Analog Experiments and Mechanical Analysis Applied to the Alaskan Accretionary Wedge Marc-André Gutscher, Nina Kukowski, Jacques Malavieille, Serge Lallemand

Total Page:16

File Type:pdf, Size:1020Kb

Analog Experiments and Mechanical Analysis Applied to the Alaskan Accretionary Wedge Marc-André Gutscher, Nina Kukowski, Jacques Malavieille, Serge Lallemand Analog experiments and mechanical analysis applied to the Alaskan Accretionary Wedge Marc-André Gutscher, Nina Kukowski, Jacques Malavieille, Serge Lallemand To cite this version: Marc-André Gutscher, Nina Kukowski, Jacques Malavieille, Serge Lallemand. Analog experiments and mechanical analysis applied to the Alaskan Accretionary Wedge. Journal of Geophysical Research, American Geophysical Union, 1998, 103 (B5), pp.10161-10176. hal-01261538 HAL Id: hal-01261538 https://hal.archives-ouvertes.fr/hal-01261538 Submitted on 26 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 103, NO. B5, PAGES 10,161-10,176,MAY 10, 1998 Episodic imbricate thrusting and underthrusting' Analogexperiments and mechanicalanalysis applied to the Alaskan Accretionary Wedge Marc-Andrd Gu•scher • and Nina Kukowski GEOMAR, Kiel, Germany JacquesMalavieille and SergeLallemand Laboratoire de G•ophysique et Tectonique, Universit• de Montpellier II, Montpellier, France Abstract. Seismic reflection profiles from the sediment rich Alaska subduction zone image short, frontally accreted, imbricate thrust slices and repeated se- quencesof long, underthrust sheets. Rapid landward increasesin wedgethickness, backthrusting,and uplift of the forearc are observed,suggesting underthrusting beneaththe wedge.These features and a widely varyingfrontal wedgemorphology are interpreted to be caused by different modes of accretion active concurrently along the trench at different locations. Episodicwedge growth is observedin high basal friction experiments using sand as an analog material. Two phasesof an accretionarycycle can be distinguished:frontal accretionof short imbricate thrust slices,alternating with underthrustingof long, undeformedsheets. The phase is shownexperimentally to dependupon the surfaceslope of the wedge. Mechanical analysis of the forces at work predicts these two modes of deformation due to the varying frictional forcesand yield strengthsfor a temporally varying wedge geometry.Maximum length of thrust slicesis calculatedfor experimentalconditions and confirmedby the observations.For a steepfrontal slope (at the upper limit of the Mohr-Coulombtaper stability field) the overburdenis too great to permit underthrusting,and failure occurs repeatedly at the wedgefront producing short imbricate slices. The wedgegrows forward, lowering the surfaceangle to the minimum critical taper. For a shallowfrontal slope the reducedoverburden along an active roof thrust permits sustainedunderthrusting, causingfrontal erosion and backthrusting,steepening the wedgeand thus completingthe cycle. 1. Introduction configurationat the Alaska convergentmargin showsa high degreeof lateral variation, and frontal slopesvary Seismicreflection profiling of convergentmargins has from less than 20 to over 150 within a few tens of kilo- recordeda high degreeof structural diversityin accre- meters. tionarywedges where deep sea sediments are imbricated An episodic variation in frontal configuration has against and subducted beneath the overriding plate been observedin a high basal friction analog experi- [Westbrooket al., 1988; Moore et al., 1990; Moore et mentsimulating accretionary wedge growth [Gutschef al., 1991;Shipley et al., 1992]. The causesfor structural et al., 1996]. Two distinct modesof deformation,as- diversityare not fully understoodbecause the most de- sociated with imbricate thrusting and underthrusting, formedportions of the wedgeare often poorly resolved. occurreddespite a constant thicknessof incomingsed- Furthermore, it is unclear whether wedge growth oc- iment and an unchangingbasal friction. Since direct curs by steady state processesor in episodicfashion, observationof the developmentof a submarine accre- alternatingwith periodsof erosion.The frontal wedge tionary wedgeover geologictimescales is not possible, analog modelingis a useful tool permitting observation Now at Laboratoire de Gdophysiqueet Tectonique,Uni- of the completeevolution of a model thrust wedgeunder versitd de Montpellier II, Montpellier, France. controlled boundary conditions. The objectivesof this study are threefold: (1) to Copyright 1998 by the American GeophysicalUnion. quantify the conditions controlling episodic accretion Paper number 97JB03541. in analogthrust wedges,(2) to providea mechanical 0148-0227/ 98 / 97J B- 03541 $09.00 explanation for the two distinct modes of deformation 10,161 10,162 GUTSCHERET AL.- EPISODICIMBRICATE THRUSTING in terms of the body and boundaryforces, and (3) to In the Eastern Aleutian Trench, 45 Ma old oceanic apply theseresults to the Alaska accretionarywedge. crust of the Pacific plate is subducting beneath the southernAlaskan margin at a rate of 5.7 cm/yr [DeMets 2. Tectonic Setting of the Alaska et al., 1990](Figure 1) ). The basal 500-600m sec- Convergent Margin tion of deep sea sediments,representing the Surveyor The Alaska convergentmargin offers a particularly Fan, is overlain by a 1400 m sequenceof alternating good study area since it has been investigatedby deep hemipelagicsediments and turbiditictrench fill [Kven- seadrilling [Kulmet al., 1973]and multichannel seismic voldenand yon Huene, 1985; yon Huene, 1989; Moore et reflectionprofiles [Kvenvolden and yon Huene, 1985; al., 1991].In lineEDGE-302, the frontal8 km of the ac- Moore et al., 1991], supplementedby depth-velocity cretionarywedge consist of three short imbricateslices controlfrom wide angleseismic data Iron Huene and (Figure2a), with a conjugateforethrust and backthrust Flueh, 1994; Ye et al., 1997]as well as high-resolution set defininga "pop-up"type of structure.The shallow swathmapping bathymetry [yon Huene and Flueh, 1994; 20 frontal slopeincreases to 5- 80 at the third major Friihn• 1995].The wedgeis markedby a largequantity thrust fault, locally reaching15 ø. At a distanceof 12- of incomingsediment (2--3 km) and is classedas a typ- 15 km from the deformationfront, the seismicsignature ical accretionarywedge [yon Huene and Scholl, 1991; losesits characterand the arcwarddipping and subhor- Lallemandet al., 1994]. izontal reflectorscan no longerbe assignedto any par- ,, o NORTH AMERICAN PLATE • .KSSD 2 \ \ \ \ \ \ \ ß KSSD 1 DSDP 182 PACIFIC ß• / / / PLATE •.g-• DSDP178 o ' ' 56* 208* 212' Figure 1. Alaskalocation map, with multichannelseismic lines (solid lines are presentedin text, dashedlines are discussed,but not displayed),borehole locations (small, filled triangles)[Kulm et al., 1973;Kvenvolden and yonHuene, 1985]and bathymetry(depth in m) sources:TOPEX global2 arcminbathymetry [Smith and Sandwell,1994; 1997],high resolutionswath mapping bathymetryNE of line 71 Iron Hueneand Flueh, 1994]' GUTSCHER ET AL.: EPISODIC IMBRICATE THRUSTING 10,163 a) NW EDGEline-302 SE [km] .......... '" 40 [km] 20 0 b) NW line71 SE . [km] __•5 . ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I .... I ' ' ' ' I ' ' ' ' I .... I .... I ' ' ' '1'' • •1 •9 40 [km] 20 0 O) NW line 63 SE fore arc basin [km] ½•:•:•:•:•k.::½•;-'•;-':.-'::• ........ -- • -5 •--•i-•::•:•:•-"•:::.......... ••,• •_ ...•------- •---• •---'-• -----•- • •---•" -• 40 [km] 20 0 Figure 2. Interpretativeline drawingof seismicreflection profiles (pre stack depth migration, VE - 1.5). Heavy lines indicatefaults or erosionalunconformities, dashed where uncertain, oceanicbasement, dark shadedregion, backstop, light shadedregion. (a) Line EDGE-302, one horizonwith a clearseismic signature is tracedas a shadedline, (b) Line 71, notethe longlayered sheetsbetween km 20 and 40, and (c) Line 63, note the longsheets and the 2 km deepfore arc basin at rear. ticular stratigraphic horizon Surface morphology and all accreted and those below are all transported farther dipping zonesof high reflectivity,however, suggest four arcward below the wedge. to seven more major thrust slices truncated at 6 km depth by a midlevel detachment. At a distance of 40- 60 km from the deformation front, a 0.5-1.5 km thick 3. Experimental Modeling sequenceof slope sedimentsis marked by strong land- The growth of accretionary wedges and fold-and- ward vergentfolding and shortening.At depth, a I km thrust belts has been the subject of numerous analog thick sectionof layered reflectorsis imaged above the modelingstudies [Davis et al., 1983; Malavieille, 1984; subductingoceanic crust and beneath the backstop. Mulugeta, 1988; Malavieille et al., 1991; Liu et al., 1992; Two parallel seismiclines to the SW, lines 71 and 63, Lallemand et al., 1992; Malavieille et al., 1993; Lalle- displaylong (10-20 km) repeatingsequences of reflectors mand et al., 1994; Kukowski et al., 1994; Larroque et al., (Figures2b and 2c) 30 km from the deformationfront. 1995; Wangand Davis, 1996]. Thesestudies have con- The overlyingridge in line 63 (at 35 km) shallowsto firmed the applicability of critical wedgetheory to mod- 2.5 km depth and bounds a 2 km deep forearc basin. eling deformationin the brittle, upper portions of sub- In both this basin and the I km deep basin along strike marine accretionarywedges [Davis et al., 1983; Dahlen at the rear of line 71 (at 35 km) folding,tilting,
Recommended publications
  • Kinematic Reconstruction of the Caribbean Region Since the Early Jurassic
    Earth-Science Reviews 138 (2014) 102–136 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Kinematic reconstruction of the Caribbean region since the Early Jurassic Lydian M. Boschman a,⁎, Douwe J.J. van Hinsbergen a, Trond H. Torsvik b,c,d, Wim Spakman a,b, James L. Pindell e,f a Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands b Center for Earth Evolution and Dynamics (CEED), University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway c Center for Geodynamics, Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7491 Trondheim, Norway d School of Geosciences, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa e Tectonic Analysis Ltd., Chestnut House, Duncton, West Sussex, GU28 OLH, England, UK f School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3YE, UK article info abstract Article history: The Caribbean oceanic crust was formed west of the North and South American continents, probably from Late Received 4 December 2013 Jurassic through Early Cretaceous time. Its subsequent evolution has resulted from a complex tectonic history Accepted 9 August 2014 governed by the interplay of the North American, South American and (Paleo-)Pacific plates. During its entire Available online 23 August 2014 tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, and the oceanic crust has been overlain by the Caribbean Large Igneous Province (CLIP) since ~90 Ma. The consequent Keywords: absence of passive margins and measurable marine magnetic anomalies hampers a quantitative integration into GPlates Apparent Polar Wander Path the global circuit of plate motions.
    [Show full text]
  • Developing the Orogenic Gold Deposit Model: Insights from R&D for Exploration Success
    "Accretionary Wedge Geodynamic Evolution, Metamorphic Equilibria, Metasomatic Processes, & GOLD” by Dave Lentz (UNB) Accretionary ophiolitic sequence (with quartz veins), basement Santorini, Greece 2m Orogenic Gold first used by Bohlke (1982) Developing the Orogenic Gold Deposit Model: Insights from R&D for Exploration Success by Dave Lentz (UNB) Accretionary ophiolitic sequence (with quartz veins), basement Santorini, Greece 2m Orogenic Gold first used by Bohlke (1982) SPONSORS INTRODUCTION PART I: Review Gold Deposit Settings • Historical Evolution of ideas • Description of Orogenic Au Systems • Enigmatic aspects of the metamorphogenic model PART II: Geothermal to Hydrothermal Evolution • Metamorphic Considerations to Thermal Evolution • Fluid Source (and Solubility Implications) PART III: Geodynamic Evolution • Accretionary Geodynamics (to collision) • Structural-Metamorphic Evolution & Settings • Implications for refining the metamorphogenic Orogenic Gold Model PART I: Review Gold Deposit Settings Mineralization in forearc to back arc system Accretionary Wedge fore arc settings Mitchell & Garson (1982) OROGENIC GOLD: Magmatic to Metamorphic hydrothermal continuum Groves et al. (1998) How are Gold Systems Related to Crustal Growth? From Goldfarb (2006) Magmatic-dominated Metamorphic-dominated Groves et al. (1998) Metamorphic,Metamorphic, Transitional,Transitional, andand MagmaticMagmatic GoldGold ModelsModels Poulsen (2000) Metamorphic dominated Setting Juneau Belt Prehnite- Donlin Creek pumpellite Ross Mine Kirkland Lake Dome Brittle Sigma/Giant-Con Greenschist Hollinger-McIntyre Ductile-Brittle Amphibolite Red Lake Eastmain/Lynn Lake Musselwhite Granulite Ductile Lake Lilois Fluid Egress along Advective Crustal-scale Heat n Shear Zone o i t Transfer a n o Z l a t e Zone of deposition M Low salinities (< 3 wt % NaCl, KCl, etc.) Source Region (or deeper) Fyfe & Henley (1973) RETROGRESSION PART II: Geothermal to Hydrothermal Evolution Fluid movement Ethridge et al.
    [Show full text]
  • Active Structures in the Barbados Accretionary Wedge of the Lesser Antilles Subduction: Implications for Slip Partitioning
    EGU2020-10732 https://doi.org/10.5194/egusphere-egu2020-10732 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Main active structures in the Barbados accretionary wedge of the Lesser Antilles Subduction: implications for slip partitioning Gaëlle Bénâtre1, Nathalie Feuillet1, Hélène Carton1, Eric Jacques1, and Thibaud Pichot2 1Université de Paris, Institut de Physique du Globe de Paris, CNRS UMR7154, Paris, F-75005, France ([email protected]) 2Beicip-Franlab, Rueil-Malmaison, France At the Lesser Antilles Subduction Zone (LASZ), the American plates subduct under the Caribbean plate at a slow rate of ~2 cm/yr. No major subduction megathrust earthquakes have occurred in the area since the 1839 and 1843 historical events, and the LASZ is typically considered weakly coupled. At the front of the LASZ, the Barbados accretionary wedge (BAW) is one of the largest accretionary wedges in the world. The width of the BAW decreases northward, owing to the increasing distance to the sediment source (Orinoco river) and the presence of several aseismic oceanic ridges, in particular the Tiburon ridge, that stops sediment progression. Marine geophysical studies conducted to date over the northern part of the BAW (Guadeloupe-Martinique sector) have mostly focused on resolving the geometry of the backstop. However, the structure of the wedge and the mechanical behavior of the subduction interface remain poorly known. Our study aims to describe the geometry of the BAW by a detailed morpho-tectonic analysis in order to place constraints on present and past dynamic interactions between the subducting and overriding plates.
    [Show full text]
  • Coulomb Stress Evolution in Northeastern Caribbean Over the Past 250 Years Due to Coseismic, Postseismic and Interseismic Deformation
    Geophys. J. Int. (2008) 174, 904–918 doi: 10.1111/j.1365-246X.2008.03634.x Coulomb stress evolution in Northeastern Caribbean over the past 250 years due to coseismic, postseismic and interseismic deformation Syed Tabrez Ali,1 Andrew M. Freed,1 Eric Calais,1 David M. Manaker1,∗ and William R. McCann2 1Department of Earth and Atmospheric Sciences, Purdue University, 550 Stadium Mall Dr, West Lafayette, IN 47907, USA. E-mail: [email protected] 2Earth Scientific Consultants, 10210 West 102nd Ave, Westminster, CO 80021,USA Accepted 2007 September 24. Received 2007 September 19; in original form 2007 July 21 SUMMARY The Northeastern Caribbean region accommodates ∼20 mm yr−1 of oblique convergence be- tween the North American and Caribbean plates, which is distributed between the subduction interface and major strike-slip faults within the overriding plate. As a result, this heavily populated region has experienced eleven large (M ≥ 7.0) earthquakes over the past 250 yr. In an effort to improve our understanding of the location and timing of these earthquakes, with an eye to understand where current seismic hazards may be greatest, we calculate the evolution of Coulomb stress on the major faults since 1751 due to coseismic, postseismic, and interseismic deformation. Our results quantify how earthquakes serve to relieve stress accumulated due to interseismic loading and how fault systems communicate with each other, serving both to advance or retard subsequent events. We find that the observed progressive westwards propagation of earthquakes on the Septentrional and Enriquillo strike-slip faults and along the megathrust was encouraged by coseismic stress changes associated with prior earthquakes.
    [Show full text]
  • Deep Sea Drilling Project Initial Reports Volume
    30. THE COMPRESSIVE MECHANICS OF ACCRETIONARY WEDGES APPLIED TO THE LEG 78A STUDY AREA NEAR BARBADOS1 Dan M. Davis, Department of Earth and Planetary Sciences, Massachusetts Institute of Technology2 ABSTRACT Sites 541 and 542 of DSDP Leg 78A are very near the front of a large wedge of accreted sediments at the eastern edge of the Caribbean Plate where it overthrusts the downgoing crust of the Altantic Ocean. The mechanics of this wedge are considered in light of the Coulomb-wedge hypothesis of Davis et al. (1983), which regards the sediments of the wedge as analogous to soil being pushed by a bulldozer. The wedge deforms in order to attain and maintain its criti- cal taper, at which it could stably ride over the downgoing plate. If it were allowed to maintain that taper without any erosion or accretion, then no significant internal deformation would be required for the wedge to ride over its décolle- ment. The magnitude of this critical taper is a function of fluid pressures and the mechanical properties of the wedge and décollement. The narrow taper of the Barbados wedge is consistent with the evidence of high fluid pressures for the region, suggesting that its behavior is dominated by horizontal compression resulting from plate convergence. The hy- pothesis that the wedge is at or near compressive failure permits a description of the state of stress in the wedge. The borehole stability problems experienced at Sites 541 and 542 are consistent with the view (Hottman et al., 1979) that boreholes act as stress concentrators. The resulting stress concentration can initiate compressive failure of the borehole wall, and may have contributed to the borehole instability observed on Leg 78A.
    [Show full text]
  • Growth and Erosion of Fold-And-Thrust Belts with an Application to the Aconcagua Fold-And-Thrust Belt, Argentina G
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, B01410, doi:10.1029/2002JB002282, 2004 Growth and erosion of fold-and-thrust belts with an application to the Aconcagua fold-and-thrust belt, Argentina G. E. Hilley1 and M. R. Strecker Institut fu¨r Geowissenschaften, Universita¨t Potsdam, Potsdam, Germany V. A. Ramos Department de Geologia, Universidad de Buenos Aires, Buenos Aires, Argentina Received 1 November 2002; revised 26 August 2003; accepted 11 September 2003; published 23 January 2004. [1] The development of topography within and erosional removal of material from an orogen exerts a primary control on its structure. We develop a model that describes the temporal development of a frontally accreting, critically growing Coulomb wedge whose topography is largely limited by bedrock fluvial incision. We present general results for arbitrary initial critical wedge geometries and investigate the temporal development of a critical wedge with no initial topography. Increasing rock erodibility and/or precipitation, decreasing mass flux accreting to the wedge front, increasing wedge sole-out depth, decreasing wedge and basal decollement overpressure, and increasing basal decollement friction lead to narrow wedges. Large power law exponent values cause the wedge geometry to quickly reach a condition in which all material accreted to the front of the wedge is removed by erosion. We apply our model to the Aconcagua fold-and-thrust belt in the central Andes of Argentina where wedge development over time is well constrained. We solve for the erosional coefficient K that is required to recreate the field-constrained wedge growth history, and these values are within the range of independently determined values in analogous rock types.
    [Show full text]
  • Critical Taper Model of Fold-And-Thrust Belts and Accretionary Wedges
    AmIU. Rev. Earth Planet. Copyright © by AnnualSci. Reviews]990. 18:55-99 Inc. All rights reserved 1990 CRITICAL TAPER MODEL OF FOLD-AND-THRUST BELTS AND ACCRETIONARY WEDGES F. A. Dahlen Department of Geological and Geophysical Sciences, Princeton University, Princeton, New Jersey 08544 INTRODUCTION The fold-and-thrust belts and submarine accretionary wedges that lie along compressive plate boundaries are one of the best understood deformational features of the Earth's upper crust. Although there is considerable natural variation among the many fold-and-thrust belts and accretionary wedges that have been recognized and explored, several features appear to be universal . In cross section, fold-and-thrust belts and accretionary wedges occupy a wedge-shaped deformed region overlying a basal detachment or decollement fault; the rocks or sediments beneath this fault show very little deformation. The decollement fault characteristically dips toward the interior of the mountain belt or, in the case of a submarine wedge, toward the island arc; the topography, in contrast, slopes toward the toe or deformation front of the wedge. Deformation within the wedge is generally dominated by imbricate thrust faults verging toward the toe and related fault-bend folding. Access provided by University of Chicago Libraries on 01/11/17. For personal use only. Annu. Rev. Earth Planet. Sci. 1990.18:55-99. Downloaded from www.annualreviews.org Two North American fold-and-thrust belts that exhibit these features are shown in Figure 1. Neither of these two examples is tectonically active today; the southern Canadian fold-and-thrust belt was active during the late Jurassic and Cretaceous (150-100 Ma), whereas the southern Appa­ lachians were deformed during the late Carboniferous to Permian Alle­ gh enian orogeny (300-250 Ma).
    [Show full text]
  • 8. Growth of Accretionary Wedges Off Vancouver Island and Oregon1
    Westbrook, G.K., Carson, B., Musgrave, R.J., et al., 1994 Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 146 (Part 1) 8. GROWTH OF ACCRETIONARY WEDGES OFF VANCOUVER ISLAND AND OREGON1 G.K. Westbrook2 ABSTRACT A simple formulation for the growth of a wedge of constant taper accreting a sediment layer of given thickness and exponential decrease of porosity with depth was used to estimate the rates of growth of the accretionary wedges off Vancouver Island and Oregon. Application to the section off Vancouver Island indicates that the accreted sediments penetrated at Site 889 were added to the toe of the wedge between 0.8 and 1.1 Ma. Application to the Oregon section shows that the thickness of the accreted layer before 0.3 Ma must have been substantially less than the present 1.5 km for Pliocene sediments at Site 892. For both wedges the accretion of a thick layer of sediment from the Cascadia Basin appears to have occurred over only the past few hundred thousand years, and no more than about a million years. Since the Eocene, the equivalent average thickness of the layer of sediment that has been accreted is about 0.5 km. INTRODUCTION For an interpretation of the results of drilling into the accretionary wedge, it is useful to be able to estimate when a sequence penetrated by a borehole in the accretionary wedge was actually accreted. The time taken to build the accretionary wedge is an important parameter in the analysis of the geologic evolution of the continental margin. To provide a straightforward means of making a first-order estimate of these parameters, a simple model of a wedge that accretes a layer of sediment with a given thickness and porosity/depth function has been developed.
    [Show full text]
  • Geodynamics of Wedges
    1 DRIVING MECHANISMS OF THRUST SYSTEMS Dynamics of accretionary, orogenic wedges Tens of kilometres long displacements are reported for only a few thousands meters thick thrust sheets. With accepted values of frictional resistance, stresses necessary to push a thrust sheet on a horizontal or slightly up-inclined basal thrust exceed the failure strength of intact rocks. Accordingly, hinterlands should deform and crush before fronts of thrust sheets would move. This mechanical paradox has triggered formulation of a few working hypotheses. The question is still not fully resolved, possibly because all envisioned mechanisms are involved on a scale-dependent importance. Concepts and definitions Thrust systems are common in converging settings, resulting from compressional deformation of rocks once the shear strength along weak layers or planes is exceeded. In convergent plate boundaries, thrusts cutting through accretionary wedges are virtually splays of the subduction plane. This mechanism, where the accretionary hanging wall is deformed while the subducting footwall plate descends undeformed, is typical of thin-skinned tectonics depicted in mountain systems. Therefore, mechanics developed from accretionary wedges are often applied to foreland fold-and-thrust belts and even to orogenic belts (see lecture on thrust systems). Geometry A thrust sheet (or nappe; distinguish from fold nappe = large recumbent fold) is an allochthonous unit that has been transported and lies almost horizontally, away from its original position, on an autochthonous substratum. The bottom boundary is an originally shallow-dipping thrust fault or shear zone along which most of the displacement has taken place. The frontal part in the direction of movement is the leading edge.
    [Show full text]
  • Techniques for Understanding Fold-And-Thrust Belt Kinematics and Thermal Evolution
    The Geological Society of America Memoir 213 Techniques for understanding fold-and-thrust belt kinematics and thermal evolution Nadine McQuarrie Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA Todd A. Ehlers Department of Geoscience, University of Tübingen, Tübingen 72074, Germany ABSTRACT Fold-and-thrust belts and their adjacent foreland basins provide a wealth of information about crustal shortening and mountain-building processes in conver- gent orogens. Erosion of the hanging walls of these structures is often thought to be synchronous with deformation and results in the exhumation and cooling of rocks exposed at the surface. Applications of low-temperature thermochronology and bal- anced cross sections in fold-and-thrust belts have linked the record of rock cooling with the timing of deformation and exhumation. The goal of these applications is to quantify the kinematic and thermal history of fold-and-thrust belts. In this review, we discuss different styles of deformation preserved in fold-and-thrust belts, and the ways in which these structural differences result in different rock cooling histories as rocks are exhumed to the surface. Our emphasis is on the way in which different numerical modeling approaches can be combined with low-temperature thermochro- nometry and balanced cross sections to resolve questions surrounding the age, rate, geometry, and kinematics of orogenesis. INTRODUCTION for fold-and-thrust belt formation is an extensive preexisting sedimentary basin of platformal to passive-margin strata (Fig. 1). Folding and thrust faulting are the primary mechanisms for The mechanical anisotropy of stratigraphic layering exerts a fi rst- the shortening and thickening of continental crust and thus are order control on the style and magnitude of shortening (Price, common geologic features of convergent margins.
    [Show full text]
  • Ocean Trenches
    This article was originally published in Encyclopedia of Geology, second edition published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author’s institution, for non-commercial research and educational use, including without limitation, use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation, commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: https://www.elsevier.com/about/policies/copyright/permissions Stern Robert J. (2021) Ocean Trenches. In: Alderton, David; Elias, Scott A. (eds.) Encyclopedia of Geology, 2nd edition. vol. 3, pp. 845-854. United Kingdom: Academic Press. dx.doi.org/10.1016/B978-0-08-102908-4.00099-0 © 2021 Elsevier Ltd. All rights reserved. Author's personal copy Ocean Trenches☆ Robert J Stern, Department of Geosciences, The University of Texas at Dallas, Richardson, TX, United States © 2021 Elsevier Ltd. All rights reserved. Introduction 845 Early Years of Study 845 Plate Tectonic Significance 846 Geographical Distribution 846 Morphological Expression 848 Filled Trenches 849 Accretionary Prisms and Sediment Transport 850 Empty Trenches and Subduction Erosion 851 Outer Trench Swell 852 Controls on Trench Depth 852 Fluids Released From the Fore Arc 853 Biosphere 854 Further Reading 854 Introduction An oceanic trench is a long, narrow, and generally very deep depression of the seafloor.
    [Show full text]
  • 15. Genesis and Evolution of Small-Scale Structures in the Toe of the Barbados Ridge Accretionary Wedge1
    Moore, J. C, Mascle, A., et al., 1990 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 110 15. GENESIS AND EVOLUTION OF SMALL-SCALE STRUCTURES IN THE TOE OF THE BARBADOS RIDGE ACCRETIONARY WEDGE1 K. M. Brown2 and J. Behrmann3 ABSTRACT Cores from Leg 110 document the development of small-scale structures generated both during the initial propaga• tion of the basal decollement zone into the abyssal plane section and the subsequent thickening of the wedge. At the macroscopic accretionary front, sub-horizontal compressive stresses become localized in the off-scraped section rather than in the underthrust sediments. In contrast, strata associated with the basal decollement zone may experience layer parallel extension resulting from a combination of simple shear and possible flattening strains (with the latter being the possible consequence of increased tectonic loading due to the thickening of the overlying wedge). The zone of intense scaly fabrics associated with the basal decollement and other thrusts appears to thicken with increasing displacement. This thickening, together with increasing numbers of thrusts (of both an in-sequence and out-of-sequence nature), may account for why 50% of the volume of the wedge is affected by scaly fabrics of Site 674, 18 km back from the accretion• ary front. General bedding and thrust dips increase back in the wedge, most probably in response to both folding and back rotation of imbricate thrusts. Intense stratal disruption, Syntectonic carbonate veins, occasional isoclinal folds (with axial planar fabrics), and web structures are all developed by 18 km from the accretionary front. At this point, the sediments still have porosities in excess of 40%, and the small-scale structures are found at present depths of less than 400 mbsf.
    [Show full text]