Sedentism and Subsistence in the Late Archaic: a Study of Seasonality, Quahog Clam Exploitation, and Resource Scheduling Alexandra L

Total Page:16

File Type:pdf, Size:1020Kb

Sedentism and Subsistence in the Late Archaic: a Study of Seasonality, Quahog Clam Exploitation, and Resource Scheduling Alexandra L Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2012 Sedentism and Subsistence in the Late Archaic: A Study of Seasonality, Quahog Clam Exploitation, and Resource Scheduling Alexandra L. Parsons Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES SEDENTISM AND SUBSISTENCE IN THE LATE ARCHAIC: A STUDY OF SEASONALITY, QUAHOG CLAM EXPLOITATION, AND RESOURCE SCHEDULING By ALEXANDRA L. PARSONS A dissertation submitted to tHe Department of Anthropology in partial fulfillment of tHe requirements for tHe degree of Doctor of PHilosopHy Degree Awarded: Spring Semester, 2012 Alexandra L. Parsons defended tHis dissertation on MarcH 1, 2012 The members of the supervisory committee were: RocHelle A. Marrinan Professor Directing Dissertation Daniel J. Pullen University Representative Glen H. Doran Committee Member Lynne A. Schepartz Committee Member The Graduate ScHool Has verified and approved tHe above‑named committee members, and certifies tHat tHe dissertation Has been approved in accordance witH university requirements. ii © 2012 Alexandra L. Parsons All RigHts Reserved iii This manuscript is dedicated to my mother, Corinne Royce Dewey. iv ACKNOWLEDGEMENTS I would like to thank the National Science Foundation for providing me with a Dissertation Improvement Grant. THis grant permitted me to collect tHe modern comparative collection in St. Augustine, and funded much of the chemical analyses. The grant also provided funds for general laboratory supplies needed to conduct the researcH. I would also like to thank the Eisele Foundation for two Eisele Dissertation ResearcH grants. THese grants provided travel funds to borrow arcHaeological collections and to see the Guana sHell ring, and also provided funds for equipment and some of the cHemical analyses. I am greatly indebted to my advisor, RocHelle A. Marrinan, for Her guidance and assistance tHrougHout my tenure at Florida State University. RocHelle Has been an extremely generous advisor and has provided me with many opportunities to further my research and skills. In 2006, Rochelle arranged for me to Help on an excavation at tHe Grand shell ring. This experience resulted in tHe first of several clam seasonality studies, wHicH Have been my primary researcH focus. RocHelle also Helped me to secure an internship on St. CatHerines Island, wHere I got my first glimpse of sHell rings in Georgia. From tHe planning stages of my researcH througH defense of the dissertation, sHe Has always offered sound advice wHenever I encountered a problem. RocHelle Has been extremely Helpful in every aspect of tHis researcH, and sHe even Helped me acquire funds to begin my research. By taking the courses she instructed, conducting researcH and writing reports witH Her, and finisHing tHis dissertation under her guidance I have become a better anthropologist and a better scholar. I have greatly enjoyed getting to know her and working with her, and I cannot thank her enough for all her kindness and support over the years. I would also like to thank the members of my committee, Glen H. Doran and Lynne A ScHepartz, for tHeir tHougHtful comments and suggestions. THis manuscript Has been greatly improved by tHeir participation. Both Glen and Lynne remained on my committee and saw me througH until the end, despite all the tumult, cHanges, and uncertainty for Anthropology graduate students over the past few years. I am extremely grateful to Daniel Pullen, wHo kindly agreed to serve as my University Representative in tHe 11th hour before my defense. I am v very thankful for his participation and for his comments and suggestions. I would also like to thank JosepH DonogHue for His comments and suggestions on this manuscript and my qualifying exams. I am greatly indebted to Irv Quitmyer of the Florida Museum of Natural History. Irv’s exemplary researcH on clam seasonality studies was tHe impetus for tHis dissertation. I have greatly enjoyed our discussions about clam biology and clam use in prehistory. His guidance on creating a modern comparative clam collection and advice about metHodology greatly improved tHis researcH. Irv provided feedback on my National Science Foundation Grant proposal that Helped me to receive funding. Irv also allowed me to use His equipment to conduct isotopic testing and to cross‑section tHe clams. I am very grateful to Him for all His advice, assistance, and good company. I would like to extend my sincerest tHanks to Mike Russo of tHe SoutHeast ArcHeological Center. Six years ago I began working on my Master’s tHesis, and Mike sHowed me How to cross‑section and assess clams for seasonality studies. His extensive work on Late Archaic shell rings in tHe SoutHeast Has generated considerable discussion on tHe topic, and Has served as an important resource for my researcH. Mike generously allowed me to analyze tHe clams from His excavations at Guana in 2001. Mike provided information on tHe excavation and also permitted me to use His maps of tHe Guana sHell ring. I am very grateful for all His advice and assistance over tHe years. I would like to thank Becky Saunders of Louisiana State University. Becky allowed me to analyze the clams from Her excavations at Guana in 2005, and sHe prepared tHe loan for these clams. I would also like to tHank Vicki Rolland, wHo participated in botH excavations at Guana. I first met Vicki during excavations at tHe Grand sHell ring in 2006, and I am always happy to see Her or Hear from Her. Vicki Has always been willing to assist me in any way tHat she could, and for tHat I am truly grateful. I would like to thank Dave THomas for His exceptional researcH on St. Catherines Island and for all His advice, guidance, and generosity. Working witH His crew on tHe McQueen sHell ring and attending two of tHe Caldwell Conferences on St. Catherines provided me with new insigHt into a variety of arcHaeological topics. His researcH on reservoir effects in tHe vi SoutHeastern U.S. and His advice on correcting and re‑calibrating radiocarbon dates were especially Helpful in preparing tHis dissertation. I would like to thank Justin Ellenberger, from the Florida FisH and Wildlife Commission for taking my Husband and me out to see the Guana shell ring. Even though it was a miserable place with more mosquitoes than I’ve ever seen in my life, going out to the site was very helpful. I am especially appreciative of the bug spray he gave us! I am forever indebted to PHil Cubbedge for his assistance in procuring the modern clam collection for this dissertation. PHil not only escorted me into the marsH in St. Augustine, He helped me collect clams in almost every month of 2010. When I began this research I had a lot of book‑knowledge about clams, but tHis information wasn’t very helpful for finding clams in the marsH. WHen I first started collecting clams, I couldn’t tell tHe difference between a crab hole and a clam keyhole, but by December of 2010 I had become a proficient clam gatHerer, thanks to PHil’s instruction. I Have greatly benefitted from PHil’s extensive knowledge, and I have a much broader appreciation for the marsh ecosystem as a result. I would like to thank my friends in TallaHassee for all their support. Katie Miyar, Eduardo Miyar, Ian Pawn, SaraH Liko, Ivy Hepp, Guy Hepp, Julie Byrd, Ryan Duggins, Dan Seinfeld, JosH Englehardt, Ermal Liko, Bridget McDonnell, Giovanna Englehardt, Brew ScHoonover, and Jack Juliet, I am so Happy I got to know all of you and I am very grateful for your commiseration and support throughout this process! Many of you were directly involved in tHis researcH and were extremely Helpful wHen it came to cleaning (i.e., eating) tHe quaHog clams I brougHt back for my research. I greatly enjoyed our clam feasts and your great company. I would like to thank my mom, Corinne Dewey for Her endless support and encouragement during tHis process. I owe my love of books and learning to Her, and I wouldn’t have pursued a graduate degree without Her support. WHile I was conducting tHis research, she always Had sometHing positive to say, even wHen circumstances were difficult. I would also like to tHank my fatHer, Dale Dewey, for all His support and encouragement. I couldn’t have done this without them. vii I would like to thank my sister, Virginia Carr for Her Hard work and assistance in gathering clams for the modern comparative collection. She bravely followed me into the marsH and became an expert clam gatHerer. I would also like to tHank Her for Her untiring sense of Humor tHat got me tHrougH many Hours of analyzing clam sHells. Finally, I would like to thank my Husband, TimotHy Parsons. Tim was tHere during every stage of tHis researcH. He accompanied me out to tHe mosquito‑ridden Guana shell ring and Helped me collect live clams from tHe marsH on several occasions. He even Helped me cook them a few times – despite his hatred of clams. I am really sorry about that batch of clams that went bad – the smell of them steaming open out on our porcH was pretty Horrific! Tim created nearly all of the maps in this dissertation and helped me edit many of tHe drawings. Tim also found a way to smooth out the cross‑sections of rougH cuts on some of tHe clams from tHe modern comparative collection, which was extremely helpful. In addition to all this, Tim was always encouraging, even wHen I didn’t tHink I could possibly finisH tHis dissertation by tHe University’s deadline.
Recommended publications
  • Donacidae - Bivalvia)
    Bolm. Zool., Univ. S. P aub 3:121-142, 1978 FUNCTIONAL ANATOMY OF DON AX HANLEY ANUS PHILIPPI 1847 (DONACIDAE - BIVALVIA) Walter Narchi Department o f Zoology University o f São Paulo, Brazil ABSTRACT Donax hanleyanus Philippi 1847 occurs throughout the southern half o f the Brazilian littoral. The main organ systems were studied in the living animal, particular attention being paid to the cilia­ ry feeding and cleasing mechanisms in the mantle cavity. The anatomy, functioning of the stomach and the ciliary sorting mechanisms are described. The stomach unlike that of almost all species of Donax and like the majority of the Tellinacea belongs to type V, as defined by Purchon, and could be regarded as advanced for the Donacidae. A general comparison has been made between the known species of Donax and some features of Iphigenia brasiliensis Lamarck 1818, also a donacid. INTRODUCTION Very little is known of donacid bivalves from the Brazilian littoral. Except for the publications of Narchi (1972; 1974) on Iphigenia brasiliensis and some ecological and adaptative features on Donax hanleyanus, all references to them are brief descrip­ tions of the shell and cheklists drawn up from systematic surveys. Beach clams of the genus Donax inhabit intertidal sandy shores in most parts of the world. Donax hanleyanus Philippi 1847 is one of four species occuring through­ out the Brazilian littoral. Its known range includes Espirito Santo State and the sou­ thern Atlantic shoreline down to Uruguay (Rios, 1975). According to Penchaszadeh & Olivier (1975) the species occur in the littoral of Argentina. 122 Walter Narchi The species is fairly common in São Paulo, Parana and Santa Catarina States whe­ re it is used as food by the coastal population (Goffeijé, 1950), and is known as “na- nini” It is known by the name “beguara” (Ihering, 1897) in the Iguape region, but not in S.
    [Show full text]
  • Donax Exploitation on the Pacific Coast: Spatial and Temporal Limits
    DONAX EXPLOITATION ON THE PACIFIC COAST: SPATIAL AND TEMPORAL LIMITS Don Laylander Caltrans District 11 P.O. Box 85406 San Diego, CA 92186-5406 and Dan Saunders Brian F. Mooney Associates 9903 Businesspark Drive, Suite B San Diego, CA 92131 ABSTRACT The marine mollusk genus Donax spp. is widely distributed and was exploited prehistorically in several regions of the world. On the west coast of North America, the focused exploitation of Donax gouldii seems to have been largely limited, in space, to the San Luis Rey River - Buena Vista Creek area of northern San Diego County and, in time, to the Late Prehistoric period. Possible explanations for these limits are discussed. DISCUSSION northern Florida (Larson 1980:71; Miller 1980). The marine mollusk genus Donax spp. is represented in the intertidal zone of open, Two species of Donax are present along sandy beaches along the tropical and temp­ the southern California coastline: D. goul­ erate margins of the continents washed by dii, which ranges south from Santa Cruz or the Atlantic, Pacific, and Indian Oceans. San Luis Obispo, and D. californicus, which ranges south from Santa Barbara (McLean Most species ofDonax consist ofrather 1978; Morris 1966; Rehder 1981). Five other small individuals, and their size would seem Donax species are found in the Gulf of Cali­ likely to have limited the appeal ofthese fornia. Aboriginal Donax exploitation in the clams as efficient food packages for littoral region seems to have focused primarily or collecting peoples. Despite this drawback, exclusively on D. gouldii. Donax is known archaeologically to have been exploited prehistorically in several re­ Donax gouldii lives in the intertidal zone gions.
    [Show full text]
  • The Marine and Brackish Water Mollusca of the State of Mississippi
    Gulf and Caribbean Research Volume 1 Issue 1 January 1961 The Marine and Brackish Water Mollusca of the State of Mississippi Donald R. Moore Gulf Coast Research Laboratory Follow this and additional works at: https://aquila.usm.edu/gcr Recommended Citation Moore, D. R. 1961. The Marine and Brackish Water Mollusca of the State of Mississippi. Gulf Research Reports 1 (1): 1-58. Retrieved from https://aquila.usm.edu/gcr/vol1/iss1/1 DOI: https://doi.org/10.18785/grr.0101.01 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf Research Reports Volume 1, Number 1 Ocean Springs, Mississippi April, 1961 A JOURNAL DEVOTED PRIMARILY TO PUBLICATION OF THE DATA OF THE MARINE SCIENCES, CHIEFLY OF THE GULF OF MEXICO AND ADJACENT WATERS. GORDON GUNTER, Editor Published by the GULF COAST RESEARCH LABORATORY Ocean Springs, Mississippi SHAUGHNESSY PRINTING CO.. EILOXI, MISS. 0 U c x 41 f 4 21 3 a THE MARINE AND BRACKISH WATER MOLLUSCA of the STATE OF MISSISSIPPI Donald R. Moore GULF COAST RESEARCH LABORATORY and DEPARTMENT OF BIOLOGY, MISSISSIPPI SOUTHERN COLLEGE I -1- TABLE OF CONTENTS Introduction ............................................... Page 3 Historical Account ........................................ Page 3 Procedure of Work ....................................... Page 4 Description of the Mississippi Coast ....................... Page 5 The Physical Environment ................................ Page '7 List of Mississippi Marine and Brackish Water Mollusca . Page 11 Discussion of Species ...................................... Page 17 Supplementary Note .....................................
    [Show full text]
  • Worms, Germs, and Other Symbionts from the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor
    h ' '' f MASGC-B-78-001 c. 3 A MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor NATIONAL SEA GRANT DEPOSITORY \ PELL LIBRARY BUILDING URI NA8RAGANSETT BAY CAMPUS % NARRAGANSETT. Rl 02882 Robin M. Overstreet r ii MISSISSIPPI—ALABAMA SEA GRANT CONSORTIUM MASGP—78—021 MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico by Robin M. Overstreet Gulf Coast Research Laboratory Ocean Springs, Mississippi 39564 This study was conducted in cooperation with the U.S. Department of Commerce, NOAA, Office of Sea Grant, under Grant No. 04-7-158-44017 and National Marine Fisheries Service, under PL 88-309, Project No. 2-262-R. TheMississippi-AlabamaSea Grant Consortium furnish ed all of the publication costs. The U.S. Government is authorized to produceand distribute reprints for governmental purposes notwithstanding any copyright notation that may appear hereon. Copyright© 1978by Mississippi-Alabama Sea Gram Consortium and R.M. Overstrect All rights reserved. No pari of this book may be reproduced in any manner without permission from the author. Primed by Blossman Printing, Inc.. Ocean Springs, Mississippi CONTENTS PREFACE 1 INTRODUCTION TO SYMBIOSIS 2 INVERTEBRATES AS HOSTS 5 THE AMERICAN OYSTER 5 Public Health Aspects 6 Dcrmo 7 Other Symbionts and Diseases 8 Shell-Burrowing Symbionts II Fouling Organisms and Predators 13 THE BLUE CRAB 15 Protozoans and Microbes 15 Mclazoans and their I lypeiparasites 18 Misiellaneous Microbes and Protozoans 25 PENAEID
    [Show full text]
  • Donax Trunculus (Bivalvia: Donacidae) by Means of Karyotyping, Fluorochrome Banding and Fluorescent in Situ Hybridization1
    Cytogenetic characterization of Donax trunculus (Bivalvia: Donacidae) by means of karyotyping, fluorochrome banding and fluorescent in situ hybridization1 A. Martínez, L. Mariñas, A. González-Tizón and J. Méndez2 Departamento de Biología Celular y Molecular, Universidade da Coruña, A Zapateira s/n, 15071- La Coruña, Spain Journal of Molluscan Studies, volume 68, issue 4, pages 393-396, november 2002 Received 02 april 2002, accepted 21 may 2002, first published 01 november 2002 How to cite: A. Martínez, L. Mariñas, A. González-Tizón, J.Méndez, Cytogenetic characterization of Donax trunculus (Bivalvia: Donacidae) by means of karyotyping, fluorochrome banding and fluorescent in situ hybridization, Journal of Molluscan Studies, volume 68, issue 4, November 2002, pages 393-396, https://doi.org/10.1093/mollus/68.4.393 Abstract The chromosomes of Donax trunculus were analysed by means of Giemsa staining, chromomycin A3 (CA3), DAPI and fluorescent in situ hybridization (FISH) with an 18S-5.8S-28S rDNA probe. The diploid number is 38 chromosomes and the karyotype consists of nine pairs of metacentric chromosomes, two pairs of submetacentric-metacentric, seven pairs of submetacentric and one pair of telocentric chromosomes. CA3- positive bands are located on eight chromosome pairs and DAPI treatment resulted in uniform staining. Major ribosomal clusters 18S-5.8S-28S are located on the short arm of one submetacentric chromosome pair. Introduction Banding techniques are useful to identify chromosomes and to analyse genomic regions. Some of these techniques
    [Show full text]
  • EMERITA TALPOIDA and DONAX VARIABILIS DISTRIBUTION THROUGHOUT CRESCENTIC FORMATIONS; PEA ISLAND NATIONAL WILDLIFE REFUGE a Thesi
    EMERITA TALPOIDA AND DONAX VARIABILIS DISTRIBUTION THROUGHOUT CRESCENTIC FORMATIONS; PEA ISLAND NATIONAL WILDLIFE REFUGE A thesis submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE in ENVIRONMENTAL STUDIES by BLAIK PULLEY AUGUST 2008 at THE GRADUATE SCHOOL OF THE COLLEGE OF CHARLESTON Approved by: Dennis Stewart, Thesis Advisor Dr. Robert Dolan Dr. Scott Harris Dr. Lindeke Mills Dr. Amy T. McCandless, Dean of the Graduate School 1454471 1454471 2008 ABSTRACT EMERITA TALPOIDA AND DONAX VARIABILIS DISTRIBUTION THROUGHOUT CRESCENTIC FORMATIONS; PEA ISLAND NATIONAL WILDLIFE REFUGE A thesis submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE in ENVIRONMENTAL STUDIES by BLAIK PULLEY JULY 2008 at THE GRADUATE SCHOOL OF THE COLLEGE OF CHARLESTON Pea Island National Wildlife Refuge is a 13-mile stretch of shoreline located on the Outer Banks of North Carolina, 40 miles north of Cape Hatteras and directly south of Oregon Inlet. This Federal Navigation Channel is periodically dredged and sand is placed on the north end of the Pea Island beach. While the sediment nourishes the beach in a particularly sand-starved environment, it also alters the physical and ecological conditions. Most affected are invertebrates living in the swash, the most dominant being the mole crab (Emerita talpoida) and the coquina clam (Donax variabilis). These two species serve as a major food source for shorebirds on the island. It is especially important to protect this food resource on the federal Wildlife Refuge, which operates under a mandate to protect resources for migratory birds. For this research, beach cusps of various sizes were sampled to determine whether there is a correlation between invertebrate populations and the physical characteristics associated with these crescentic features.
    [Show full text]
  • Larval Development of the Coquina Clam, Donax Variabilis Say, with a Discussion of the Structure of the Larval Hinge on the Tellinacea
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 1969 Larval development of the coquina clam, Donax variabilis Say, with a discussion of the structure of the larval hinge on the Tellinacea Paul Chanley Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons Recommended Citation Chanley, Paul, Larval development of the coquina clam, Donax variabilis Say, with a discussion of the structure of the larval hinge on the Tellinacea (1969). Virginia Journal of Science, 19(1), 214-224. https://scholarworks.wm.edu/vimsarticles/2122 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. LARVAL DEVELOPMENT OF THE COQUINA CLAM, DONAX VARIABILIS SAY, WITH A DISCUSSION OF THE STRUC­ TURE OF THE LARVAL HINGE IN THE TELLINACEA1 PAUL CHANLEY Virginia Institute of Marine Science, Wachapreague, Virginia2 ABSTRACT Adult specimens of Donax variabilis were spawned in the laboratory and the larvae reared to metamorphosis. Larval length increases from 70 µ. to 340 µ. during pelagic stages. Height is originally 10 µ. to 15 µ. less than length. Height increases less rapidly than length and may be 50 µ. less than length at metamorphosis. Depth is originally 50 µ. less than length. It also increases more slowly than length and may be 150 µ. to 170 µ. less than length at metamorphosis.
    [Show full text]
  • Coquina Clam Donax Variabilis
    Coquina clam Robert C. Hermes. Photo Researchers, Inc. Donax variabilis Contributor: Larry DeLancey DESCRIPTION Taxonomy and Basic Description This small species of clam, described by Say in 1822 (Adamkewicz and Harasewych 1996), is well known to most beach goers where its shells are found in abundance. Live coquinas are often exposed by retreating waves on sandy oceanic beaches and seem to be more active in the warmer months. This bivalve possesses wedge-shaped shells, generally less than 2.5 cm (1 inch) in length, and is characterized by variously colored bands radiating along the shells (Miner 1950). It is a member of the bivalve family Donacidae, with coquinas being larger and more abundant than D. fossor along sandy beaches in the southeastern U.S. STATUS The seemingly abundant coquina clam is considered an indicator species for the sandy beach- ocean front habitat. This filter-feeder is an important link in food webs, feeding on small particles such as unicellular algae and detritus and, in turn, being consumed by fish such as pompano (Trachinotus carolinus) and “whiting” (Menticirrhus spp.), as well as shorebirds (Finucane 1969, Nelson 1986, DeLancey 1989, Wilson 1999). Coquina clams can also be consumed by humans (Miner 1950). POPULATION DISTRIBUTION AND SIZE The coquina clam ranges from Virginia, down the Atlantic coast, through the Gulf of Mexico and into Texas (Ruppert and Fox 1988). It is common on most ocean front beach types that occur in South Carolina. The prevalence of coquina clams in this habitat makes it an excellent indicator of the health of this ecosystem. Although current population status for these species is unknown, it appears to be common or abundant on the beaches in South Carolina.
    [Show full text]
  • The Evolution of Extreme Longevity in Modern and Fossil Bivalves
    Syracuse University SURFACE Dissertations - ALL SURFACE August 2016 The evolution of extreme longevity in modern and fossil bivalves David Kelton Moss Syracuse University Follow this and additional works at: https://surface.syr.edu/etd Part of the Physical Sciences and Mathematics Commons Recommended Citation Moss, David Kelton, "The evolution of extreme longevity in modern and fossil bivalves" (2016). Dissertations - ALL. 662. https://surface.syr.edu/etd/662 This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact [email protected]. Abstract: The factors involved in promoting long life are extremely intriguing from a human perspective. In part by confronting our own mortality, we have a desire to understand why some organisms live for centuries and others only a matter of days or weeks. What are the factors involved in promoting long life? Not only are questions of lifespan significant from a human perspective, but they are also important from a paleontological one. Most studies of evolution in the fossil record examine changes in the size and the shape of organisms through time. Size and shape are in part a function of life history parameters like lifespan and growth rate, but so far little work has been done on either in the fossil record. The shells of bivavled mollusks may provide an avenue to do just that. Bivalves, much like trees, record their size at each year of life in their shells. In other words, bivalve shells record not only lifespan, but also growth rate.
    [Show full text]
  • Population Dynamics of the Argentinean Surf Clams Donax Hanleyanus and Mesodesma Mactroides from Open-Atlantic Beaches Off Argentina
    Population dynamics of the Argentinean surf clams Donax hanleyanus and Mesodesma mactroides from open-Atlantic beaches off Argentina Populationsdynamik der Argentinischen Brandungsmuscheln Donax hanleyanus und Mesodesma mactroides offener Atlantikstrände vor Argentinien Marko Herrmann Dedicated to my family Marko Herrmann Alfred Wegener Institute for Polar and Marine Research (AWI) Section of Marine Animal Ecology P.O. Box 120161 D-27515 Bremerhaven (Germany) [email protected] Submitted for the degree Dr. rer. nat. of the Faculty 2 of Biology and Chemistry University of Bremen (Germany), October 2008 Reviewer and principal supervisor: Prof. Dr. Wolf E. Arntz 1 Reviewer and co-supervisor: Dr. Jürgen Laudien 1 External Reviewer: Dr. Pablo E. Penchaszadeh 2 1 Alfred Wegener Institute for Polar and Marine Research (AWI) Section of Marine Animal Ecology P.O. Box 120161 D-27515 Bremerhaven (Germany) 2 Director of the Ecology Section at the Museo Argentino de Ciencias Naturales (MACN) - Bernardino Rivadavia Av. Angel Gallardo 470, 3° piso lab. 80 C1405DJR Buenos Aires (Argentina) Contents 1 Summary .................................................................................................... 5 1.1 English Version ........................................................................................... 5 1.2 Deutsche Version ........................................................................................ 9 1.3 Versión Español ........................................................................................ 13 2 Introduction
    [Show full text]
  • Marine Aspidogastrids (Trematoda) from Fishes in the Northern Gulf of Mexico
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 10-1977 Marine Aspidogastrids (Trematoda) from Fishes in the Northern Gulf of Mexico Sherman S. Hendrix Gettysburg College, [email protected] Robin M. Overstreet Gulf Coast Research Laboratory, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Hendrix, Sherman S. and Overstreet, Robin M., "Marine Aspidogastrids (Trematoda) from Fishes in the Northern Gulf of Mexico" (1977). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 487. https://digitalcommons.unl.edu/parasitologyfacpubs/487 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. THE JOURNAL OF PARASITOLOGY Vol. 63, No. 5, October 1977, p. 810-817 MARINE ASPIDOGASTRIDS(TREMATODA) FROM FISHES IN THE NORTHERNGULF OF MEXICO* Sherman S. Hendrixt and Robin M. Overstreett ABSTRACT: Of the aspidogastrids Multicalyx cristata, Lobatostomaringens, Cotylogaster basiri, and C. dinosoides sp. n., the last two had not been previously known from the Gulf of Mexico. The latter dif- fers from other members of its genus by having relatively large equatorial marginal alveoli in compari- son to those at the anterior and posterior ends of the holdfast. It also possesses extensive transverse mus- culature connecting opposed lateral alveoli.
    [Show full text]
  • Fossil Bivalves and the Sclerochronological Reawakening
    Paleobiology, 2021, pp. 1–23 DOI: 10.1017/pab.2021.16 Review Fossil bivalves and the sclerochronological reawakening David K. Moss* , Linda C. Ivany, and Douglas S. Jones Abstract.—The field of sclerochronology has long been known to paleobiologists. Yet, despite the central role of growth rate, age, and body size in questions related to macroevolution and evolutionary ecology, these types of studies and the data they produce have received only episodic attention from paleobiologists since the field’s inception in the 1960s. It is time to reconsider their potential. Not only can sclerochrono- logical data help to address long-standing questions in paleobiology, but they can also bring to light new questions that would otherwise have been impossible to address. For example, growth rate and life-span data, the very data afforded by chronological growth increments, are essential to answer questions related not only to heterochrony and hence evolutionary mechanisms, but also to body size and organism ener- getics across the Phanerozoic. While numerous fossil organisms have accretionary skeletons, bivalves offer perhaps one of the most tangible and intriguing pathways forward, because they exhibit clear, typically annual, growth increments and they include some of the longest-lived, non-colonial animals on the planet. In addition to their longevity, modern bivalves also show a latitudinal gradient of increasing life span and decreasing growth rate with latitude that might be related to the latitudinal diversity gradient. Is this a recently developed phenomenon or has it characterized much of the group’s history? When and how did extreme longevity evolve in the Bivalvia? What insights can the growth increments of fossil bivalves provide about hypotheses for energetics through time? In spite of the relative ease with which the tools of sclerochronology can be applied to these questions, paleobiologists have been slow to adopt sclerochrono- logical approaches.
    [Show full text]