dark matter

hot dark matter DW (re(misalignment)-alignment with Qi = 1)

Future

EUCLID

Helium-burning stars ARIADNE Anthropic (a-g-coupling, hadronic axions) IAXO Range

SN 1987A Too much Too many events energy loss

Globular clusters (He ignition), WD cooling (a-e coupling)

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Let there be light

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Experimental Tests of Invisible Axions

Primakoff effect: Pierre Sikivie:

Axion-photon transition in external Macroscopic B-field can provide a static E or B field large coherent transition rate over (Originally discussed for 휋0 a big volume (low-mass axions)

by Henri Primakoff 1951) • Axion helioscope: Look at the Sun through a dipole magnet

• Axion haloscope: Look for dark-matter axions with a microwave resonant cavity Two-photon vertex generic for 휋0, 휂, axion-like particles (ALPs), gravitons

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Search for Solar Axions Axion Helioscope Primakoff (Sikivie 1983) production N g a Axion flux a g

Magnet S Axion-Photon-Oscillation Sun

 Tokyo Axion Helioscope (“Sumico”) (Results since 1998, up again 2008)

 CERN Axion Solar Telescope (CAST) (Data since 2003) Alternative technique: Bragg conversion in crystal Experimental limits on solar axion flux from dark-matter experiments (SOLAX, COSME, DAMA, CDMS ...) Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Pointing a Magnet to the Sun

By CAST student Sebastian Baum Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Parameter Space for Axion-Like Particles (ALPs)

Two parameters: Weinberg Wilczek - ALP mass 푚 푎 “standard axion” - ALP-훾 coupling 푔푎훾

Model dependence (KSVZ, DFSZ, …) broadens 2 3 푔푎훾푚푎 the “axion line” Γ = 푎→훾훾 64휋

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Parameter Space for Axion-Like Particles (ALPs)

CAST exclusion range

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Parameter Space for Axion-Like Particles (ALPs)

CAST exclusion range End of solar spectrum

Large 푚푎, 푎-훾-oscillations suppressed

푎-훾-oscillations enhanced with He filling (푚훾 ∼ 푚푎)

Maximal mixing (“coherent”, small 푚푎)

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Parameter Space for Axion-Like Particles (ALPs)

- Improvement by a factor of 30

- Leaping into uncharted territory

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Parameter Space for Axion-Like Particles (ALPs)

- Improvement by a factor of 30

- Leaping into uncharted territory

Pushing generic ALP frontier

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Any Light Particle Search II (ALPS-II) at DESY

ALPS-I (finished)

ALPS-IIa (2014)

ALPS-IIb (2015)

ALPS-IIc (2017)

ALPS-II Technical Design Report, arXiv:1302.5647

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Shining TeV Gamma Rays through the Universe

Georg Raffelt, MPI Physics, MunichFigure from a talk by Manuel Meyer (Univ.Ultralight ) Frontier, MITP, Mainz 15–19 June 2015 Shining TeV Gamma Rays through the Universe

Georg Raffelt, MPI Physics, MunichFigure from a talk by Manuel Meyer (Univ.Ultralight Hamburg) Frontier, MITP, Mainz 15–19 June 2015 Parameter Space for Axion-Like Particles (ALPs)

ALPS-II at DESY

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Galactic Globular Clusters

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 New ALP Limit from Globular Clusters

Helium abundance and energy loss rate from modern number counts HB/RGB in 39 globular clusters

Planck Ayala, Dominguez, Giannotti, Mirizzi & Straniero, arXiv:1406.6053

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Axion and ALP Dark Matter

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Creation of Cosmological Axions by Re-alignment

푻 ~ 풇풂 (very early universe) 푉(푎)

• UPQ(1) spontaneously broken

• Higgs field settles in “Mexican hat”

• Axion field sits fixed at 푎𝑖 = Θ𝑖 푓푎 푎

푻 ~ ퟏ GeV (푯 ~ ퟏퟎ−ퟗ eV) 푉(푎) • Axion mass turns on quickly by thermal instanton gas

• Field starts oscillating when 푎 푚푎 ≳ 3퐻

• Classical field oscillations (axions at rest) Θ = 0

Axions are born as nonrelativistic, classical field oscillations Very small mass, yet cold dark matter

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Axion Cosmology in PLB 120 (1983)

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 WISPy Cold Dark Matter

General ALPs produced by re-alignment as cold dark matter

Arias, Cadamuro, Goodsell, Jaeckel, Redondo, Ringwald, arXiv:1201.5902

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Axion Dark Matter Driving Oscillators

4 Oscillating axion field (DM) ΛQCD  Oscillating Q term • Drives oscillating neutron EDM Θ = 푎/f푎 • Drives oscillating E-field in microwave cavity w/ B-field −휋 +휋

3 Assume axions are the galactic dark matter: 휌푎 ~ 300 MeV/cm

2 2 2 2 2 2 2 4 휌푎 = 푚푎Φ푎 = 푚푎 Θ푓푎 ∼ Θ 푚휋푓휋 ∼ Θ ΛQCD

Independently of 푓 expect 푎 −19 Θ 푡 = 푎 푡 /푓푎 ∼ 3 × 10 cos 푚푎푡

16 Expect time-varying neutron EDM, MHz frequency for 푓푎 ~ 10 GeV

푒 푚푞 −34 푑푛∼ Θ ∼ 3 × 10 푒−cm cos 푚푎푡 2푚푛 푚푁

8 orders of magnitude below limit on static EDM, but oscillates!  CASPEr Project

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Cold Axion Populations

Cosmic axion Scenario 1

Random string • Cosmic inflation first

Θ푖 values • PQ symmetry breaking at 푇 ∼ 푓푎 1.12 0.01 • Every causal patch has different random Θ푖 0.37 0.63 1.93 • Topological defects at interfaces

2.01 • Axion dark matter from 3.14 0.17 1.57 - average re-alignment - cosmic-string (CS) & domain-wall (DW) decay Scenario 2

• Cosmic inflation after PQ symmetry breaking

• All axions from re-alignment of one random Θ = 1.57 푖 Θi in our patch of the universe

• Allows large 푓푎 if Θ푖 ≪ 1 (“anthropic” case)

1.184 1.184 2 2 푓푎 2 10 휇eV 훺푎ℎ = 0.20 Θ푖 12 = 0.11 Θ푖 10 GeV 푚푎

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Isocurvature Constraints

B-modes in CMB would exclude

“anthropic” regime of large 푓푎

[GeV]

푎 푓

B-modes in CMB would suggest “large” 푚 Classic 푎

regime for dark matter axions Axion decay constant constant decay Axion

Hubble scale during inflation [GeV]

Visinelli & Gondolo, arXiv:1403.4594

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Axion Production by Domain Wall and String Decay Recent numerical studies of collapse of string-domain wall system

1.19 푓푎 Ω ℎ2 = 8.4 ± 3.0 푎 1012GeV

−0.41 푔∗,1 Λ × 70 400 MeV

Implies a CDM axion mass of

푚푎 ∼ 300 휇eV

Hiramatsu, Kawasaki, Saikawa & Sekiguchi, arXiv:1202.5851 (2012)

More recently by the same group

푚푎 ∼ 90 − 140 휇eV

Kawasaki, Saikawa & Sekiguchi, arXiv:1412.0789 (PRD 2015)

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Axion Dark Matter Density

Partly excluded by Hot DM Cold DM cosmic HDM bounds & Euclid sensitivity

[arXiv:1502.03325] JavierRedondo 2014

Realignment

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Axion Dark Matter from Topological Defects Editor’s suggestion

Diversity of scenarios for cosmic axion production depending on domain-wall index NDW and phase parameter δ of the bias term

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Pie Chart of Dark Universe

Dark Energy ~70% (Cosmological Constant)

Neutrinos ~ Ordinary Matter 5% 0.1-2% (of this only about Dark Matter 10% luminous) ~25%

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Historical Neutrino Dark Matter Lessons

Early 1980s - If neutrinos have mass, probably they are dark matter (풎흂~ퟏퟎ 퐞퐕) (“Neutrinos are known to exist”, only SM candidate)

- Detection of 풎흂풆 ∼ ퟑퟎ 퐞퐕 at ITEP, (PRL 58:2019, 1987) - Dedicated oscillation experiments (NOMAD 1995–1998 and CHORUS 1994–1997)

Status 2015 - 70% of gravitating “mass” is dark energy - Dark matter must be mostly “cold” (structure formation) - Neutrinos have sub-eV masses (oscillations, cosmo limits) - Sub-dominant dark matter component

History does not always repeat itself, but … - If axions (or similar) exist, MUST be ALL of dark matter?

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Dennis the Menace

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Landscape of Axion Searches

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 CP-Violating Forces

푁 푁 푁 푒 푒 푒 푔푠 푔푠 푔푠 푔푝 푔푝 푔푝

bulk bulk bulk spin spin spin 푎 푎 푎

Tests of Newton’s law Torsion balance using Spin-spin forces & equivalence principle: polarized electron spins hard to measure 푁 2 푁 푒 푒 2 Scalar axion coupling 푔푠 Axion couplings 푔푠 푔푝 Axion couplings 푔푠 T-violating force

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 NMR Experiment

ARIADNE: Axion Resonant InterAction DetectioN Experiment A.Geraci, A.Arvanitaki, A.Kapitulnik, Chen-Yu Liu, J.Long, Y.Semertzidis, M.Snow (to be supported by NSF and/or DoE?) Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 New Ideas for Axion Detection

IAXO

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP,[Arvanitaki Mainz 15–19 2015]June 2015 Axion and Axion-Like Particle Searches

ARIADNE WISP Center for Axion & Precision DMX Physics (KAIST, Korea) (DESY)

MAGIC ADMX-HF (Yale) Axion Dark Matter Experiment (UW, Seattle)

H.E.S.S.

IAXO Proposal CASPEr, perhaps @ HIM (CERN) (Mainz)

CAST @ CERN

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Dow Jones Index of Axion Physics

inSPIRE: Citation of Peccei-Quinn papers or title axion (and similar) 350

300

250

200

150

100

50

0

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015 Dow Jones Index of Axion Physics

inSPIRE: Citation of Peccei-Quinn papers or title axion (and similar) 350

300

250

200

150

100

50

0

Georg Raffelt, MPI Physics, Munich Ultralight Frontier, MITP, Mainz 15–19 June 2015