Game Theory TEXTBOOK
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PDL As a Multi-Agent Strategy Logic
PDL as a Multi-Agent Strategy Logic ∗ Extended Abstract Jan van Eijck CWI and ILLC Science Park 123 1098 XG Amsterdam, The Netherlands [email protected] ABSTRACT The logic we propose follows a suggestion made in Van Propositional Dynamic Logic or PDL was invented as a logic Benthem [4] (in [11]) to apply the general perspective of ac- for reasoning about regular programming constructs. We tion logic to reasoning about strategies in games, and links propose a new perspective on PDL as a multi-agent strategic up to propositional dynamic logic (PDL), viewed as a gen- logic (MASL). This logic for strategic reasoning has group eral logic of action [29, 19]. Van Benthem takes individual strategies as first class citizens, and brings game logic closer strategies as basic actions and proposes to view group strate- to standard modal logic. We demonstrate that MASL can gies as intersections of individual strategies (compare also express key notions of game theory, social choice theory and [1] for this perspective). We will turn this around: we take voting theory in a natural way, we give a sound and complete the full group strategies (or: full strategy profiles) as basic, proof system for MASL, and we show that MASL encodes and construct individual strategies from these by means of coalition logic. Next, we extend the language to epistemic strategy union. multi-agent strategic logic (EMASL), we give examples of A fragment of the logic we analyze in this paper was pro- what it can express, we propose to use it for posing new posed in [10] as a logic for strategic reasoning in voting (the questions in epistemic social choice theory, and we give a cal- system in [10] does not have current strategies). -
Game Theory- Prisoners Dilemma Vs Battle of the Sexes EXCERPTS
Lesson 14. Game Theory 1 Lesson 14 Game Theory c 2010, 2011 ⃝ Roberto Serrano and Allan M. Feldman All rights reserved Version C 1. Introduction In the last lesson we discussed duopoly markets in which two firms compete to sell a product. In such markets, the firms behave strategically; each firm must think about what the other firm is doing in order to decide what it should do itself. The theory of duopoly was originally developed in the 19th century, but it led to the theory of games in the 20th century. The first major book in game theory, published in 1944, was Theory of Games and Economic Behavior,byJohnvon Neumann (1903-1957) and Oskar Morgenstern (1902-1977). We will return to the contributions of Von Neumann and Morgenstern in Lesson 19, on uncertainty and expected utility. Agroupofpeople(orteams,firms,armies,countries)areinagame if their decision problems are interdependent, in the sense that the actions that all of them take influence the outcomes for everyone. Game theory is the study of games; it can also be called interactive decision theory. Many real-life interactions can be viewed as games. Obviously football, soccer, and baseball games are games.Butsoaretheinteractionsofduopolists,thepoliticalcampaignsbetweenparties before an election, and the interactions of armed forces and countries. Even some interactions between animal or plant species in nature can be modeled as games. In fact, game theory has been used in many different fields in recent decades, including economics, political science, psychology, sociology, computer science, and biology. This brief lesson is not meant to replace a formal course in game theory; it is only an in- troduction. -
The Logic of Costly Punishment Reversed: Expropriation of Free-Riders and Outsiders∗,†
The logic of costly punishment reversed: expropriation of free-riders and outsiders∗ ,† David Hugh-Jones Carlo Perroni University of East Anglia University of Warwick and CAGE January 5, 2017 Abstract Current literature views the punishment of free-riders as an under-supplied pub- lic good, carried out by individuals at a cost to themselves. It need not be so: often, free-riders’ property can be forcibly appropriated by a coordinated group. This power makes punishment profitable, but it can also be abused. It is easier to contain abuses, and focus group punishment on free-riders, in societies where coordinated expropriation is harder. Our theory explains why public goods are un- dersupplied in heterogenous communities: because groups target minorities instead of free-riders. In our laboratory experiment, outcomes were more efficient when coordination was more difficult, while outgroup members were targeted more than ingroup members, and reacted differently to punishment. KEY WORDS: Cooperation, costly punishment, group coercion, heterogeneity JEL CLASSIFICATION: H1, H4, N4, D02 ∗We are grateful to CAGE and NIBS grant ES/K002201/1 for financial support. We would like to thank Mark Harrison, Francesco Guala, Diego Gambetta, David Skarbek, participants at conferences and presentations including EPCS, IMEBESS, SAET and ESA, and two anonymous reviewers for their comments. †Comments and correspondence should be addressed to David Hugh-Jones, School of Economics, University of East Anglia, [email protected] 1 Introduction Deterring free-riding is a central element of social order. Most students of collective action believe that punishing free-riders is costly to the punisher, but benefits the community as a whole. -
Prisoners of Reason Game Theory and Neoliberal Political Economy
C:/ITOOLS/WMS/CUP-NEW/6549131/WORKINGFOLDER/AMADAE/9781107064034PRE.3D iii [1–28] 11.8.2015 9:57PM Prisoners of Reason Game Theory and Neoliberal Political Economy S. M. AMADAE Massachusetts Institute of Technology C:/ITOOLS/WMS/CUP-NEW/6549131/WORKINGFOLDER/AMADAE/9781107064034PRE.3D iv [1–28] 11.8.2015 9:57PM 32 Avenue of the Americas, New York, ny 10013-2473, usa Cambridge University Press is part of the University of Cambridge. It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence. www.cambridge.org Information on this title: www.cambridge.org/9781107671195 © S. M. Amadae 2015 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2015 Printed in the United States of America A catalog record for this publication is available from the British Library. Library of Congress Cataloging in Publication Data Amadae, S. M., author. Prisoners of reason : game theory and neoliberal political economy / S.M. Amadae. pages cm Includes bibliographical references and index. isbn 978-1-107-06403-4 (hbk. : alk. paper) – isbn 978-1-107-67119-5 (pbk. : alk. paper) 1. Game theory – Political aspects. 2. International relations. 3. Neoliberalism. 4. Social choice – Political aspects. 5. Political science – Philosophy. I. Title. hb144.a43 2015 320.01′5193 – dc23 2015020954 isbn 978-1-107-06403-4 Hardback isbn 978-1-107-67119-5 Paperback Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate. -
Repeated Games
REPEATED GAMES 1 Early PD experiments In 1950, Merrill Flood and Melvin Dresher (at RAND) devised an experiment to test Nash’s theory about defection in a two-person prisoners’ dilemma. Experimental Design – They asked two friends to play the PD 100 times. – They measured the success of Nash’s equilibrium concept by counting the number of times the players chose {D;D}. 2 Flood and Dresher’s results Player 1 cooperated in 68 rounds Player 2 cooperated in 78 rounds Both cooperated in 60 of last 89 rounds Flood Dresher Nash 3 Flood and Dresher’s results Player 1 cooperated in 68 rounds Player 2 cooperated in 78 rounds Both cooperated in 60 of last 89 rounds Wait a Ha! That jerk I can’tI’mOh a be Ha! Nash second... Nash was genius...%&@#!wrong! was wrong! wrong! Flood Dresher Nash 4 Nash’s response “If this experiment were conducted with various different players rotating the competition and with no information given to a player of what choices the others have been making until the end of all trials, then the experimental results would have been quite different, for this modification of procedure would remove the interaction between the trials.” 5 Nash’s response “The flaw in this experiment as a test of equilibrium point theory is that the experiment really amounts to having the players play one large multimove game. One cannot...think of the thing as a sequence of independent games...there is too much interaction.” In other words, Nash said that repeating the game changes the game itself. -
Recency, Records and Recaps: Learning and Non-Equilibrium Behavior in a Simple Decision Problem*
Recency, Records and Recaps: Learning and Non-equilibrium Behavior in a Simple Decision Problem* DREW FUDENBERG, Harvard University ALEXANDER PEYSAKHOVICH, Facebook Nash equilibrium takes optimization as a primitive, but suboptimal behavior can persist in simple stochastic decision problems. This has motivated the development of other equilibrium concepts such as cursed equilibrium and behavioral equilibrium. We experimentally study a simple adverse selection (or “lemons”) problem and find that learning models that heavily discount past information (i.e. display recency bias) explain patterns of behavior better than Nash, cursed or behavioral equilibrium. Providing counterfactual information or a record of past outcomes does little to aid convergence to optimal strategies, but providing sample averages (“recaps”) gets individuals most of the way to optimality. Thus recency effects are not solely due to limited memory but stem from some other form of cognitive constraints. Our results show the importance of going beyond static optimization and incorporating features of human learning into economic models. Categories & Subject Descriptors: J.4 [Social and Behavioral Sciences] Economics Author Keywords & Phrases: Learning, behavioral economics, recency, equilibrium concepts 1. INTRODUCTION Understanding when repeat experience can lead individuals to optimal behavior is crucial for the success of game theory and behavioral economics. Equilibrium analysis assumes all individuals choose optimal strategies while much research in behavioral economics -
Public Goods Agreements with Other-Regarding Preferences
NBER WORKING PAPER SERIES PUBLIC GOODS AGREEMENTS WITH OTHER-REGARDING PREFERENCES Charles D. Kolstad Working Paper 17017 http://www.nber.org/papers/w17017 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 May 2011 Department of Economics and Bren School, University of California, Santa Barbara; Resources for the Future; and NBER. Comments from Werner Güth, Kaj Thomsson and Philipp Wichardt and discussions with Gary Charness and Michael Finus have been appreciated. Outstanding research assistance from Trevor O’Grady and Adam Wright is gratefully acknowledged. Funding from the University of California Center for Energy and Environmental Economics (UCE3) is also acknowledged and appreciated. The views expressed herein are those of the author and do not necessarily reflect the views of the National Bureau of Economic Research. NBER working papers are circulated for discussion and comment purposes. They have not been peer- reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications. © 2011 by Charles D. Kolstad. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source. Public Goods Agreements with Other-Regarding Preferences Charles D. Kolstad NBER Working Paper No. 17017 May 2011, Revised June 2012 JEL No. D03,H4,H41,Q5 ABSTRACT Why cooperation occurs when noncooperation appears to be individually rational has been an issue in economics for at least a half century. In the 1960’s and 1970’s the context was cooperation in the prisoner’s dilemma game; in the 1980’s concern shifted to voluntary provision of public goods; in the 1990’s, the literature on coalition formation for public goods provision emerged, in the context of coalitions to provide transboundary pollution abatement. -
Norms, Repeated Games, and the Role of Law
Norms, Repeated Games, and the Role of Law Paul G. Mahoneyt & Chris William Sanchiricot TABLE OF CONTENTS Introduction ............................................................................................ 1283 I. Repeated Games, Norms, and the Third-Party Enforcement P rob lem ........................................................................................... 12 88 II. B eyond T it-for-Tat .......................................................................... 1291 A. Tit-for-Tat for More Than Two ................................................ 1291 B. The Trouble with Tit-for-Tat, However Defined ...................... 1292 1. Tw o-Player Tit-for-Tat ....................................................... 1293 2. M any-Player Tit-for-Tat ..................................................... 1294 III. An Improved Model of Third-Party Enforcement: "D ef-for-D ev". ................................................................................ 1295 A . D ef-for-D ev's Sim plicity .......................................................... 1297 B. Def-for-Dev's Credible Enforceability ..................................... 1297 C. Other Attractive Properties of Def-for-Dev .............................. 1298 IV. The Self-Contradictory Nature of Self-Enforcement ....................... 1299 A. The Counterfactual Problem ..................................................... 1300 B. Implications for the Self-Enforceability of Norms ................... 1301 C. Game-Theoretic Workarounds ................................................ -
The Impact of Beliefs on Effort in Telecommuting Teams
The impact of beliefs on effort in telecommuting teams E. Glenn Dutcher, Krista Jabs Saral Working Papers in Economics and Statistics 2012-22 University of Innsbruck http://eeecon.uibk.ac.at/ University of Innsbruck Working Papers in Economics and Statistics The series is jointly edited and published by - Department of Economics - Department of Public Finance - Department of Statistics Contact Address: University of Innsbruck Department of Public Finance Universitaetsstrasse 15 A-6020 Innsbruck Austria Tel: + 43 512 507 7171 Fax: + 43 512 507 2970 E-mail: [email protected] The most recent version of all working papers can be downloaded at http://eeecon.uibk.ac.at/wopec/ For a list of recent papers see the backpages of this paper. The Impact of Beliefs on E¤ort in Telecommuting Teams E. Glenn Dutchery Krista Jabs Saralz February 2014 Abstract The use of telecommuting policies remains controversial for many employers because of the perceived opportunity for shirking outside of the traditional workplace; a problem that is potentially exacerbated if employees work in teams. Using a controlled experiment, where individuals work in teams with varying numbers of telecommuters, we test how telecommut- ing a¤ects the e¤ort choice of workers. We …nd that di¤erences in productivity within the team do not result from shirking by telecommuters; rather, changes in e¤ort result from an individual’s belief about the productivity of their teammates. In line with stereotypes, a high proportion of both telecommuting and non-telecommuting participants believed their telecommuting partners were less productive. Consequently, lower expectations of partner productivity resulted in lower e¤ort when individuals were partnered with telecommuters. -
Lecture Notes
Chapter 12 Repeated Games In real life, most games are played within a larger context, and actions in a given situation affect not only the present situation but also the future situations that may arise. When a player acts in a given situation, he takes into account not only the implications of his actions for the current situation but also their implications for the future. If the players arepatient andthe current actionshavesignificant implications for the future, then the considerations about the future may take over. This may lead to a rich set of behavior that may seem to be irrational when one considers the current situation alone. Such ideas are captured in the repeated games, in which a "stage game" is played repeatedly. The stage game is repeated regardless of what has been played in the previous games. This chapter explores the basic ideas in the theory of repeated games and applies them in a variety of economic problems. As it turns out, it is important whether the game is repeated finitely or infinitely many times. 12.1 Finitely-repeated games Let = 0 1 be the set of all possible dates. Consider a game in which at each { } players play a "stage game" , knowing what each player has played in the past. ∈ Assume that the payoff of each player in this larger game is the sum of the payoffsthat he obtains in the stage games. Denote the larger game by . Note that a player simply cares about the sum of his payoffs at the stage games. Most importantly, at the beginning of each repetition each player recalls what each player has 199 200 CHAPTER 12. -
Noisy Directional Learning and the Logit Equilibrium*
CSE: AR SJOE 011 Scand. J. of Economics 106(*), *–*, 2004 DOI: 10.1111/j.1467-9442.2004.000376.x Noisy Directional Learning and the Logit Equilibrium* Simon P. Anderson University of Virginia, Charlottesville, VA 22903-3328, USA [email protected] Jacob K. Goeree California Institute of Technology, Pasadena, CA 91125, USA [email protected] Charles A. Holt University of Virginia, Charlottesville, VA 22903-3328, USA [email protected] PROOF Abstract We specify a dynamic model in which agents adjust their decisions toward higher payoffs, subject to normal error. This process generates a probability distribution of players’ decisions that evolves over time according to the Fokker–Planck equation. The dynamic process is stable for all potential games, a class of payoff structures that includes several widely studied games. In equilibrium, the distributions that determine expected payoffs correspond to the distributions that arise from the logit function applied to those expected payoffs. This ‘‘logit equilibrium’’ forms a stochastic generalization of the Nash equilibrium and provides a possible explanation of anomalous laboratory data. ECTED Keywords: Bounded rationality; noisy directional learning; Fokker–Planck equation; potential games; logit equilibrium JEL classification: C62; C73 I. Introduction Small errors and shocks may have offsetting effects in some economic con- texts, in which case there is not much to be gained from an explicit analysis of stochasticNCORR elements. In other contexts, a small amount of randomness can * We gratefully acknowledge financial support from the National Science Foundation (SBR- 9818683U and SBR-0094800), the Alfred P. Sloan Foundation and the Dutch National Science Foundation (NWO-VICI 453.03.606). -
Prisoner's Dilemma: Pavlov Versus Generous Tit-For-Tat
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 2686-2689, April 1996 Evolution Human cooperation in the simultaneous and the alternating Prisoner's Dilemma: Pavlov versus Generous Tit-for-Tat CLAUS WEDEKIND AND MANFRED MILINSKI Abteilung Verhaltensokologie, Zoologisches Institut, Universitat Bern, CH-3032 Hinterkappelen, Switzerland Communicated by Robert M. May, University of Oxford, Oxford, United Kingdom, November 9, 1995 (received for review August 7, 1995) ABSTRACT The iterated Prisoner's Dilemma has become Opponent the paradigm for the evolution of cooperation among egoists. Since Axelrod's classic computer tournaments and Nowak and C D Sigmund's extensive simulations of evolution, we know that natural selection can favor cooperative strategies in the C 3 0 Prisoner's Dilemma. According to recent developments of Player theory the last champion strategy of "win-stay, lose-shift" D 4 1 ("Pavlov") is the winner only ifthe players act simultaneously. In the more natural situation of the roles players alternating FIG. 1. Payoff matrix of the game showing the payoffs to the player. of donor and recipient a strategy of "Generous Tit-for-Tat" Each player can either cooperate (C) or defect (D). In the simulta- wins computer simulations of short-term memory strategies. neous game this payoff matrix could be used directly; in the alternating We show here by experiments with humans that cooperation game it had to be translated: if a player plays C, she gets 4 and the dominated in both the simultaneous and the alternating opponent 3 points. If she plays D, she gets 5 points and the opponent Prisoner's Dilemma.