Digital Tabulation of Stratigraphic Data from Oil and Gas Wells in Cuyama Valley and Surrounding Areas, Central California

Total Page:16

File Type:pdf, Size:1020Kb

Digital Tabulation of Stratigraphic Data from Oil and Gas Wells in Cuyama Valley and Surrounding Areas, Central California Digital Tabulation of Stratigraphic Data from Oil And Gas Wells in Cuyama Valley and Surrounding Areas, Central California Open-File Report 2013–1084 U.S. Department of the Interior U.S. Geological Survey Cover: Looking northeast from Cuyama Valley to Caliente Mountain. Producing oil wells in part of the Russell Ranch field in foreground. QTm, Morales Formation; Tsm, Santa Margarita Formation; Tmwr, Whiterock Bluff Shale Member of the Monterey Formation; Tmsa, Saltos Shale Member of the Monterey Formation; Tvpr, Painted Rock Sandstone Member of the Vaqueros Formation. Dotted fault indicates concealed by topography. Photograph taken by Donald S. Sweetkind, U.S. Geological Survey, August 5, 2009. Digital Tabulation of Stratigraphic Data from Oil And Gas Wells in Cuyama Valley and Surrounding Areas, Central California By Donald S. Sweetkind, Shiera C. Bova, Victoria E. Langenheim, Lauren E. Shumaker, and Daniel S. Scheirer Open-File Report 2013–1084 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2013 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Sweetkind, D.S., Bova, S.C., Langenheim, V.E., Shumaker, L.E., and Scheirer, D.S., 2013, Digital tabulation of stratigraphic data from oil and gas wells in Cuyama Valley and surrounding areas, central California: U.S. Geological Survey Open-File Report 2013–1084, 44 p., http://pubs.usgs.gov/of/2013/1084/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Contents Abstract ...................................................................................................................................................................... 1 Introduction ................................................................................................................................................................. 1 Geologic Setting ......................................................................................................................................................... 5 Stratigraphy ............................................................................................................................................................. 5 Structure ................................................................................................................................................................. 9 Data Compilation Methodology ................................................................................................................................. 10 Well Location ........................................................................................................................................................ 10 Sources of Well Data ............................................................................................................................................ 10 Prospect Well Reports ....................................................................................................................................... 12 Well Summary Reports ...................................................................................................................................... 12 Student Theses ................................................................................................................................................. 12 Electrical, Sonic, and Density Logs ................................................................................................................... 14 Stratigraphic Assignments .................................................................................................................................... 26 Explanation of Column Headings and Abbreviations in Data Table Appendix .......................................................... 26 Summary .................................................................................................................................................................. 38 Acknowledgments ..................................................................................................................................................... 38 References Cited ...................................................................................................................................................... 39 Appendix 1. Stratigraphic Data from Oil and Gas Wells in Cuyama Valley and Surrounding Areas ......................... 43 v Figures 1. Generalized geologic map of the Cuyama Basin and surrounding region ............................................................ 3 2. Geologic map of Cuyama Valley and surrounding ranges ................................................................................... 4 3. Generalized stratigraphy of the Cuyama Basin .................................................................................................... 6 4. Diagrammatic northwest–southeast stratigraphic section across the Cuyama Basin ........................................... 8 5. Map showing location of oil and gas wells in Cuyama Valley and surrounding areas, symbolized by source of subsurface stratigraphic data ................................................................................................................... 11 6. Map showing location of student thesis areas and subsurface cross sections in Cuyama Valley ...................... 13 7. Map showing location of wells with example electric logs and wells with sonic and density logs in Cuyama Valley and surrounding areas ...................................................................................................................... 15 8. Representative electric logs from Cuyama Valley .............................................................................................. 16 9. Sonic and density logs from wells in Cuyama Valley and surrounding areas ..................................................... 20 10. Map showing the location of wells in Cuyama Valley where the stratigraphic section is not duplicated by thrusting, and the location of wells in surrounding range blocks where the section is repeated by one or two thrust faults ....................................................................................................................................... 30 11. Map showing the location of wells in Cuyama Valley that penetrate granite or granitic gneiss at depth ............ 37 vi Conversion Factors Multiply By To obtain Length centimeter (cm) 0.3937 inch (in.) meter (m) 3.281 foot (ft) kilometer (km) 0.6214 mile (mi) meter (m) 1.094 yard (yd) Volume cubic meter (m3) 6.290 barrel (petroleum, 1 barrel = 42 gallons) Density gram per cubic centimeter (g/cm3) 62.428 pound per cubic foot (lb/ft3) Interval velocity feet per second (ft/sec) 0.3048 meters per second (m/sec) Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88). Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83). Elevation, as used in this report, refers to distance above the vertical datum. vii Digital Tabulation of Stratigraphic Data from Oil And Gas Wells in Cuyama Valley and Surrounding Areas, Central California By Donald S. Sweetkind, Shiera C. Bova, Victoria E. Langenheim, Lauren E. Shumaker, and Daniel S. Scheirer Abstract Stratigraphic information from 391 oil and gas exploration wells from Cuyama Valley, California, and surrounding areas are herein compiled in digital form from reports that were released originally in paper form. The Cuyama Basin is located within the southeasternmost part of the Coast Ranges and north of the western Transverse Ranges, west of the San Andreas fault. Knowledge of the location and elevation of stratigraphic tops of formations throughout the basin is a first step toward understanding depositional trends and the structural evolution of the basin through time, and helps in understanding the slip history and partitioning of slip on San Andreas and related faults. Introduction Cuyama Valley is a rural agricultural area located about 55 kilometers (km) north of Santa Barbara and approximately 65 km southwest of Bakersfield, California, in the southeasternmost part of the Coast Ranges of California (fig. 1). Cuyama Valley lies within the eastern part of the Coast Ranges, to the west of the San Joaquin Valley, and north of the west-trending Transverse Ranges (fig. 1). Cuyama Valley sits at the intersection of four counties: the main portions of the valley are within Santa Barbara and San Luis Obispo Counties, regions near the headwaters of the Cuyama River lie in Ventura County, and a small eastern part of the valley lies within Kern County (fig. 1). The main economic activities in Cuyama Valley are ranching, agriculture, and oil and gas production. The Cuyama
Recommended publications
  • Pamphlet to Accompany Geologic Map of the Apache Canyon 7.5
    GEOLOGIC MAP AND DIGITAL DATABASE OF THE APACHE CANYON 7.5’ QUADRANGLE, VENTURA AND KERN COUNTIES, CALIFORNIA By Paul Stone1 Digital preparation by P.M. Cossette2 Pamphlet to accompany: Open-File Report 00-359 Version 1.0 2000 This report is preliminary and has not been reviewed for conformity with U. S. Geological Survey editorial standards. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U. S. Government. This database, identified as "Geologic map and digital database of the Apache Canyon 7.5’ quadrangle, Ventura and Kern Counties, California," has been approved for release and publication by the Director of the USGS. Although this database has been reviewed and is substantially complete, the USGS reserves the right to revise the data pursuant to further analysis and review. This database is released on condition that neither the USGS nor the U. S. Government may be held liable for any damages resulting from its use. U.S. Geological Survey 1 345 Middlefield Road, Menlo Park, CA 94025 2 West 904 Riverside Avenue, Spokane, WA 99201 1 CONTENTS Geologic Explanation............................................................................................................. 3 Introduction................................................................................................................................. 3 Stratigraphy................................................................................................................................ 4 Structure ....................................................................................................................................
    [Show full text]
  • Late Cenozoic Tectonics of the Central and Southern Coast Ranges of California
    OVERVIEW Late Cenozoic tectonics of the central and southern Coast Ranges of California Benjamin M. Page* Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115 George A. Thompson† Department of Geophysics, Stanford University, Stanford, California 94305-2215 Robert G. Coleman Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115 ABSTRACT within the Coast Ranges is ascribed in large Taliaferro (e.g., 1943). A prodigious amount of part to the well-established change in plate mo- geologic mapping by T. W. Dibblee, Jr., pre- The central and southern Coast Ranges tions at about 3.5 Ma. sented the areal geology in a form that made gen- of California coincide with the broad Pa- eral interpretations possible. E. H. Bailey, W. P. cific–North American plate boundary. The INTRODUCTION Irwin, D. L. Jones, M. C. Blake, and R. J. ranges formed during the transform regime, McLaughlin of the U.S. Geological Survey and but show little direct mechanical relation to The California Coast Ranges province encom- W. R. Dickinson are among many who have con- strike-slip faulting. After late Miocene defor- passes a system of elongate mountains and inter- tributed enormously to the present understanding mation, two recent generations of range build- vening valleys collectively extending southeast- of the Coast Ranges. Representative references ing occurred: (1) folding and thrusting, begin- ward from the latitude of Cape Mendocino (or by these and many other individuals were cited in ning ca. 3.5 Ma and increasing at 0.4 Ma, and beyond) to the Transverse Ranges. This paper Page (1981).
    [Show full text]
  • The US Well Number Standard: an Identifier for Petroleum Industry
    The US Well Number Standard An Identifier for Petroleum Industry Wells in the USA “The PPDM Association is a not-for-profit data management professional society that collaborates with industry to develop Professional Data Management standards for the Petroleum Industry.” May 2013 (minor revisions June 2014) ® Copyright 2014, The PPDM Association. All Rights Reserved The US Well Number Standard v1.0 REVISION HISTORY The US Well Number Standard: An identifier for the Petroleum Industry Wells in the USA Version: 2013 rev 1 Reason for Revision Replace API Number with US Well Number This Standard Replaces: American Petroleum Institute Bulletin D12A, revised 1979 This Standard defines an identifier for wells and wellbores in the petroleum industry of the USA. This Standard is compatible with Abstract: previous versions of the D12A Number, with emphasis on the identification of every wellbore Prepared by: PPDM Association Date published: June 19th, 2014 Date of next review: May 31st, 2018 Document type: Standard standards, petroleum, well, wellbore, identifier, USA, US Well Keywords: Number, API Well Number, D12A DISCLAIMER The Professional Petroleum Data Management (PPDM) Association makes no representation, warranty or guarantee in connection with the contents of this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from use or application hereunder or violation of federal, state or local regulation with which the contents may conflict. The PPDM Association Copyright 2013 2014, PPDM Association. All Rights Reserved www.ppdm.org Page 1 23544_ProfessionalPetroleum_Well_ID_Standards_TEXT_REV | Cyan Magenta Black | 1-OCT-1419:11:20 The US Well Number Standard The US Well Number Standard v1.0 v1.0 EXECUTIVE SUMMARY REVISION HISTORY This document defines and supports a standard for the identification of petroleum wellbores in the USA.
    [Show full text]
  • Habitat Connectivity Planning for Selected Focal Species in the Carrizo Plain
    Habitat Connectivity Planning for Selected Focal Species in the Carrizo Plain BLM Chuck Graham Chuck Graham Agena Garnett-Ruskovich Advisory Panel Members: Paul Beier, Ph.D., Northern Arizona University Patrick Huber, Ph.D., University of California Davis Steve Kohlmann, Ph.D., Tierra Resource Management Bob Stafford, California Department of Fish and Game Brian Cypher, Ph.D., University of Stanislaus Endangered Species Recovery Program also served as an Advisory Panel Member when this project was under the California Energy Commission’s jurisdiction. Preferred Citation: Penrod, K., W. Spencer, E. Rubin, and C. Paulman. April 2010. Habitat Connectivity Planning for Selected Focal Species in the Carrizo Plain. Prepared for County of San Luis Obsipo by SC Wildlands, http://www.scwildlands.org Habitat Connectivity Planning for Selected Focal Species in the Carrizo Plain Table of Contents 1. Executive Summary 2. Introduction 2.1. Background and Project Need 3. Project Setting 3.1. The Study Area 3.1.1. Location 3.1.2. Physical Features 3.1.3. Biological Features 3.1.4. Human Features 3.2. The Proposed Energy Projects 3.2.1. Topaz Solar Farm 3.2.2. SunPower – California Valley Solar Ranch 4. The Focal Species 4.1. Pronghorn antelope 4.2. Tule elk 4.3. San Joaquin kit fox 5. Conservation Planning Approach 5.1. Modeling Baseline Conditions Of Habitat Suitability And Connectivity For Each Focal Species 5.1.1. Compilation And Refinement Of Digital Data Layers 5.1.2. Modeling Habitat Suitability 5.1.3. Modeling Landscape Permeability 5.1.4. Species-Specific Model Input Data And Conceptual Basis For Model Development 5.1.4.1.
    [Show full text]
  • Pamphlet to Accompany
    Geologic and Geophysical Maps of the Eastern Three- Fourths of the Cambria 30´ x 60´ Quadrangle, Central California Coast Ranges Pamphlet to accompany Scientific Investigations Map 3287 2014 U.S. Department of the Interior U.S. Geological Survey This page is intentionally left blank Contents Contents ........................................................................................................................................................................... ii Introduction ..................................................................................................................................................................... 1 Interactive PDF ............................................................................................................................................................ 2 Stratigraphy ..................................................................................................................................................................... 5 Basement Complexes ................................................................................................................................................. 5 Salinian Complex ..................................................................................................................................................... 5 Great Valley Complex ............................................................................................................................................ 10 Franciscan Complex .............................................................................................................................................
    [Show full text]
  • An Analysis of Shallow Gas, NORM, and Trace Metals
    September 2015 Understanding and Managing Environmental Roadblocks to Shale Gas Development: An Analysis of Shallow Gas, NORM, and Trace Metals Final Report June 14, 2013 to September 30, 2015 RPSEA Award No 11122-56 by J.-P. Nicot, P. Mickler, T. Larson, M.C. Castro R. Darvari, R. Smyth, K. Uhlman, C. Omelon with participation of L. Bouvier, Tao Wen, Z.L. Hildenbrand, M. Slotten, J.M. Aldrige, C.M. Hall, R. Costley, J. Anderson, R. Reedy, J. Lu, Yuan Liu, K. Romanak, S.L. Porse, and Texas Water Development Board Bureau of Economic Geology Jackson School of Geosciences The University of Texas at Austin Austin, Texas 78713-8924 Understanding and Managing Environmental Roadblocks to Shale Gas Development: An Analysis of Shallow Gas, NORM, and Trace Metals Jean-Philippe Nicot1, Patrick Mickler1, Toti Larson2, M. Clara Castro3 Roxana Darvari1, Rebecca Smyth1, Kristine Uhlman+1, Christopher Omelon2 with participation of L. Bouvier+3, Tao Wen3, Z.L. Hildenbrand4, M. Slotten+5, J.M. Aldrige+5, C.M. Hall3, R. Costley1, J. Anderson1, R. Reedy1, J. Lu1, Yuan Liu+1, K. Romanak1, S.L. Porse+1, and TWDB6 1: Bureau of Economic Geology, The University of Texas at Austin 2: Department of Geological Sciences, The University of Texas at Austin 3: Department of Earth and Environmental Sciences, University of Michigan at Ann Arbor 4: Inform Environmental LLC, Dallas, TX 5: Environmental Management and Sustainability Program, St. Edwards University, Austin, TX 6: Texas Water Development Board, Austin, TX +: previously at Bureau of Economic Geology Jackson School of Geosciences The University of Texas at Austin Austin, Texas 78713-8924 Disclaimer From DOE/NETL: “This report was prepared as an account of work sponsored by an agency of the United States Government.
    [Show full text]
  • Geologic Map of the Northwestern Caliente Range, San Luis Obispo County, California
    USGS L BRARY RESTON 1111 111 1 11 11 II I I II 1 1 111 II 11 3 1818 0001k616 3 DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Geologic map of the northwestern Caliente Range, San Luis Obispo County, California by J. Alan Bartowl Open-File Report 88-691 This map is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade names is for descriptive purposes only and does not imply endorsement by USGS 'Menlo Park, CA 1988 it nedelitil Sow( diSti) DISCUSSION INTRODUCTION The map area lies in the southern Coast Ranges of California, north of the Transverse Ranges and west of the southern San Joaquin Valley. This region is part of the Salinia-Tujunga composite terrane that is bounded on the northeast by the San Andreas fault (fig. 1) and on the southwest by the Nacimiento fault zone (Vedder and others, 1983). The Chimineas fault of this map is inferred to be the boundary between the Salinia and the Tujunga terranes (Ross, 1972; Vedder and others, 1983). Geologic mapping in the region of the California Coast Ranges that includes the area of this map has been largely the work of T.W. Dibblee, Jr. Compilations of geologic mapping at a scale of 1:125,000 (Dibblee, 1962, 1973a) provide the regional setting for this map, the northeast border of which lies about 6 to 7 km southwest of the San Andreas fault. Ross (1972) mapped the crystalline basement rocks in the vicinity of Barrett Creek, along the northeast side of the Chimineas fault ("Barrett Ridge" of Ross, 1972).
    [Show full text]
  • Structural Evolution of the Russell Ranch Oil Field and Vicinity, Southern Coast Ranges, California
    AN ABSTRACT OF THE THESIS OF Barbara B. Nevins for the degree of Master of Science in Geology presented on December 14, 1982 Title: STRUCTURAL EVOLUTION OF THE RUSSELL RANCH OIL FIELD AND VICINITY, SOUTHERN COAST RANCES-(ALIFORN Abstract approved: Signature redacted for privacy. ' D. Robert(SA Yeats The Russell Ranch oil field is located in the southern Coast Rangeswest ofBakersfield, California. Detailed subsurface mapping shows that a northwest-oriented right-lateral wrench-fault system was active from possibly latest Oligocene to Pliocene time. The effects of Quaternary thrusting were superimposed on, and in- fluenced by, structures associated with the older wrench tectonic regime. The right-lateral shear system produced a complex pattern of right-stepping en echelon folds, dip-slip faults with normal separation, and strike-slip faults with both normal and reverse separation. Deformation along the wrench system began during de- position of the late Oligocene-earlv Miocene Soda Lake Shale and Painted Rock Sandstone members of the Vaqueros Formation, pro- duciu elongate en echelon submarine troughs and highs. Northerly trending growth faults of early Miocene age caused thickening of the late Saucesian-early Relizian Saltos Shale Member of the MontereyFormation and mayhave initiated growth of the Russell Ranch anticline. Northeast- to northwest-trending normal faults and northwest-trending strike-slipfaults ofthe Russell fault system were active during deposition of a sequence tentatively correlated with the Branch Canyon Sandstone and Santa Margarita Formation of middle and late Miocene age. Strike-slip faulting produced a complex interleaving of fault slices and juxtaposed slices of contrasting lithologies and orientations. Subsequent minor movement along the wrench system folded the base of the Morales Formation, of PJ.iocene-Pleistocene age, into elongate en echelon folds.
    [Show full text]
  • Creek Stewardship Guide for San Luis Obispo County Was Adapted from the Sotoyome Resource Conservation District’S Stewardship Guide for the Russian River
    Creek Stewardship Guide San Luis Obispo County 65 South Main Street Suite 107 Templeton, CA 93465 805.434.0396 ext. 5 www.US-LTRCD.org Acknowledgements The Creek Stewardship Guide for San Luis Obispo County was adapted from the Sotoyome Resource Conservation District’s Stewardship Guide for the Russian River. Text & Technical Review Sotoyome Resource Conservation District, Principal Contributor Melissa Sparks, Principal Contributor National Resource Conservation District, Contributor City of Paso Robles, Contributor Terra Verde Environmental Consulting, Reviewer/Editor Coastal San Luis Resource Conservation District, Reviewer/Editor Monterey County Resource Conservation District, Reviewer/Editor San Luis Obispo County Public Works Department, Reviewer/Editor Atascadero Mutual Water Company, Reviewer Photographs Carolyn Berg Terra Verde Environmental Consulting US-LT RCD Design, Editing & Layout Scott Ender Supporting partner: December 2012 Table of Contents 1 INTRODUCTION 2 RESOURCE CONSERVATION DISTRICTS IN SAN LUIS OBISPO COUNTY 3 WATERSHEDS OF SAN LUIS OBISPO COUNTY 3 Climate 4 Unique & Diverse Watersheds & Sub-Watersheds of San Luis Obispo County 7 Agriculture in San Luis Obispo County Watersheds 8 WHAT YOU CAN DO TO HELP SAN LUIS OBISPO’S CREEKS 9 Prevent & Control Soil Erosion 11 Properly Maintain Unsurfaced Roads and Driveways 13 Restore Native Riparian Vegetation 14 Remove Exotic Species 14 Enhance Instream Habitat 15 Avoid Creating Fish Passage Barriers 15 Conserve Water 16 Control Stormwater Runoff 16 Maintain Septic Systems
    [Show full text]
  • Conservation and Open Space Element Appendices
    County of San Luis Obispo General Plan Conservation and Open Space Element Appendices May 2010 San Luis Obispo County Department of Planning and Building ® County of San Luis Obispo General Plan Conservation and Open Space Element Appendices Adopted by the San Luis Obispo County Board of Supervisors May 11, 2010 - Resolution 2010-151 San Luis Obispo County Department of Planning and Building ® ® TOC TABLE OF CONTENTS Appendix 1. Air Quality Resources Introduction ......................................................................... A1.1 Local Setting ....................................................................... A1.1 Regulatory Framework ....................................................... A1.9 Climate Change ................................................................ A1.20 References ....................................................................... A1.30 Appendix 2. Community-Wide and County Government Operations 2006 Baseline Greenhouse Gas Emissions Inventory Executive Summary ............................................................ A2.1 Community-Wide GHG Inventory Results ........................... A2.2 County government operations GHG Inventory Results ..... A2.2 Data limitations ................................................................... A2.3 Forecast and Next Steps .................................................... A2.4 1. Introduction ................................................................... A2.6 2. Community and County Government Operations Inventory Methodology ..............................................................
    [Show full text]
  • 1 Collections
    A. andersonii A. Gray SANTA CRUZ MANZANITA San Mateo Along Skyline Blvd. between Gulch Road and la Honda Rd. (A. regismontana?) Santa Cruz Along Empire Grade, about 2 miles north of its intersection with Alba Grade. Lat. N. 37° 07', Long. 122° 10' W. Altitude about 2550 feet. Santa Cruz Aong grade (summit) 0.8 mi nw Alba Road junction (2600 ft elev. above and nw of Ben Lomond (town)) - Empire Grade Santa Cruz Near Summit of Opal Creek Rd., Big Basin Redwood State Park. Santa Cruz Near intersection of Empire Grade and Alba Grade. ben Lomond Mountain. Santa Cruz Along China Grade, 0.2 miles NW of its intersection with the Big Basin-Saratoga Summit Rd. Santa Cruz Nisene Marks State Park, Aptos Creek watershed; under PG&E high-voltage transmission line on eastern rim of the creek canyon Santa Cruz Along Redwood Drive 1.5 miles up (north of) from Monte Toyon Santa Cruz Miller's Ranch, summit between Gilroy and Watsonville. Santa Cruz At junction of Alba Road and Empire Road Ben Lomond Ridge summit Santa Cruz Sandy ridges near Bonny Doon - Santa Cruz Mountains Santa Cruz 3 miles NW of Santa Cruz, on upper UC Santa Cruz campus, Marshall Fields Santa Cruz Mt. Madonna Road along summit of the Santa Cruz Mountains. Between Lands End and Manzanitas School. Lat. N. 37° 02', Long. 121° 45' W; elev. 2000 feet Monterey Moro Road, Prunedale (A. pajaroensis?) A. auriculata Eastw. MT. DIABLO MANZANITA Contra Costa Between two major cuts of Cowell Cement Company (w face of ridge) - Mount Diablo, Lime Ridge Contra Costa Immediately south of Nortonville; 37°57'N, 121°53'W Contra Costa Top Pine Canyon Ridge (s-facing slope between the two forks) - Mount Diablo, Emmons Canyon (off Stone Valley) Contra Costa Near fire trail which runs s from large spur (on meridian) heading into Sycamore Canyon - Mount Diablo, Inner Black Hills Contra Costa Off Summit Dr.
    [Show full text]
  • Flora and Fauna Values
    includes many endemic species – those species found nowhere else in the world except for within one specific region. Roughly 30 endemic animal As part of one of the top 35 global biodiversity hotspots, species and 35 endemic plant species are found in the Santa Barbara Santa Barbara County is home to a remarkable array of region.6 Many have evolved in this area of California because of geograph- species, habitats and transition zones which stem from the ic isolation, rare soil substrates, and limited mobility. Examples of endemic regions unique mix of topography and climate.1 The species in the County include the Lompoc kangaroo rat, kinsel oak, and the FLORA AND County is unique within the California Floristic Province Santa Barbara jewel flower. Many other species are endemic to our region (the biodiversity hotspot the County is in) as it has fewer of California but are found outside the County including the Mount Pinos FAUNA developed or altered natural landscapes than other parts chipmunk, black bellied slender salamander and Cristina’s timema. of the hotspot; this adds to the value for conservation within Santa Barbara County. Vegetation provides habitat and home for the many unique and common animal species in the County, and varies greatly from north to Vegetation communities and species from California’s south, east to west, and often from valley to valley. Of the 31 vegetation Central Coast and South Coast, the Sierra Nevada, and the macrogroups found in California, 19 are found within Santa Barbara San Joaquin Valley can all be found locally due to conver- County.9 Chaparral is the most common vegetation type in the County gence of four ecoregions within the County: Southern and covers much of the upland watersheds where it also serves as a California Coast, Southern California Mountains and Central Coast riverine, riparian ecosystems, and wetlands provide some of natural buffer against erosion.
    [Show full text]