The Relative Importance of Abiotic and Biotic Factors for Seedling Establishment in the Colorado Desert, CA DISSERTATION Present

Total Page:16

File Type:pdf, Size:1020Kb

The Relative Importance of Abiotic and Biotic Factors for Seedling Establishment in the Colorado Desert, CA DISSERTATION Present The Relative Importance of Abiotic and Biotic Factors for Seedling Establishment in the Colorado Desert, CA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Natasha Nicole Woods Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2015 Dissertation Committee: Maria N. Miriti, Advisor Peter S. Curtis Kristin L. Mercer Copyright by Natasha Nicole Woods 2015 Abstract Drought combined with warmer temperatures has caused extensive mortality in US southwest desert ecosystems. Disproportional mortality among long-lived shrub species can have dire consequences for community regeneration if novel recruitment is dependent on facilitated establishment. However, regeneration niches can be under biotic or abiotic control. My dissertation research examines mechanisms that control juvenile recruitment in the Colorado Desert, CA. Specifically I examine, seed and seedling responses to resources by partitioning those resources that are under direct biotic control based on the production and consumption patterns of standing vegetation, and those that are under abiotic control due to the effects of temperature and precipitation. By examining the relative importance of abiotic and biotic factors that affect plant recruitment, I can anticipate community stability in the face of natural or anthropogenic disturbance and if necessary offer strategies to mitigate species loss by identification of relevant variables to promote recruitment of target species. In chapter 1 I characterize the spatial and temporal distribution of nitrogen for three years at a long-term study site in the Colorado Desert. In chapter 2, I examine the capacity for dominant shrubs to serve as plant facilitators for seed establishment and use a greenhouse experiment to identify the distinct roles of light and nitrogen on seed ii germination. In a third experiment, I examine the roles of neighboring species identity, frequency and density on seedling performance when water and light are limiting. I found that each focal species distinctly influenced nitrogen availability, which is generally higher near plant canopies. I also found higher levels of nitrogen under Ambrosia dumosa compared to the other focal species and the interspace. These results were highly dependent upon season and year (Chapter 1). Adult shrubs did not uniquely impact germination but beneficiary species identity was the main factor for germination. In the greenhouse, differences in percent germination were strongest at full light, and canopy light and nitrogen levels did not affect beneficiary germination (Chapter 2). Using average rainfall, temperature and nitrogen concentrations from canopy microhabitats of Ambrosia dumosa from 2011-2012, I found that competition influenced early performance of A. dumosa, and Eriogonum fasciculatum, but not Larrea tridentata. Reduced growth of L. tridentata seedlings was not attributable to competition (Chapter 3). Given these results, seed germination is not strongly regulated by abiotic or biotic factors; however, shrub canopies may be important for seedling growth and survival. If seedling persistence responds to nitrogen resources, A. dumosa may be instrumental in facilitating the establishment of perennial species. Nevertheless, all facilitators are important for providing increased heterogeneity in the landscape, which may increase regeneration niches for species not examined in my research. Nitrogen levels under shrub control would diminish without shrubs and subsequently, regeneration niches iii would also decrease. However, relative competitive abilities can influence future community composition at the study site. iv This document is dedicated to my brother, Lawrence C. Woods, my grandmothers, Mary L. Terry and Edna Mae Yates, and my brother-in-law Anthony Hardy who are no longer here to see me complete this goal. v Acknowledgements I would like to thank my advisor, Maria Miriti for her unfailing support since I moved to Columbus. Maria has not only trained me in plant community ecology but has supported me personally as well. Maria has always challenged me to think and read broadly. She is my role model and I hope that I can invest in other students all that she has invested in me. I would like to thank my committee members Peter Curtis and Kristin Mercer. I would like to thank Peter for allowing me to barge into his office without an appointment to discuss my research projects and for providing useful feedback on my manuscript. I would like to thank Kristin for inviting me to her lab meetings while Maria was on sabbatical and helping me with some of the initial experimental design for my field work. I also would like to thank Ralph Boerner for serving on my candidacy committee and teaching me how to do soil nitrogen extractions. I am grateful for the help of my lab mates, S. Rodriguez-Buriticá, C. Pieterson, T. Ibrahim and R. McCarthy who faithfully read and provided useful feedback on all of my chapters and/or supported me with my field work. I would also like to thank my work study students and volunteers T. Catrett, E. Salcido, M. Perry, N. Kim, and C. Etiel, for all of the work they helped me complete in the lab. I would especially, like to thank T. Catrett for all of his assistance inputting data and helping me with an untold number of vi nitrogen extractions. I would also like to thank my fellow EEOB graduate students who have helped me during the course of this research through loaning me necessary equipment or by reading my manuscripts, C. Lin (Chia), H. Chang (Chi), A. Fotis, K. Calinger-Yoak, R. Ricart, and K. Knight. This dissertation would not have been possible without support and funding from a number of different sources. This work was made possible by The Evolution, Ecology and Organismal Biology Department at The Ohio State University, and grants from The Desert Legacy Fund, (The Community Foundation Serving Riverside and San Bernardino Counties), the Robert E. Lee Graduate Student Grant (Lee Family Foundation and Joshua Tree National Park Association), Graduate Student Grant (Alumni Grants for Graduate Research and Scholarship, The Ohio State University) and Professional Development/Research Grant (Bells National Research Center, The Ohio State University). I would also like to thank Dr. Valerie Lee, Dr. James Moore III, Dr. Samuel Hodge, and Dr. Robert Bennett for all of their support during my dissertation. I would like to thank M. Umbel, M. Gerring and E. Zehr for being GREAT friends during my time in Columbus. I would also like to thank all of the members of University Baptist Church for all of their support and care. I would not have known that I could have a career in research had it not been for my advisor from my Master’s Degree program, Dr. LaJoyce Debro. Dr. Debro has been a friend and confidant for over ten years. I am grateful for her friendship. I would not be here without the support of my family and friends from Alabama. My dear family and friends, T. Christian, A. F. Christian, T. Toyer, K. Ward, G. Childs, vii J. Johnson, S. Smith, G. Webb, and J. Martin have supported me though this entire process. I would also like to thank my nieces, J. Hardy, L. Hardy, M. Toyer (my adopted niece), my nephew L. Hardy and my goddaughter (L. Ward). When the days got hard I thought of you and pushed on. Thank you for your encouragement. To my Mom and siblings, Frederica, Frederick and Lazarus, I am at a loss for words when it comes to expressing my appreciation for all of the prayers, the emotional and financial support you all have given me throughout my life. This is not just my accomplishment, it is ours. I thank God for all of you and for allowing me to complete in this awesome journey. viii Vita 1996………………………………………...Anniston High School 2001………………………………………...B.S. Biology, Jacksonville State University 2003………………………………………...M.S. Biology, Jacksonville State University 2003-2004…………………………………..Research Assistant, University of Alabama at Birmingham 2004-2008…………………………………...Laboratory Educator, Spelman College 2008 to present ..............................................Graduate Teaching Associate, Evolution Ecology and Organismal Biology, The Ohio State University Fields of Study Major Field: Evolution, Ecology and Organismal Biology ix Table of Contents Abstract ............................................................................................................................... ii Acknowledgements ............................................................................................................ vi Vita ..................................................................................................................................... ix Table of Contents ................................................................................................................ x List of Tables .................................................................................................................... xii List of Figures ................................................................................................................... xv INTRODUCTION .............................................................................................................. 1 Chapter 1: Shrub influences on nitrogen distributions in the Colorado Desert ............ 7 INTRODUCTION ........................................................................................................... 7 METHODS...................................................................................................................
Recommended publications
  • Geomicrobiological Processes in Extreme Environments: a Review
    202 Articles by Hailiang Dong1, 2 and Bingsong Yu1,3 Geomicrobiological processes in extreme environments: A review 1 Geomicrobiology Laboratory, China University of Geosciences, Beijing, 100083, China. 2 Department of Geology, Miami University, Oxford, OH, 45056, USA. Email: [email protected] 3 School of Earth Sciences, China University of Geosciences, Beijing, 100083, China. The last decade has seen an extraordinary growth of and Mancinelli, 2001). These unique conditions have selected Geomicrobiology. Microorganisms have been studied in unique microorganisms and novel metabolic functions. Readers are directed to recent review papers (Kieft and Phelps, 1997; Pedersen, numerous extreme environments on Earth, ranging from 1997; Krumholz, 2000; Pedersen, 2000; Rothschild and crystalline rocks from the deep subsurface, ancient Mancinelli, 2001; Amend and Teske, 2005; Fredrickson and Balk- sedimentary rocks and hypersaline lakes, to dry deserts will, 2006). A recent study suggests the importance of pressure in the origination of life and biomolecules (Sharma et al., 2002). In and deep-ocean hydrothermal vent systems. In light of this short review and in light of some most recent developments, this recent progress, we review several currently active we focus on two specific aspects: novel metabolic functions and research frontiers: deep continental subsurface micro- energy sources. biology, microbial ecology in saline lakes, microbial Some metabolic functions of continental subsurface formation of dolomite, geomicrobiology in dry deserts, microorganisms fossil DNA and its use in recovery of paleoenviron- Because of the unique geochemical, hydrological, and geological mental conditions, and geomicrobiology of oceans. conditions of the deep subsurface, microorganisms from these envi- Throughout this article we emphasize geomicrobiological ronments are different from surface organisms in their metabolic processes in these extreme environments.
    [Show full text]
  • CDFG Natural Communities List
    Department of Fish and Game Biogeographic Data Branch The Vegetation Classification and Mapping Program List of California Terrestrial Natural Communities Recognized by The California Natural Diversity Database September 2003 Edition Introduction: This document supersedes all other lists of terrestrial natural communities developed by the Natural Diversity Database (CNDDB). It is based on the classification put forth in “A Manual of California Vegetation” (Sawyer and Keeler-Wolf 1995 and upcoming new edition). However, it is structured to be compatible with previous CNDDB lists (e.g., Holland 1986). For those familiar with the Holland numerical coding system you will see a general similarity in the upper levels of the hierarchy. You will also see a greater detail at the lower levels of the hierarchy. The numbering system has been modified to incorporate this richer detail. Decimal points have been added to separate major groupings and two additional digits have been added to encompass the finest hierarchal detail. One of the objectives of the Manual of California Vegetation (MCV) was to apply a uniform hierarchical structure to the State’s vegetation types. Quantifiable classification rules were established to define the major floristic groups, called alliances and associations in the National Vegetation Classification (Grossman et al. 1998). In this document, the alliance level is denoted in the center triplet of the coding system and the associations in the right hand pair of numbers to the left of the final decimal. The numbers of the alliance in the center triplet attempt to denote relationships in floristic similarity. For example, the Chamise-Eastwood Manzanita alliance (37.106.00) is more closely related to the Chamise- Cupleaf Ceanothus alliance (37.105.00) than it is to the Chaparral Whitethorn alliance (37.205.00).
    [Show full text]
  • Biological Baseline Assessment & Protected
    ALTEC Land Planning (760) 242-9917 19531 US Highway 18 Apple Valley, CA 92307 [email protected] BIOLOGICAL BASELINE ASSESSMENT & NATIVE PLANT REPORT: 8.52 ACRES, MOJAVE DRIVE, VICTORVILLE, CA BIOLOGICAL BASELINE ASSESSMENT & PROTECTED NATIVE DESERT TREE, PLANT AND CACTUS REPORT IN THE CITY OF VICTORVILLE, SAN BERNARDINO COUNTY ASSESSOR’S PARCEL NUMBERS: 3128-621-04-0000 REPORT #: 1 OF 2 & DIGITAL - FOR CITY OF VICTORVILLE PLANNING DEPT. REPORT #: 2 OF 2 & DIGITAL - FOR CLIENT PARCEL 3 OF PARCEL MAP 2092, PMB 18/52 IN THE SOUTHEAST ¼ OF SECTION 10, T5N, R5W, SAN BERNARDINO MERIDIAN, IN THE CITY OF VICTORVILLE, COUNTY OF SAN BERNARDINO, STATE OF CALIFORNIA PREPARED FOR: THE RCH GROUP. C/O LUIS ROSAS, PROJECT MANAGER 11060 WHITE ROCK ROAD, SUITE 150 A RANCHO CORDOVA, CA 95670 916.782.4427 [email protected] PREPARED BY: ALTEC LAND PLANNING 19531 HIGHWAY 18 APPLE VALLEY, CA 92307 © REVISED - SEPTEMBER 2020 REPORT PREPARATION DATE: SEPTEMBER 27, 2020 EFFECTIVE DATE OF REPORT: SEPTEMBER 30, 2020 EXPIRATION DATE OF REPORT: APRIL 1, 2021 (REPTILE & MAMMAL SPECIES ONLY) EXPIRATION DATE OF REPORT: FEBRUARY 1, 2021 (ALL APPLICABLE BIRD SPECIES) DISTRIBUTION: 1 DIGITAL ORIGINAL TO CITY OF VICTORVILLE AND PAPER ORIGINAL TO CLIENT I HEREBY CERTIFY THAT THE FINDINGS AND CONCLUSIONS PRESENTED IN THIS REPORT ARE ACCURATE TO THE BEST OF MY KNOWLEDGE. Randolph J. Coleman, AICP CEP, CCIM, MIRM, PLS, PE, QSD/P CDFW Scientific Collecting Permit #11586 Certified Wildlife Biologist #43090 Certified Arborist & Tree Risk Assessment Qualified WE#8024A Qualified
    [Show full text]
  • Judy Chicago Unit Living Smoke, a Tribute to the Living Desert
    JUDY CHICAGO UNIT LIVING SMOKE, A TRIBUTE TO THE LIVING DESERT Title of Artists in the Desert Landscape Time: 60 mins. lesson Standards Grade National Core Arts Standards: Visual Arts Anchor Standards-7,10,11 6-8 Addressed level FACILITATION Preparation Before the Lesson 1. Review the entire video. 2. Review the website and video clip used: “Judy Chicago: A Fireworks Story” (note, some nudity) ● Safe Link: https://video.link/w/MzpVb ● Original Link: https://youtu.be/MvqxVu4DHhg 3. Review the hands-on activity in the lesson. 4. Review Vocabulary Terms ● Resonate- sympathetic to your own experience or outlook; something that moves a person emotionally; or initiates action to do or create something as a response ● Land Art- art that is made directly in the landscape, sculpting the land itself into earthworks or making structures in the landscape using natural materials such as rocks or twigs ● Desert Ecology-The study of interactions between both biotic and abiotic components of desert environments. A desert ecosystem is defined by interactions between organisms, the climate in which they live, and any other non-living influences on the habitat. 5. Open each website/resource behind the zoom screen. 6. Start that Zoom session 10 minutes before your scheduled start time to support students with tech challenges. Necessary Student Materials • n/a Step 1: Agreements Set Expectations 3 minutes 1. Use this time to welcome your learners and establish how you expect them to engage/participate. ● Ask the learners: What would help us to stay engaged during the lesson? How can we all be accountable to the learning during this lesson? Step 2: The Hook Activate Prior Knowledge 15-20 minutes 1.
    [Show full text]
  • Pala Park Habitat Assessment
    Pala Park Bank Stabilization Project: Geotechnical Exploration TABLE OF CONTENTS SECTION 1.0 COUNTY OF RIVERSIDE ATTACHMENTS Biological Report Summary Report (Attachment E-3) Level of Significance Checklist (Attachment E-4) Biological Resources Map (Attachment E-5) Site Photographs (Attachment E-6) SECTION 2.0 HABITAT ASSESSMENT General Site Information ............................................................................................................... 1 Methods ........................................................................................................................................ 2 Existing Conditions ....................................................................................................................... 4 Special Status Resources ............................................................................................................. 8 Other Issues ................................................................................................................................ 14 Recommendations ...................................................................................................................... 14 References .................................................................................................................................. 16 LIST OF TABLES Page 1 Special Status Plant Species Known to Occur in the Vicinity of the Survey Area ........... 10 2 Chaparral Sand-Verbena Populations Observed in the Survey Area ............................. 12 3 Paniculate Tarplant
    [Show full text]
  • Joshua Tree 3 11 05
    Vegetation Classification of Joshua Tree National Park, Riverside and San Bernardino Counties, California A report submitted to National Park Service Tasha LaDaux, Chief of Resources Joshua Tree National Park 74485 National Park Drive Twentynine Palms, California 92277-3597 by California Department of Fish and Game Wildlife and Habitat Data Analysis Branch Sacramento, California by Todd Keeler-Wolf Sau San Diana Hickson March 2005 Section Page Table of Contents Section Page INTRODUCTION ......................................................................................................... 1 Background and Standards............................................................................................ 1 Study Area ..................................................................................................................... 3 Timeline......................................................................................................................... 3 METHODS..................................................................................................................... 4 Vegetation Sampling and Classification....................................................................... 4 Development of the Preliminary Classification ................................................... 4 Integration of Existing Data Sets.......................................................................... 4 Summary .............................................................................................................. 7 Sample Allocation
    [Show full text]
  • Pollen Ultrastructure of the Biovulate Euphorbiaceae Author(S): Michael G
    Pollen Ultrastructure of the Biovulate Euphorbiaceae Author(s): Michael G. Simpson and Geoffrey A. Levin Reviewed work(s): Source: International Journal of Plant Sciences, Vol. 155, No. 3 (May, 1994), pp. 313-341 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/2475184 . Accessed: 26/07/2012 14:35 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to International Journal of Plant Sciences. http://www.jstor.org Int.J. Plant Sci. 155(3):313-341.1994. ? 1994by The Universityof Chicago. All rightsreserved. 1058-5893/94/5503-0008$02.00 POLLENULTRASTRUCTURE OF THE BIOVULATE EUPHORBIACEAE MICHAEL G. SIMPSON AND GEOFFREY A. LEVIN' Departmentof Biology,San Diego StateUniversity, San Diego,California 92182-0057; and BotanyDepartment, San Diego NaturalHistory Museum, P.O. Box 1390,San Diego,California 92112 Pollenultrastructure of the biovulate Euphorbiaceae, including the subfamilies Phyllanthoideae and Oldfieldioideae,was investigatedwith light, scanning electron, and transmissionelectron microscopy. Pollenof Phyllanthoideae, represented by 12 speciesin ninegenera, was prolateto oblate,almost always 3-colporate,rarely 3-porate or pantoporate,and mostlywith reticulate, rarely baculate, echinate, or scabrate,sculpturing.
    [Show full text]
  • Los Géneros De La Familia Euphorbiaceae En México (Parte D) Anales Del Instituto De Biología
    Anales del Instituto de Biología. Serie Botánica ISSN: 0185-254X [email protected] Universidad Nacional Autónoma de México México Martínez Gordillo, Martha; Jiménez Ramírez, Jaime; Cruz Durán, Ramiro; Juárez Arriaga, Edgar; García, Roberto; Cervantes, Angélica; Mejía Hernández, Ricardo Los géneros de la familia Euphorbiaceae en México (parte D) Anales del Instituto de Biología. Serie Botánica, vol. 73, núm. 2, julio-diciembre, 2002, pp. 245-281 Universidad Nacional Autónoma de México Distrito Federal, México Disponible en: http://www.redalyc.org/articulo.oa?id=40073208 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto GÉNEROS DE EUPHORBIACEAE 245 Fig. 42. Hippomane mancinella. A, rama; B, glándula; C, inflorescencia estaminada (Marín G. 75, FCME). 246 M. MARTÍNEZ GORDILLO ET AL. Se reconoce por tener una glándula en la unión de la lámina y el pecíolo, por el haz, el ovario 6-9-locular y los estilos cortos. Tribu Hureae 46. Hura L., Sp. Pl. 1008. 1753. Tipo: Hura crepitans L. Árboles monoicos; corteza con espinas cónicas; exudado claro. Hojas alternas, simples, hojas usualmente ampliamente ovadas y subcordatas, márgenes serrados, haz y envés glabros o pubescentes; nervadura pinnada; pecíolos largos y con dos glándulas redondeadas al ápice; estípulas pareadas, imbricadas, caducas. Inflorescencias unisexuales, glabras, las estaminadas terminales, largo- pedunculadas, espigadas; bractéolas membranáceas; flor pistilada solitaria en las axilas de las hojas distales. Flor estaminada pedicelada, encerrada en una bráctea delgada que se rompe en la antesis; cáliz unido formando una copa denticulada; pétalos ausentes; disco ausente; estambres numerosos, unidos, filamentos ausen- tes, anteras sésiles, verticiladas y lateralmente compresas en 2-10 verticilos; pistilodio ausente.
    [Show full text]
  • Appendix D-2 Potential for Special-Status Plant Species to Occur Within the Project Site, Envicom Corporation, (March 2015)
    Appendix D-2 Potential for Special-Status Plant Species to Occur within the Project Site, Envicom Corporation, (March 2015) APPENDIX D-2 Potential for Special-Status Plant Species to Occur within the Project Site (March 2015) Growth Form Name Federal State CNPS CVMSHCP Potential for On-site Habitat Requirement Blooming Scientific Name Status Status List Species? Occurrence* Period Chaparral sand- None None 1B.1 No Sandy soils in chaparral, coastal Annual herb; Low potential to occur. Not verbena scrub, and desert dune plant January - observed during surveys, and the Abronia villosa communities below an elevation of September project site does not provide the var. aurita 1,600 meters (m). species preferred habitat. Parish’s Onion None None 4.3 No Species occurs on rocky soils in Perennial Low potential to occur. Not Allium parishii Joshua tree woodland, Mojavean bulbiferous herb; observed during surveys and the desert scrub, and pinyon and juniper April - May project site is well below the woodland. Threatened by mining elevation range for this species. and vehicles. Elevation ranges from 900 – 1,465m. San Bernardino None None 1B.2 No Species often found on granitic or Perennial herb; Low potential to occur. No milk-vetch carbonate within Joshua tree April - June suitable habitat on site. Not Astragalus woodland and Pinyon and juniper observed during surveys and the bernardinus woodland. Elevation ranges from 900 project site is well below the – 2,000m. elevation range for this species. Coachella Valley Endanger None 1B.2 Yes The Coachella Valley milk- vetch Perennial herb; Low potential to occur. The milk-vetch ed occurs in dunes and sandy flats, February – May.
    [Show full text]
  • Similarity of Climate Change Data for Antarctica and Nevada
    Undergraduate Research Opportunities Undergraduate Research Opportunities Program (UROP) Program (UROP) 2010 Aug 3rd, 9:00 AM - 12:00 PM Similarity of climate change data for Antarctica and Nevada Corbin Benally University of Nevada, Las Vegas Shahram Latifi University of Nevada, Las Vegas, [email protected] Karletta Chief Desert Research Institute Follow this and additional works at: https://digitalscholarship.unlv.edu/cs_urop Part of the Climate Commons, and the Desert Ecology Commons Repository Citation Benally, Corbin; Latifi, Shahram; and Chief, Karletta, "Similarity of climate change data for Antarctica and Nevada" (2010). Undergraduate Research Opportunities Program (UROP). 5. https://digitalscholarship.unlv.edu/cs_urop/2010/aug3/5 This Event is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Event in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Event has been accepted for inclusion in Undergraduate Research Opportunities Program (UROP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. Similarity of Climate Change Data for Antarctica and Nevada Corbin Benally1, Dr. Shahram Latifi1, Dr. Karletta Chief2 1University of Nevada, Las Vegas, Las Vegas, NV 2Desert Research Institute, Las Vegas, NV Abstract Results References The correlation between temperature and carbon dioxide Throughout the duration of the research, data was readily 1.
    [Show full text]
  • Flora of the Whipple Mountains
    $5.00 (Free to Members) VOL. 35, NO. 1 • WINTER 2007 FREMONTIA JOURNAL OF THE CALIFORNIA NATIVE PLANT SOCIETY FLORA OF THE WHIPPLE MOUNTAINS— THE “NOSE” OF CALIFORNIA INVASIVEINVASIVE PLANTSPLANTS IMPACTIMPACT TRADITIONALTRADITIONAL BASKETRY PLANTS NATIVE GRASSES IN THE GARDEN REMEMBERING GRADY WEBSTER BUCKEYEVOLUME 35:1, AS WINTERBONSAI 2007 AN ORCHID IN SAN DIEGO CALIFORNIA NATIVE PLANT SOCIETY FREMONTIA CNPS, 2707 K Street, Suite 1; Sacramento, CA 95816-5113 Phone: (916) 447-CNPS (2677) Fax: (916) 447-2727 VOL. 35, NO. 1, WINTER 2007 Web site: www.cnps.org Email: [email protected] Copyright © 2007 MEMBERSHIP California Native Plant Society Membership form located on inside back cover; dues include subscriptions to Fremontia and the Bulletin Bart O’Brien, Editor Bob Hass, Copy Editor Mariposa Lily . $1,500 Family or Group . $75 Benefactor . $600 International . $75 Beth Hansen-Winter, Designer Patron . $300 Individual or Library . $45 Brad Jenkins, Jake Sigg, and Carol Plant Lover . $100 Student/Retired/Limited Income . $25 Witham, Proofreaders STAFF CHAPTER COUNCIL CALIFORNIA NATIVE Sacramento Office: Alta Peak (Tulare) . Joan Stewart PLANT SOCIETY Executive Director . Amanda Jorgenson Bristlecone (Inyo-Mono) . Sherryl Taylor Development Director/Finance Channel Islands . Lynne Kada Dedicated to the Preservation of Manager . Cari Porter the California Native Flora Dorothy King Young (Mendocino/ Membership Assistant . Christina Sonoma Coast) . Lori Hubbart The California Native Plant Society Neifer East Bay . Elaine P. Jackson (CNPS) is a statewide nonprofit organi- El Dorado . Amy Hoffman zation dedicated to increasing the un- At Large: Kern County . Lucy Clark derstanding and appreciation of Califor- Fremontia Editor . Bart O’Brien Los Angeles/Santa Monica Mtns .
    [Show full text]
  • Episodic Death Across Species of Desert Shrubs
    Ecology, 88(1), 2007, pp. 32–36 Ó 2007 by the Ecological Society of America EPISODIC DEATH ACROSS SPECIES OF DESERT SHRUBS 1,4 1 2 3 MARIA N. MIRITI, SUSANA RODRI´GUEZ-BURITICA´, S. JOSEPH WRIGHT, AND HENRY F. HOWE 1Department of Evolution, Ecology and Organismal Biology, Ohio State University, 318 West 12th Avenue, Columbus, Ohio 43210-1293 USA 2Smithsonian Tropical Research Institute, Balboa, Republic of Panama 3Biological Sciences (m/c 066), University of Illinois, 845 West Taylor Street, Chicago, Illinois 60607 USA Abstract. Extreme events shape population and community trajectories. We report episodic mortality across common species of thousands of long-lived perennials individually tagged and monitored for 20 years in the Colorado Desert of California following severe regional drought. Demographic records from 1984 to 2004 show 15 years of virtual stasis in populations of adult shrubs and cacti, punctuated by a 55–100% die-off of six of the seven most common perennial species. In this episode, adults that experienced reduced growth in a lesser drought during 1984–1989 failed to survive the drought of 2002. The significance of this event is potentially profound because population dynamics of long-lived plants can be far more strongly affected by deaths of adults, which in deserts potentially live for centuries, than by seedling births or deaths. Differential mortality and rates of recovery during and after extreme climatic events quite likely determine the species composition of plant and associated animal communities for at least decades. The die-off recorded in this closely monitored community provides a unique window into the mechanics of this process of species decline and replacement.
    [Show full text]