2.5 Complex Numbers and Roots

Total Page:16

File Type:pdf, Size:1020Kb

2.5 Complex Numbers and Roots 2.5 Complex Numbers and Roots Objectives: N.CN.1: Know there is a complex number i such that i2 = -1, and every complex number has the form a + bi with a and b real. N.CN.2: Use the relation i2 = -1, and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers. N.CN.7: Solve quadratic equations with real coefficients that have complex solutions. For the Board: You will be able to define and use imaginary and complex numbers. You will be able to solve quadratic equations with complex roots. Bell Work 2.5: Simplify each expression. 42 1. 108 2. 6 24 3. 3 Find the zeros of each function. 4. f(x) = x2 – 18x + 16 5. f(x) = x2 + 6x – 24 Anticipatory Set: f(x) = x2 + 1 has no real zeros. Solve for the zeros using square rooting. x2 + 1 = 0 x2 = -1 x = 1 We can find solutions if we define the square root of a negative number. This is why imaginary numbers were invented. The imaginary unit i is defined as 1 . An imaginary number is the square root of a negative number. 1 = I 2 = 1 ∙ 2 = i 2 4 = 1 ∙ 4 = 2i Imaginary numbers can be written in the form bi, where b is a real number and i is the imaginary unit. If b is a positive real number, then b = i b . The square of an imaginary number is the original negative number. ( )2 = i2 = -1 b 2 = 1 b2 = bi ( )2 = (i )2 = -b. Open the book to page 95 and read example 1. Example: Express each number in terms of i. a. 5 121 b. - 96 5 1 ∙ 121 - 1 ∙ 96 5i ∙ 11 -i 16 ∙ 6 55i -4i 6 White Board Activity: Practice: Express each number in terms of i. 1 a. 12 b. 2 36 c. 63 3 1 1 ∙ 12 2 1 36 1 63 3 1 i 4 ∙ 3 2i ∙ 6 i 9 7 3 1 2i 12i i 3 7 3 i 7 Open the book to page 95 and read example 2. Example: Solve each equation. Use square rooting. a. x2 = -144 b. 5x2 + 90 = 0 x = 144 5x2 = -90 x2 = -18 x = 1 144 x = 18 x = 1 18 x = ±12i x = ±i 9 2 x = ±3i 2 White Board Activity: Practice: Solve each equation. Use square rooting. a. x2 = -36 b. x2 + 48 = 0 c. 9x2 + 25 = 0 x = ± 36 x2 = -48 9x2 = -25 25 x = ± 1 36 x = ± 48 x2 = 9 25 x = ±6i x = ± 1 48 x = ± 9 25 x = ±i 16 3 x = ± 1 9 5 x = ±4i 3 x = i 3 A complex number is a number that can be written in the form a + bi, where a and b are real numbers and i = 1 . Examples: 3 - 5i -5 + i 2 ± 4i The set of real numbers is a subset of the set of complex numbers C. Open the book to page 95 and study the Venn Diagram. Every complex number has a real part “a” and an imaginary part “b”. Real numbers are complex numbers where b = 0. Imaginary numbers are complex numbers where a = 0 and b ≠ 0. These are sometimes called pure imaginary numbers. Two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal . Open the book to page 95 and read example 3. Example: Find the values of x and y that make the equation 4x + 10i = 2 – (4y)i true. 4x + 10i = 2 + (-4y)i 4x = 2 10 = -4y X = ½ y = 10/-4 y = -2.5 White Board Activity: Practice: Find the values of x and y that make each equation true. a. 2x – 6i = -8 + (20y)i b. -8 + (6y)i = 5x - i 6 2x + (-6)I = -8 + (20y)I -8 + (6y)I = 5x + (- )i 2x = -8 -6 = 20y -8 = 5x 6y = - 6 x = -4 y = -6/20 x = -8/5 y = 6 = -3/10 Open the book to page 96 and read example 4. Example: Find the zeros of each function using completing the square. a. f(x) = x2 + 10x + 26 b. g(x) = x2 + 4x + 12 x2 + 10x + 26 = 0 x2 + 4x + 12 = 0 (x2 + 10x + _____) = -26 + _____ (x2 + 4x + _____) = -12 + _____ ½ (10) = 5; 52 = 25 ½ (4) = 2; 22 = 4 (x2 + 10x + 25) = -26 + 25 = -1 (x2 + 4x + 4) = -12 + 4 = -8 (x + 5)2 = -1 (x + 2)2 = -8 x + 5 = 1 x + 2 = 8 1 8 i 4 2 x = -5 ± i x = -2 ± 2i 2 White Board Activity: Practice: Find the zeros of each function using completing the square. a. f(x) = x2 + 4x + 13 b. g(x) = x2 – 8x + 18 x2 + 4x + 13 = 0 x2 - 8x + 18 = 0 (x2 + 4x + _____) = -13 + _____ (x2 - 8x + _____) = -18 + _____ ½ (4) = 2; 22 = 4 ½ (8) = 4; 42 = 16 (x2 + 4x + 4) = -13 + 4 = -9 (x2 - 8x + 16) = -18 + 16 = -2 (x + 2)2 = -9 (x - 4)2 = -2 x + 2 = 1 9 x - 4 = 2 1 2 x = -2 ± 3i x = 4 ± i Solutions like all of the above are called complex conjugate pairs. -5 + I and -5 – I -2 + 2i and -2 - 2i -2 + 3i and -2 - 3i 4 + i and 4 - i Their real parts are equal and their imaginary parts are opposites. The complex conjugate of a + bi is a – bi. Note: If a quadratic equation has non-real roots, then these roots are complex conjugates. Open the book to page 96 and read example 5. Example: Find each complex conjugate. a. 8 + 5i b. 6i 8 – 5i -6i White Board Activity: Practice: Find each complex conjugate. a. 9 – i b. i + c. -8i 9 + i -I + 8i Assessment: Question student pairs. Independent Practice: Text: pg. 97 – 98 prob. 2 – 35, 43 - 57. For a Grade: Text: pg. 97 – 98 prob. 4, 8, 16, 24, 34. 2.
Recommended publications
  • Euler's Square Root Laws for Negative Numbers
    Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Complex Numbers Mathematics via Primary Historical Sources (TRIUMPHS) Winter 2020 Euler's Square Root Laws for Negative Numbers Dave Ruch Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_complex Part of the Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, and the Science and Mathematics Education Commons Click here to let us know how access to this document benefits ou.y Euler’sSquare Root Laws for Negative Numbers David Ruch December 17, 2019 1 Introduction We learn in elementary algebra that the square root product law pa pb = pab (1) · is valid for any positive real numbers a, b. For example, p2 p3 = p6. An important question · for the study of complex variables is this: will this product law be valid when a and b are complex numbers? The great Leonard Euler discussed some aspects of this question in his 1770 book Elements of Algebra, which was written as a textbook [Euler, 1770]. However, some of his statements drew criticism [Martinez, 2007], as we shall see in the next section. 2 Euler’sIntroduction to Imaginary Numbers In the following passage with excerpts from Sections 139—148of Chapter XIII, entitled Of Impossible or Imaginary Quantities, Euler meant the quantity a to be a positive number. 1111111111111111111111111111111111111111 The squares of numbers, negative as well as positive, are always positive. ...To extract the root of a negative number, a great diffi culty arises; since there is no assignable number, the square of which would be a negative quantity. Suppose, for example, that we wished to extract the root of 4; we here require such as number as, when multiplied by itself, would produce 4; now, this number is neither +2 nor 2, because the square both of 2 and of 2 is +4, and not 4.
    [Show full text]
  • Section 3.6 Complex Zeros
    210 Chapter 3 Section 3.6 Complex Zeros When finding the zeros of polynomials, at some point you're faced with the problem x 2 −= 1. While there are clearly no real numbers that are solutions to this equation, leaving things there has a certain feel of incompleteness. To address that, we will need utilize the imaginary unit, i. Imaginary Number i The most basic complex number is i, defined to be i = −1 , commonly called an imaginary number . Any real multiple of i is also an imaginary number. Example 1 Simplify − 9 . We can separate − 9 as 9 −1. We can take the square root of 9, and write the square root of -1 as i. − 9 = 9 −1 = 3i A complex number is the sum of a real number and an imaginary number. Complex Number A complex number is a number z = a + bi , where a and b are real numbers a is the real part of the complex number b is the imaginary part of the complex number i = −1 Arithmetic on Complex Numbers Before we dive into the more complicated uses of complex numbers, let’s make sure we remember the basic arithmetic involved. To add or subtract complex numbers, we simply add the like terms, combining the real parts and combining the imaginary parts. 3.6 Complex Zeros 211 Example 3 Add 3 − 4i and 2 + 5i . Adding 3( − i)4 + 2( + i)5 , we add the real parts and the imaginary parts 3 + 2 − 4i + 5i 5 + i Try it Now 1. Subtract 2 + 5i from 3 − 4i .
    [Show full text]
  • The Geometry of René Descartes
    BOOK FIRST The Geometry of René Descartes BOOK I PROBLEMS THE CONSTRUCTION OF WHICH REQUIRES ONLY STRAIGHT LINES AND CIRCLES ANY problem in geometry can easily be reduced to such terms that a knowledge of the lengths of certain straight lines is sufficient for its construction.1 Just as arithmetic consists of only four or five operations, namely, addition, subtraction, multiplication, division and the extraction of roots, which may be considered a kind of division, so in geometry, to find required lines it is merely necessary to add or subtract ther lines; or else, taking one line which I shall call unity in order to relate it as closely as possible to numbers,2 and which can in general be chosen arbitrarily, and having given two other lines, to find a fourth line which shall be to one of the given lines as the other is to unity (which is the same as multiplication) ; or, again, to find a fourth line which is to one of the given lines as unity is to the other (which is equivalent to division) ; or, finally, to find one, two, or several mean proportionals between unity and some other line (which is the same as extracting the square root, cube root, etc., of the given line.3 And I shall not hesitate to introduce these arithmetical terms into geometry, for the sake of greater clearness. For example, let AB be taken as unity, and let it be required to multiply BD by BC. I have only to join the points A and C, and draw DE parallel to CA ; then BE is the product of BD and BC.
    [Show full text]
  • A Quartically Convergent Square Root Algorithm: an Exercise in Forensic Paleo-Mathematics
    A Quartically Convergent Square Root Algorithm: An Exercise in Forensic Paleo-Mathematics David H Bailey, Lawrence Berkeley National Lab, USA DHB’s website: http://crd.lbl.gov/~dhbailey! Collaborator: Jonathan M. Borwein, University of Newcastle, Australia 1 A quartically convergent algorithm for Pi: Jon and Peter Borwein’s first “big” result In 1985, Jonathan and Peter Borwein published a “quartically convergent” algorithm for π. “Quartically convergent” means that each iteration approximately quadruples the number of correct digits (provided all iterations are performed with full precision): Set a0 = 6 - sqrt[2], and y0 = sqrt[2] - 1. Then iterate: 1 (1 y4)1/4 y = − − k k+1 1+(1 y4)1/4 − k a = a (1 + y )4 22k+3y (1 + y + y2 ) k+1 k k+1 − k+1 k+1 k+1 Then ak, converge quartically to 1/π. This algorithm, together with the Salamin-Brent scheme, has been employed in numerous computations of π. Both this and the Salamin-Brent scheme are based on the arithmetic-geometric mean and some ideas due to Gauss, but evidently he (nor anyone else until 1976) ever saw the connection to computation. Perhaps no one in the pre-computer age was accustomed to an “iterative” algorithm? Ref: J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity}, John Wiley, New York, 1987. 2 A quartically convergent algorithm for square roots I have found a quartically convergent algorithm for square roots in a little-known manuscript: · To compute the square root of q, let x0 be the initial approximation.
    [Show full text]
  • Unit 2. Powers, Roots and Logarithms
    English Maths 4th Year. European Section at Modesto Navarro Secondary School UNIT 2. POWERS, ROOTS AND LOGARITHMS. 1. POWERS. 1.1. DEFINITION. When you multiply two or more numbers, each number is called a factor of the product. When the same factor is repeated, you can use an exponent to simplify your writing. An exponent tells you how many times a number, called the base, is used as a factor. A power is a number that is expressed using exponents. In English: base ………………………………. Exponente ………………………… Other examples: . 52 = 5 al cuadrado = five to the second power or five squared . 53 = 5 al cubo = five to the third power or five cubed . 45 = 4 elevado a la quinta potencia = four (raised) to the fifth power . 1521 = fifteen to the twenty-first . 3322 = thirty-three to the power of twenty-two Exercise 1. Calculate: a) (–2)3 = f) 23 = b) (–3)3 = g) (–1)4 = c) (–5)4 = h) (–5)3 = d) (–10)3 = i) (–10)6 = 3 3 e) (7) = j) (–7) = Exercise: Calculate with the calculator: a) (–6)2 = b) 53 = c) (2)20 = d) (10)8 = e) (–6)12 = For more information, you can visit http://en.wikibooks.org/wiki/Basic_Algebra UNIT 2. Powers, roots and logarithms. 1 English Maths 4th Year. European Section at Modesto Navarro Secondary School 1.2. PROPERTIES OF POWERS. Here are the properties of powers. Pay attention to the last one (section vii, powers with negative exponent) because it is something new for you: i) Multiplication of powers with the same base: E.g.: ii) Division of powers with the same base : E.g.: E.g.: 35 : 34 = 31 = 3 iii) Power of a power: 2 E.g.
    [Show full text]
  • CHAPTER 8. COMPLEX NUMBERS Why Do We Need Complex Numbers? First of All, a Simple Algebraic Equation Like X2 = −1 May Not Have
    CHAPTER 8. COMPLEX NUMBERS Why do we need complex numbers? First of all, a simple algebraic equation like x2 = 1 may not have a real solution. − Introducing complex numbers validates the so called fundamental theorem of algebra: every polynomial with a positive degree has a root. However, the usefulness of complex numbers is much beyond such simple applications. Nowadays, complex numbers and complex functions have been developed into a rich theory called complex analysis and be- come a power tool for answering many extremely difficult questions in mathematics and theoretical physics, and also finds its usefulness in many areas of engineering and com- munication technology. For example, a famous result called the prime number theorem, which was conjectured by Gauss in 1849, and defied efforts of many great mathematicians, was finally proven by Hadamard and de la Vall´ee Poussin in 1896 by using the complex theory developed at that time. A widely quoted statement by Jacques Hadamard says: “The shortest path between two truths in the real domain passes through the complex domain”. The basic idea for complex numbers is to introduce a symbol i, called the imaginary unit, which satisfies i2 = 1. − In doing so, x2 = 1 turns out to have a solution, namely x = i; (actually, there − is another solution, namely x = i). We remark that, sometimes in the mathematical − literature, for convenience or merely following tradition, an incorrect expression with correct understanding is used, such as writing √ 1 for i so that we can reserve the − letter i for other purposes. But we try to avoid incorrect usage as much as possible.
    [Show full text]
  • Lecture 15: Section 2.4 Complex Numbers Imaginary Unit Complex
    Lecture 15: Section 2.4 Complex Numbers Imaginary unit Complex numbers Operations with complex numbers Complex conjugate Rationalize the denominator Square roots of negative numbers Complex solutions of quadratic equations L15 - 1 Consider the equation x2 = −1. Def. The imaginary unit, i, is the number such that p i2 = −1 or i = −1 Power of i p i1 = −1 = i i2 = −1 i3 = i4 = i5 = i6 = i7 = i8 = Therefore, every integer power of i can be written as i; −1; −i; 1. In general, divide the exponent by 4 and rewrite: ex. 1) i85 2) (−i)85 3) i100 4) (−i)−18 L15 - 2 Def. Complex numbers are numbers of the form a + bi, where a and b are real numbers. a is the real part and b is the imaginary part of the complex number a + bi. a + bi is called the standard form of a complex number. ex. Write the number −5 as a complex number in standard form. NOTE: The set of real numbers is a subset of the set of complex numbers. If b = 0, the number a + 0i = a is a real number. If a = 0, the number 0 + bi = bi, is called a pure imaginary number. Equality of Complex Numbers a + bi = c + di if and only if L15 - 3 Operations with Complex Numbers Sum: (a + bi) + (c + di) = Difference: (a + bi) − (c + di) = Multiplication: (a + bi)(c + di) = NOTE: Use the distributive property (FOIL) and remember that i2 = −1. ex. Write in standard form: 1) 3(2 − 5i) − (4 − 6i) 2) (2 + 3i)(4 + 5i) L15 - 4 Complex Conjugates Def.
    [Show full text]
  • The Ordered Distribution of Natural Numbers on the Square Root Spiral
    The Ordered Distribution of Natural Numbers on the Square Root Spiral - Harry K. Hahn - Ludwig-Erhard-Str. 10 D-76275 Et Germanytlingen, Germany ------------------------------ mathematical analysis by - Kay Schoenberger - Humboldt-University Berlin ----------------------------- 20. June 2007 Abstract : Natural numbers divisible by the same prime factor lie on defined spiral graphs which are running through the “Square Root Spiral“ ( also named as “Spiral of Theodorus” or “Wurzel Spirale“ or “Einstein Spiral” ). Prime Numbers also clearly accumulate on such spiral graphs. And the square numbers 4, 9, 16, 25, 36 … form a highly three-symmetrical system of three spiral graphs, which divide the square-root-spiral into three equal areas. A mathematical analysis shows that these spiral graphs are defined by quadratic polynomials. The Square Root Spiral is a geometrical structure which is based on the three basic constants: 1, sqrt2 and π (pi) , and the continuous application of the Pythagorean Theorem of the right angled triangle. Fibonacci number sequences also play a part in the structure of the Square Root Spiral. Fibonacci Numbers divide the Square Root Spiral into areas and angle sectors with constant proportions. These proportions are linked to the “golden mean” ( golden section ), which behaves as a self-avoiding-walk- constant in the lattice-like structure of the square root spiral. Contents of the general section Page 1 Introduction to the Square Root Spiral 2 2 Mathematical description of the Square Root Spiral 4 3 The distribution
    [Show full text]
  • Operations with Complex Numbers Adding & Subtracting: Combine Like Terms (풂 + 풃풊) + (풄 + 풅풊) = (풂 + 풄) + (풃 + 풅)풊 Examples: 1
    Name: __________________________________________________________ Date: _________________________ Period: _________ Chapter 2: Polynomial and Rational Functions Topic 1: Complex Numbers What is an imaginary number? What is a complex number? The imaginary unit is defined as 풊 = √−ퟏ A complex number is defined as the set of all numbers in the form of 푎 + 푏푖, where 푎 is the real component and 푏 is the coefficient of the imaginary component. An imaginary number is when the real component (푎) is zero. Checkpoint: Since 풊 = √−ퟏ Then 풊ퟐ = Operations with Complex Numbers Adding & Subtracting: Combine like terms (풂 + 풃풊) + (풄 + 풅풊) = (풂 + 풄) + (풃 + 풅)풊 Examples: 1. (5 − 11푖) + (7 + 4푖) 2. (−5 + 7푖) − (−11 − 6푖) 3. (5 − 2푖) + (3 + 3푖) 4. (2 + 6푖) − (12 − 4푖) Multiplying: Just like polynomials, use the distributive property. Then, combine like terms and simplify powers of 푖. Remember! Multiplication does not require like terms. Every term gets distributed to every term. Examples: 1. 4푖(3 − 5푖) 2. (7 − 3푖)(−2 − 5푖) 3. 7푖(2 − 9푖) 4. (5 + 4푖)(6 − 7푖) 5. (3 + 5푖)(3 − 5푖) A note about conjugates: Recall that when multiplying conjugates, the middle terms will cancel out. With complex numbers, this becomes even simpler: (풂 + 풃풊)(풂 − 풃풊) = 풂ퟐ + 풃ퟐ Try again with the shortcut: (3 + 5푖)(3 − 5푖) Dividing: Just like polynomials and rational expressions, the denominator must be a rational number. Since complex numbers include imaginary components, these are not rational numbers. To remove a complex number from the denominator, we multiply numerator and denominator by the conjugate of the Remember! You can simplify first IF factors can be canceled.
    [Show full text]
  • Connecting Algebra and Geometry to Find Square and Higher Order Roots Iwan R
    Georgia Journal of Science Volume 72 No. 2 Scholarly Contributions from the Article 3 Membership and Others 2014 Connecting Algebra and Geometry to Find Square and Higher Order Roots Iwan R. Elstak [email protected] Sudhir Goel Follow this and additional works at: https://digitalcommons.gaacademy.org/gjs Part of the Mathematics Commons Recommended Citation Elstak, Iwan R. and Goel, Sudhir (2014) "Connecting Algebra and Geometry to Find Square and Higher Order Roots," Georgia Journal of Science, Vol. 72, No. 2, Article 3. Available at: https://digitalcommons.gaacademy.org/gjs/vol72/iss2/3 This Research Articles is brought to you for free and open access by Digital Commons @ the Georgia Academy of Science. It has been accepted for inclusion in Georgia Journal of Science by an authorized editor of Digital Commons @ the Georgia Academy of Science. Elstak and Goel: Connecting Algebra and Geometry to Find Roots 103 CONNECTING ALGEBRA AND GEOMETRY TO FIND SQUARE AND HIGHER ORDER ROOTS Iwan R. Elstak* and Sudhir Goel Valdosta State University, Valdosta, GA 31698 *Corresponding Author E-mail: [email protected] ABSTRACT Unfortunately, the repeat rate for all core curriculum courses including calculus-I and II, and also math education courses is too high. K-12 students are barely able to do estimation, an important part of Mathe- matics, whether it is adding fractions or finding roots, or for that matter, simple percent problems. In this paper we present geometric ways to reason about approximation of square roots and cube roots that are not accessible with simple routine techniques. We combine graphical methods, the use of a geometry software (sketch pad) and convergence of sequences to find higher order roots of positive real numbers and in the process, reason with recursion.
    [Show full text]
  • Notes on Complex Numbers
    Computer Science C73 Fall 2021 Scarborough Campus University of Toronto Notes on complex numbers This is a brief review of complex numbers, to provide the relevant background that students need to follow the lectures on the Fast Fourier Transform (FFT). Students have previously encountered this material in their linear algebra courses. p • The \imaginary unit" i = −1. This is a quantity which, multiplied by itself, yields −1; i.e., i2 = −1. It is called \imaginary" because no real number has this property. • Standard representation of complex numbers. A complex number has the form z = a + bi, where a and b are real numbers; a is the \real part" of z and b is the \imaginary part" of z. We can think of z as the pair (a; b), and so complex numbers can be mapped to the Cartesian plane. Just as we can geometrically view the set of real numbers as the set of points along a straight line (the \real line"), we can view complex numbers as the set of points on a plane (the \complex plane"). So in a sense complex numbers are a way of \packaging" a pair of real numbers into a single quantity. • Equality between complex numbers. We define two complex numbers to be equal to each other if and only if they have the same real parts and the same imaginary parts. In other words, if viewed as points on the plane, the two numbers coincide. • Operations on complex numbers. We can perform addition and multiplication on compex num- bers. Let z = a + bi and z0 = a0 + b0i.
    [Show full text]
  • Contents 0 Complex Numbers
    Linear Algebra and Dierential Equations (part 0s): Complex Numbers (by Evan Dummit, 2016, v. 2.15) Contents 0 Complex Numbers 1 0.1 Arithmetic with Complex Numbers . 1 0.2 Complex Exponentials, Polar Form, and Euler's Theorem . 2 0 Complex Numbers In this supplementary chapter, we will outline basic properties along with some applications of complex numbers. 0.1 Arithmetic with Complex Numbers • Complex numbers may seem daunting, arbitrary, and strange when rst introduced, but they are (in fact) very useful in mathematics and elsewhere. Plus, they're just neat. • Some History: Complex numbers were rst encountered by mathematicians in the 1500s who were trying to write down general formulas for solving cubic equations (i.e., equations like x3 + x + 1 = 0), in analogy with the well-known formula for the solutions of a quadratic equation. It turned out that their formulas required manipulation of complex numbers, even when the cubics they were solving had three real roots. ◦ It took over 100 years before complex numbers were accepted as something mathematically legitimate: even negative numbers were sometimes suspect, so (as the reader may imagine) their square roots were even more questionable. ◦ The stigma is still evident even today in the terminology (imaginary numbers), and the fact that complex numbers are often glossed over or ignored in mathematics courses. ◦ Nonetheless, they are very real objects (no pun intended), and have a wide range of uses in mathematics, physics, and engineering. ◦ Among neat applications of complex numbers are deriving trigonometric identities with much less work (see later) and evaluating certain kinds of denite and indenite integrals.
    [Show full text]