The Lincoln Fold System Campbell Craddock, 1964, Pp

Total Page:16

File Type:pdf, Size:1020Kb

The Lincoln Fold System Campbell Craddock, 1964, Pp New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/15 The Lincoln fold system Campbell Craddock, 1964, pp. 122-133 in: Ruidoso Country (New Mexico), Ash, S. R.; Davis, L. R.; [eds.], New Mexico Geological Society 15th Annual Fall Field Conference Guidebook, 195 p. This is one of many related papers that were included in the 1964 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications. One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission. This page is intentionally left blank to maintain order of facing pages. NEW MEXICO GEOLOGICAL SOCIETY • FIFTEENTH FIELD CONFERENCE THE LINCOLN FOLD SYSTEM Campbell Craddock University of Minnesota Minneapolis, Minnesota INTRODUCTION well exposed, but the San Andres Limestone is flat lying over most of the region and only locally buckled into In the walls of the valley of the Rio Bonito at Lin- sharp narrow folds. Previous investigations have dealt coln, New Mexico, the Yeso formation contains large with these folds incidentally or have been confined to a folds that provide a startling contrast with the low dips few anticlines or localities. During this study a number of the formation prevalent in the surrounding region, and of unmapped folds have been discovered. This paper in the overlying San Andres Limestone. Field work re- summarizes the distribution and probable origin of all vealed that these Permian formations show similar these folds, designated here the Lincoln fold system. An crumpling over an area of at least 3,500 square miles index map (fig. 2) shows the location of areas portrayed (fig. 1). The incompetent Yeso is generally folded where on the more detailed tectonic maps (figs. 3-7). GEOLOGIC 81 TECTONIC MAP OF M PARTS OF LINCOLN, CHAVES, a S S OTERO COUNTIES, NEW MEXICO Major intrusiyes, Geologic contact early Tertiary ( f-----f Major fault Post- San Andres, M Synclinal oxis I mainly Mesozoic .."."1.--• Anticlinal axis Son Andres tmn. S Permian) / Gentle regional • Carrizozo strike 9 dip Yeso fmn (Permian) 0 5 10 15 20 Miles Roswell CROSS — SECTION THROUGH BORDER HILLS EAST OF SUNSET NW SE S M Floodplain of Rio Hondo 0 100 Feet 200 300 Figure I. — Regional geologic and tectonic map. This article is an enlargement of a paper published in the Report of the International Geological Congress, 21st Ses- sion, Report, part 18, p. 34-14, Copenhagen, 1960. 122 NEW MEXICO GEOLOGICAL SOCIETY • FIFTEENTH FIELD CONFERENCE STRATIGRAPHY N Over most or all of the map area the Yeso Formation separated from the basement by less than a few hun- ENCINOSO is 5 MILES dred feet of lower Permian red beds and locally some TUCSON Pennsylvanian strata (Dunn, 1954) . One of the Picacho MT CA p i AN wells, six miles southwest of Sunset, penetrated about AR AEIECA-- M 0 300 feet of pre-Yeso elastic rocks above the basement; Tq / N farther north the Yeso lies directly on the Precambrian NOGAL (Lloyd, 1949). CA PITAN The Yeso is the oldest formation exposed in the map FORT area and generally consists of 1,200 to 1,800 feet of silt- L I N COL STANTO stone, limestone, shale, mudstone, and evaporites (Pray, 1954). The lower Yeso does not crop out here, but GLENCOE where it is exposed to the southwest along the Sacra- HOND T INNIE mento escarpment red beds and evaporites are the pre- i P IC ACHO dominant rocks. An incomplete section measured in the RUI DOS 0 GREEN Bonito valley just east of Lincoln canyon (fig. 8) in- TREE cluded 480 feet of Yeso, 65 percent siltstone and mud- stone, 25 percent limestone, and 10 percent gypsum. The limestones form 14 to 35 foot units interbedded in the Figure 2. Index map showing location of detailed siltstone and their resistance to weathering causes the tectonic maps. magnificient fold exposures at this locality. Above the uppermost limestone and below the base of the San An- dres is a unit of red siltstone and gypsum of widely vary- The deformed region includes parts of Lincoln, Cha- ing thickness. Seven sections measured through this in- ves, and Otero Counties and lies between the Great terval ranged from 30 to 224 feet in thickness, and had Plains to the east and the Cordilleran mountain system, a mean thickness of 100 feet. Single beds of gypsum expressed to the west in a series of north-south fault- as much as 40 feet thick occur in some of these sections, block ranges. Over most of the map area the surface but evaporites are absent in others. formations are Permian strata that dip almost 1° to the The San Andres Limestone consists of the Glorieta east or east-southeast. West of Lincoln these beds form Sandstone Member and an overlying limestone member. a broad arch and descend westward with dips of 5 to 15° The Glorieta, equivalent to the Hondo Sandstone Mem- into a structural basin of middle Tertiary age with an ber of Lang (1937, p. 850), was measured east of state igneous complex underlying its mountainous axis. South road 368 miles south of Arabela. At this locality it is and southeast of Sierra Blanca is the Sacramento-Guad- 131 feet thick, and includes 60 feet of limestone and 71 alupe Range, a gently eastward and northeastward dip- feet of sandstone and siltstone. The upper unit is a 38- ping homocline separated from the desert basins to the foot bed of massive, cross-bedded, fine-grained, yellow to west by major normal faults. Southeast of the map area buff sandstone which makes a distinctive key bed is the important petroleum province, the Permian basin throughout the area. The overlying limestone member of west Texas and New Mexico. Throughout most of consists of rather uniform 3 to 24 inch beds of finely the west half of the map area lower Permian formations crystalline, medium to dark gray limestone and dolo- rest on a Precambrian basement, which indicates the mitic limestone; beds of gypsum as much as 16 feet existence of a south-trending rib of land in late Penn- thick occur locally. The total thickness of the San An- sylvanian and early Permian time. Lower Paleozoic for- dres is about 1,000 feet. mations occur east, south, and west of this buried land- No evidence of an unconformity between the Yeso mass. and San Andres could be found in the field. At first The writer learned of the Lincoln folds in 1954 and glance the exposures near Lincoln ( fig. 9) seem to ex- has worked on them intermittently since then. Prelimi- hibit such evidence but the contact was observed closely nary reconnaissance on aerial photographs was followed at 37 localities over the area and the two formations by field study during the summers of 1957-59. Thanks were found to be parallel and conformable in all cases. are due Professor John Eliot Allen of Portland State Post-San Andres formations are preserved in the College, Dr. Robert H. Weber of the New Mexico Bu- east near Roswell and in the west in the Sierra Blanca reau of Mines and Mineral Resources, and Mr. Walter basin. These formations include the Chalk Bluff Forma- A. Mourant of the U.S. Geological Survey for providing tion of Permian age 500 feet of siltstone, gypsum, unpublished information from their work in various parts sandstone, and limestone; the Dockum Group of Trias- of the area and for help and encouragement during the sic age — 375 feet of variegated shale and coarse elas- field work. The writer expresses his gratitude to Harvey tics; the Dakota Sandstone of upper Cretaceous age Meyer, Howard Stensrud, Neil Muncaster, John Ander- 135 feet, the Mancos Shale, of upper Cretaceous age — son, and Jack OBrien for assistance in the field. Mr. minimum, 390 feet, and the Mesaverde Formation of Mark D. Wilson has been both generous and helpful upper Cretaceous age — minimum, 630 feet; Cub Moun- in sharing his broad experience in the regional geology tain Formation of Bodine, 1956 2,200 feet of conglom- of the area. This work was made possible by grants from erate, sandstone, siltstone, and variegated shales; and the Graduate School of the University of Minnesota.
Recommended publications
  • Strike and Dip Refer to the Orientation Or Attitude of a Geologic Feature. The
    Name__________________________________ 89.325 – Geology for Engineers Faults, Folds, Outcrop Patterns and Geologic Maps I. Properties of Earth Materials When rocks are subjected to differential stress the resulting build-up in strain can cause deformation. Depending on the material properties the result can either be elastic deformation which can ultimately lead to the breaking of the rock material (faults) or ductile deformation which can lead to the development of folds. In this exercise we will look at the various types of deformation and how geologists use geologic maps to understand this deformation. II. Strike and Dip Strike and dip refer to the orientation or attitude of a geologic feature. The strike line of a bed, fault, or other planar feature, is a line representing the intersection of that feature with a horizontal plane. On a geologic map, this is represented with a short straight line segment oriented parallel to the strike line. Strike (or strike angle) can be given as either a quadrant compass bearing of the strike line (N25°E for example) or in terms of east or west of true north or south, a single three digit number representing the azimuth, where the lower number is usually given (where the example of N25°E would simply be 025), or the azimuth number followed by the degree sign (example of N25°E would be 025°). The dip gives the steepest angle of descent of a tilted bed or feature relative to a horizontal plane, and is given by the number (0°-90°) as well as a letter (N, S, E, W) with rough direction in which the bed is dipping.
    [Show full text]
  • Field Geology
    FIELD GEOLOGY GUIDEBOOK AND NOTES ILLINOIS STATE UNIVERSITY 2018 Version 2 Table of Contents Syllabus 5 Schedule 8 Hazard Recognition Mitigation 9 Geologic Field Notes 17 Reconnaissance Notes 17 Measuring Stratigraphic Column Notes 18 Geologic Mapping Notes 19 Geologic Maps and Mapping 22 Variables affecting the appearance of a geologic map 23 Techniques to test the quality and accuracy of your map 23 Common map errors 24 Official USGS map colors 24 Rule of V’s 25 Geologic Cross Sections 26 Basic principles of cross section construction 26 Apparent dips: correct use of strike and dip data in cross sections 27 Common cross section errors 27 Steps in making a topographic profile for a geologic cross section 28 Constructing geologic cross sections using down-plunge projection 29 Phanerozoic Stratigraphy of North America 33 Tectonic History of the U.S. Cordillera 38 Regional Cross-sections through Wyoming 41 Wyoming Stratigraphic Nomenclature Chart 42 Rock Sequence in the Bighorn Basin 43 Rock Sequence in the Powder River Basin 44 Black Hills Precambrian Geology 45 Project Descriptions 47 Regional Stratigraphy 47 Amsden Creek Big Game Winter Range 49 Steerhead Ranch 50 Alkali 53 South Fork 55 Mickelson 57 Moonshine 60 Appendix 1: Essential Analysis Tools and Techniques for Field Geology 62 Field description of rocks 62 Measuring stratigraphic sections 69 Calculating layer thicknesses 76 Alignment diagram for calculating apparent dip 77 Calculating strike and dip of a surface from contacts on a map 78 Calculating outcrop patterns from field
    [Show full text]
  • Faults and Joints
    133 JOINTS Joints (also termed extensional fractures) are planes of separation on which no or undetectable shear displacement has taken place. The two walls of the resulting tiny opening typically remain in tight (matching) contact. Joints may result from regional tectonics (i.e. the compressive stresses in front of a mountain belt), folding (due to curvature of bedding), faulting, or internal stress release during uplift or cooling. They often form under high fluid pressure (i.e. low effective stress), perpendicular to the smallest principal stress. The aperture of a joint is the space between its two walls measured perpendicularly to the mean plane. Apertures can be open (resulting in permeability enhancement) or occluded by mineral cement (resulting in permeability reduction). A joint with a large aperture (> few mm) is a fissure. The mechanical layer thickness of the deforming rock controls joint growth. If present in sufficient number, open joints may provide adequate porosity and permeability such that an otherwise impermeable rock may become a productive fractured reservoir. In quarrying, the largest block size depends on joint frequency; abundant fractures are desirable for quarrying crushed rock and gravel. Joint sets and systems Joints are ubiquitous features of rock exposures and often form families of straight to curviplanar fractures typically perpendicular to the layer boundaries in sedimentary rocks. A set is a group of joints with similar orientation and morphology. Several sets usually occur at the same place with no apparent interaction, giving exposures a blocky or fragmented appearance. Two or more sets of joints present together in an exposure compose a joint system.
    [Show full text]
  • FM 5-410 Chapter 2
    FM 5-410 CHAPTER 2 Structural Geology Structural geology describes the form, pat- secondary structural features. These secon- tern, origin, and internal structure of rock dary features include folds, faults, joints, and and soil masses. Tectonics, a closely related schistosity. These features can be identified field, deals with structural features on a and m appeal in the field through site inves- larger regional, continental, or global scale. tigation and from remote imagery. Figure 2-1, page 2-2, shows the major plates of the earth’s crust. These plates continually Section I. Structural Features undergo movement as shown by the arrows. in Sedimentary Rocks Figure 2-2, page 2-3, is a more detailed repre- sentation of plate tectonic theory. Molten material rises to the earth’s surface at BEDDING PLANES midoceanic ridges, forcing the oceanic plates Structural features are most readily recog- to diverge. These plates, in turn, collide with nized in the sedimentary rocks. They are adjacent plates, which may or may not be of normally deposited in more or less regular similar density. If the two colliding plates are horizontal layers that accumulate on top of of approximately equal density, the plates each other in an orderly sequence. Individual will crumple, forming mountain range along deposits within the sequence are separated the convergent zone. If, on the other hand, by planar contact surfaces called bedding one of the plates is more dense than the other, planes (see Figure 1-7, page 1-9). Bedding it will be subducted, or forced below, the planes are of great importance to military en- lighter plate, creating an oceanic trench along gineers.
    [Show full text]
  • Structural Geology
    2 STRUCTURAL GEOLOGY Conventional Map A map is a proportionate representation of an area/structure. The study of maps is known as cartography and the experts are known as cartographers. The maps were first prepared by people of Sumerian civilization by using clay lens. The characteristic elements of a map are scale (ratio of map distance to field distance and can be represented in three ways—statement method, e.g., 1 cm = 0.5 km, representative fraction method, e.g., 1:50,000 and graphical method in the form of a figure), direction, symbol and colour. On the basis of scale, maps are of two types: large-scale map (map gives more information pertaining to a smaller area, e.g., village map: 1:3956) and small: scale map (map gives less information pertaining to a larger area, e.g., world atlas: 1:100 km). Topographic Maps / Toposheet A toposheet is a map representing topography of an area. It is prepared by the Survey of India, Dehradun. Here, a three-dimensional feature is represented on a two-dimensional map and the information is mainly represented by contours. The contours/isohypses are lines connecting points of same elevation with respect to mean sea level (msl). The index contours are the contours representing 100’s/multiples of 100’s drawn with thick lines. The contour interval is usually 20 m. The contours never intersect each other and are not parallel. The characteristic elements of a toposheet are scale, colour, symbol and direction. The various layers which can be prepared from a toposheet are structural elements like fault and lineaments, cropping pattern, land use/land cover, groundwater abstruction structures, drainage density, drainage divide, elongation ratio, circularity ratio, drainage frequency, natural vegetation, rock types, landform units, infrastructural facilities, drainage and waterbodies, drainage number, drainage pattern, drainage length, relief/slope, stream order, sinuosity index and infiltration number.
    [Show full text]
  • Chromium Chemistry in Natural Waters, Iceland Deformation Mechanisms in Martian Shergottites
    1414 Goldschmidt2013 Conference Abstracts Chromium chemistry in natural Deformation mechanisms in Martian waters, Iceland Shergottites HANNA KAASALAINEN1*, ANDRI STEFÁNSSON1, KACZMAREK M.-A.*12, GRANGE M.1, REDDY S.M.1, INGVI GUNNARSSON2 AND STEFÁN ARNÓRSSON1 AND NEMCHIN A.1 1Institute of Earth Sciences, University of Iceland, Sturlugata 1Department of Applied Geology, The Institute for Geoscience 7, 101 Reykjavik, Iceland, Research, Curtin University of Technology, GPO Box (*correspondence: [email protected]) U1987, Perth, WA 6845, Australia 2Present address: Reykjavik Energy, Bæjarhalsi 1, 110 2Now at University of Lausanne, Institute of Earth Sciences, Reykajvik, Iceland UNIL Mouline, Géopolis, CH-1016 Lausanne, Switzerland Chemistry of Cr and Fe was studied in non-thermal and (*correspondence: [email protected]) geothermal waters in Iceland. Chromium (Cr) is typically present at low concentrations (<1 µg/l) in natural waters, but Nakhla and Zagami are both clinopyroxene-rich basaltic elevated concentrations have been observed in waters with shergottite, with some Fe-rich olivine. The microstructure, the low pH values, e.g. acid mine drainage, and in association preferred orientation of pyroxene using Electron Backscatter with industrial activities. Chromium occurs in two oxidation Diffraction (EBSD) method and the gochemistry are combined states, Cr(III) and (VI), these being characterized by different to study subsamples of both Zagami and Nakhla to decipher (bio)chemical behaviour and solubility. As Cr(VI) is known to deformation processes that have occurred on Mars. be toxic but Cr(III) an essential micronutrient, it is important Nakhla displays a granular texture, essentially composed to determine the two oxidations states. Iron (Fe) is known to of augite, fayalite, plagioclase and magnetite.
    [Show full text]
  • Evidence for Controlled Deformation During Laramide Orogeny
    Geologic structure of the northern margin of the Chihuahua trough 43 BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA D GEOL DA Ó VOLUMEN 60, NÚM. 1, 2008, P. 43-69 E G I I C C O A S 1904 M 2004 . C EX . ICANA A C i e n A ñ o s Geologic structure of the northern margin of the Chihuahua trough: Evidence for controlled deformation during Laramide Orogeny Dana Carciumaru1,*, Roberto Ortega2 1 Orbis Consultores en Geología y Geofísica, Mexico, D.F, Mexico. 2 Centro de Investigación Científi ca y de Educación Superior de Ensenada (CICESE) Unidad La Paz, Mirafl ores 334, Fracc.Bella Vista, La Paz, BCS, 23050, Mexico. *[email protected] Abstract In this article we studied the northern part of the Laramide foreland of the Chihuahua Trough. The purpose of this work is twofold; fi rst we studied whether the deformation involves or not the basement along crustal faults (thin- or thick- skinned deformation), and second, we studied the nature of the principal shortening directions in the Chihuahua Trough. In this region, style of deformation changes from motion on moderate to low angle thrust and reverse faults within the interior of the basin to basement involved reverse faulting on the adjacent platform. Shortening directions estimated from the geometry of folds and faults and inversion of fault slip data indicate that both basement involved structures and faults within the basin record a similar Laramide deformation style. Map scale relationships indicate that motion on high angle basement involved thrusts post dates low angle thrusting. This is consistent with the two sets of faults forming during a single progressive deformation with in - sequence - thrusting migrating out of the basin onto the platform.
    [Show full text]
  • PLANE DIP and STRIKE, LINEATION PLUNGE and TREND, STRUCTURAL MEASURMENT CONVENTIONS, the BRUNTON COMPASS, FIELD BOOK, and NJGS FMS
    PLANE DIP and STRIKE, LINEATION PLUNGE and TREND, STRUCTURAL MEASURMENT CONVENTIONS, THE BRUNTON COMPASS, FIELD BOOK, and NJGS FMS The word azimuth stems from an Arabic word meaning "direction“, and means an angular measurement in a spherical coordinate system. In structural geology, we primarily deal with land navigation and directional readings on two-dimensional maps of the Earth surface, and azimuth commonly refers to incremental measures in a circular (0- 360 °) and horizontal reference frame relative to land surface. Sources: Lisle, R. J., 2004, Geological Structures and Maps, A Practical Guide, Third edition http://www.geo.utexas.edu/courses/420k/PDF_files/Brunton_Compass_09.pdf http://en.wikipedia.org/wiki/Azimuth http://en.wikipedia.org/wiki/Brunton_compass FLASH DRIVE/Rider/PDFs/Holcombe_conv_and_meas.pdf http://www.state.nj.us/dep/njgs/geodata/fmsdoc/fmsuser.htm Brunton Pocket Transit Rider Structural Geology 310 2012 GCHERMAN 1 PlanePlane DipDip andand LinearLinear PlungePlunge horizontal dddooo Dip = dddooo Bedding and other geological layers and planes that are not horizontal are said to dip. The dip is the slope of a geological surface. There are two aspects to the dip of a plane: (a) the direction of dip , which is the compass direction towards which the plane slopes; and (b) the angle of dip , which is the angle that the plane makes with a horizontal plane (Fig. 2.3). The direction of dip can be visualized as the direction in which water would flow if poured onto the plane. The angle of dip is an angle between 0 ° (for horizontal planes) and 90 ° (for vertical planes). To record the dip of a plane all that is needed are two numbers; the angle of dip followed by the direction (or azimuth) of dip, e.g.
    [Show full text]
  • Joints, Folds, and Faults
    Structural Geology Rocks in the Crust Are Bent, Stretched, and Broken … …by directed stresses that cause Deformation. Types of Differential Stress Tensional, Compressive, and Shear Strain is the change in shape and or volume of a rock caused by Stress. Joints, Folds, and Faults Strain occurs in 3 stages: elastic deformation, ductile deformation, brittle deformation 1 Type of Strain Dependent on … • Temperature • Confining Pressure • Rate of Strain • Presence of Water • Composition of the Rock Dip-Slip and Strike-Slip Faults Are the Most Common Types of Faults. Major Fault Types 2 Fault Block Horst and Graben BASIN AND Crustal Extension Formed the RANGE PROVINCE Basin and Range Province. • Decompression melting and high heat developed above a subducted rift zone. • Former margin of Farallon and Pacific plates. • Thickening, uplift ,and tensional stress caused normal faults. • Horst and Graben structures developed. Fold Terminology 3 Open Anticline – convex upward arch with older rocks in the center of the fold (symmetrical) Isoclinal Asymmetrical Overturned Recumbent Evolution Simple Folds of a fold into a reverse fault An eroded anticline will have older beds in the middle An eroded syncline will have younger beds in middle Outcrop patterns 4 • The Strike of a body of rock is a line representing the intersection of A layer of tilted that feature with the plane of the horizon (always measured perpendicular to the Dip). rock can be • Dip is the angle below the horizontal of a geologic feature. represented with a plane. o 30 The orientation of that plane in space is defined with Strike-and- Dip notation. Maps are two- Geologic Map Showing Topography, Lithology, and dimensional Age of Rock Units in “Map View”.
    [Show full text]
  • Application of Lidar to 3D Structural Mapping
    Graduate Theses, Dissertations, and Problem Reports 2019 Application of Lidar to 3D Structural Mapping Bertrand Gaschot West Virginia University, [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Geology Commons Recommended Citation Gaschot, Bertrand, "Application of Lidar to 3D Structural Mapping" (2019). Graduate Theses, Dissertations, and Problem Reports. 4111. https://researchrepository.wvu.edu/etd/4111 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Application of Lidar to 3D Structural Mapping Bertrand Gaschot Thesis submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in GEOLOGY Jaime Toro, Ph.D., Chair Dengliang Gao, Ph.D. Aaron Maxwell, Ph.D. Department of Geology and Geography Morgantown, West Virginia 2018 Keywords: Lidar, Smoke Hole Canyon, Structure, 3D Mapping, Kinematic Modeling Copyright 2019 Bertrand Gaschot ABSTRACT Application of Lidar to 3D Structural Mapping Bertrand Gaschot The rugged, densely forested terrain of the West Virginia Appalachian Valley and Ridge Province has made it difficult for field-based studies to agree on the structure of the highly deformed Silurian-Devonian cover strata.
    [Show full text]
  • EPS 116 – Laboratory Structural Geology Lab Exercise #1 Spring 2016
    EPS 116 – Laboratory Structural Geology LAB #1 – Orientation of Structures in Space Familiarize yourself with the following terms. Sketch each feature and include relevant details, e.g., footwall, hanging wall, motion arrows, etc. Also always include at least 3 horizontal layers and an up arrow in the cross sections and a north arrow in each map view. Stress vs. Strain Feature Cross Section Map View compression tension Horst and contraction/shortening Graben extension (Label hanging /foot wall and slip Brittle Deformation direction) joint fault earthquake Thrust Fault thrust/reverse fault (Label hanging / normal fault footwall and slip footwall direction) hanging wall strike-slip fault right lateral or dextral Anticline left lateral (Label hinge axis, or sinistral force direction, dip-slip contact topo lines in map view) oblique-slip Ductile Deformation fold Normal Fault anticline (Label hanging / footwall and slip syncline direction) Map View longitude latitude geographic vs. magnetic north Syncline topography (Label hinge axis, scale force direction, profile contact topo lines in map view) Strike-Slip fault (Label hanging / footwall and slip direction) Lab Exercise #1 Spring 2016 Page 1 of 9 EPS 116 – Laboratory Structural Geology Strike & Dip Strike and dip describe the orientation of a plane in space. Example: the peaked roof of a house: Strike Line Dip Direction Strike is the orientation of the intersection line of the plane in question (roof of a house) with the horizontal plane. If you were to look down on the house from directly above, it would look like this: North Strike Line Strike The angle between the strike line and north is used to describe the strike.
    [Show full text]
  • Direct Inversion Method of Fault Slip Analysis to Determine The
    geosciences Article Direct Inversion Method of Fault Slip Analysis to Determine the Orientation of Principal Stresses and Relative Chronology for Tectonic Events in Southwestern White Mountain Region of New Hampshire, USA Christopher C. Barton 1,* and Jacques Angelier 2 1 Department of Earth and Environmental Sciences, Wright State University, Dayton, OH 45435, USA 2 Tectonique Quantitative, Universite Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris, France; [email protected] * Correspondence: [email protected] Received: 10 September 2020; Accepted: 26 October 2020; Published: 16 November 2020 Abstract: The orientation and relative magnitudes of paleo tectonic stresses in the western central region of the White Mountains of New Hampshire is reconstructed using the direct inversion method of fault slip analysis on 1–10-m long fractures exposed on a series of road cuts along Interstate 93, just east of the Hubbard Brook Experimental Forest in North Woodstock, NH, USA. The inversion yields nine stress regimes which identify five tectonic events that impacted the White Mountain region over the last 410 Ma. The inversion method has potential application in basin analysis. Keywords: direct inversion method of fault slip analysis; paleo tectonic principal stress orientations; west-central New Hampshire 1. Introduction Previous studies have shown fault slip analysis at the outcrop scale provides a means to deduce the orientation of the principal stress fields and their evolution through successive tectonic events [1–7]. Additional information obtained from other structures, such as joints [8] tension gashes, and stylolites [9], is also important but will not be presented here. In this paper, we define a fault as simply a parting in rock with no claim whether it formed as a Mode 1 (opening), Mode 2 (shearing), or Mode 3 (tearing) [10].
    [Show full text]