15. Genesis and Evolution of Small-Scale Structures in the Toe of the Barbados Ridge Accretionary Wedge1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kinematic Reconstruction of the Caribbean Region Since the Early Jurassic
Earth-Science Reviews 138 (2014) 102–136 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Kinematic reconstruction of the Caribbean region since the Early Jurassic Lydian M. Boschman a,⁎, Douwe J.J. van Hinsbergen a, Trond H. Torsvik b,c,d, Wim Spakman a,b, James L. Pindell e,f a Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands b Center for Earth Evolution and Dynamics (CEED), University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway c Center for Geodynamics, Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7491 Trondheim, Norway d School of Geosciences, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa e Tectonic Analysis Ltd., Chestnut House, Duncton, West Sussex, GU28 OLH, England, UK f School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3YE, UK article info abstract Article history: The Caribbean oceanic crust was formed west of the North and South American continents, probably from Late Received 4 December 2013 Jurassic through Early Cretaceous time. Its subsequent evolution has resulted from a complex tectonic history Accepted 9 August 2014 governed by the interplay of the North American, South American and (Paleo-)Pacific plates. During its entire Available online 23 August 2014 tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, and the oceanic crust has been overlain by the Caribbean Large Igneous Province (CLIP) since ~90 Ma. The consequent Keywords: absence of passive margins and measurable marine magnetic anomalies hampers a quantitative integration into GPlates Apparent Polar Wander Path the global circuit of plate motions. -
Developing the Orogenic Gold Deposit Model: Insights from R&D for Exploration Success
"Accretionary Wedge Geodynamic Evolution, Metamorphic Equilibria, Metasomatic Processes, & GOLD” by Dave Lentz (UNB) Accretionary ophiolitic sequence (with quartz veins), basement Santorini, Greece 2m Orogenic Gold first used by Bohlke (1982) Developing the Orogenic Gold Deposit Model: Insights from R&D for Exploration Success by Dave Lentz (UNB) Accretionary ophiolitic sequence (with quartz veins), basement Santorini, Greece 2m Orogenic Gold first used by Bohlke (1982) SPONSORS INTRODUCTION PART I: Review Gold Deposit Settings • Historical Evolution of ideas • Description of Orogenic Au Systems • Enigmatic aspects of the metamorphogenic model PART II: Geothermal to Hydrothermal Evolution • Metamorphic Considerations to Thermal Evolution • Fluid Source (and Solubility Implications) PART III: Geodynamic Evolution • Accretionary Geodynamics (to collision) • Structural-Metamorphic Evolution & Settings • Implications for refining the metamorphogenic Orogenic Gold Model PART I: Review Gold Deposit Settings Mineralization in forearc to back arc system Accretionary Wedge fore arc settings Mitchell & Garson (1982) OROGENIC GOLD: Magmatic to Metamorphic hydrothermal continuum Groves et al. (1998) How are Gold Systems Related to Crustal Growth? From Goldfarb (2006) Magmatic-dominated Metamorphic-dominated Groves et al. (1998) Metamorphic,Metamorphic, Transitional,Transitional, andand MagmaticMagmatic GoldGold ModelsModels Poulsen (2000) Metamorphic dominated Setting Juneau Belt Prehnite- Donlin Creek pumpellite Ross Mine Kirkland Lake Dome Brittle Sigma/Giant-Con Greenschist Hollinger-McIntyre Ductile-Brittle Amphibolite Red Lake Eastmain/Lynn Lake Musselwhite Granulite Ductile Lake Lilois Fluid Egress along Advective Crustal-scale Heat n Shear Zone o i t Transfer a n o Z l a t e Zone of deposition M Low salinities (< 3 wt % NaCl, KCl, etc.) Source Region (or deeper) Fyfe & Henley (1973) RETROGRESSION PART II: Geothermal to Hydrothermal Evolution Fluid movement Ethridge et al. -
Geologic History of Siletzia, a Large Igneous Province in the Oregon And
Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Wells, R., Bukry, D., Friedman, R., Pyle, D., Duncan, R., Haeussler, P., & Wooden, J. (2014). Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot. Geosphere, 10 (4), 692-719. doi:10.1130/GES01018.1 10.1130/GES01018.1 Geological Society of America Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Downloaded from geosphere.gsapubs.org on September 10, 2014 Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Ray Wells1, David Bukry1, Richard Friedman2, Doug Pyle3, Robert Duncan4, Peter Haeussler5, and Joe Wooden6 1U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025-3561, USA 2Pacifi c Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, 6339 Stores Road, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 3Department of Geology and Geophysics, University of Hawaii at Manoa, 1680 East West Road, Honolulu, Hawaii 96822, USA 4College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Building, Corvallis, Oregon 97331-5503, USA 5U.S. Geological Survey, 4210 University Drive, Anchorage, Alaska 99508-4626, USA 6School of Earth Sciences, Stanford University, 397 Panama Mall Mitchell Building 101, Stanford, California 94305-2210, USA ABSTRACT frames, the Yellowstone hotspot (YHS) is on southern Vancouver Island (Canada) to Rose- or near an inferred northeast-striking Kula- burg, Oregon (Fig. -
Analog Experiments and Mechanical Analysis Applied to the Alaskan Accretionary Wedge Marc-André Gutscher, Nina Kukowski, Jacques Malavieille, Serge Lallemand
Analog experiments and mechanical analysis applied to the Alaskan Accretionary Wedge Marc-André Gutscher, Nina Kukowski, Jacques Malavieille, Serge Lallemand To cite this version: Marc-André Gutscher, Nina Kukowski, Jacques Malavieille, Serge Lallemand. Analog experiments and mechanical analysis applied to the Alaskan Accretionary Wedge. Journal of Geophysical Research, American Geophysical Union, 1998, 103 (B5), pp.10161-10176. hal-01261538 HAL Id: hal-01261538 https://hal.archives-ouvertes.fr/hal-01261538 Submitted on 26 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 103, NO. B5, PAGES 10,161-10,176,MAY 10, 1998 Episodic imbricate thrusting and underthrusting' Analogexperiments and mechanicalanalysis applied to the Alaskan Accretionary Wedge Marc-Andrd Gu•scher • and Nina Kukowski GEOMAR, Kiel, Germany JacquesMalavieille and SergeLallemand Laboratoire de G•ophysique et Tectonique, Universit• de Montpellier II, Montpellier, France Abstract. Seismic reflection profiles from the sediment rich Alaska subduction zone image short, frontally accreted, imbricate thrust slices and repeated se- quencesof long, underthrust sheets. Rapid landward increasesin wedgethickness, backthrusting,and uplift of the forearc are observed,suggesting underthrusting beneaththe wedge.These features and a widely varyingfrontal wedgemorphology are interpreted to be caused by different modes of accretion active concurrently along the trench at different locations. -
Active Structures in the Barbados Accretionary Wedge of the Lesser Antilles Subduction: Implications for Slip Partitioning
EGU2020-10732 https://doi.org/10.5194/egusphere-egu2020-10732 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Main active structures in the Barbados accretionary wedge of the Lesser Antilles Subduction: implications for slip partitioning Gaëlle Bénâtre1, Nathalie Feuillet1, Hélène Carton1, Eric Jacques1, and Thibaud Pichot2 1Université de Paris, Institut de Physique du Globe de Paris, CNRS UMR7154, Paris, F-75005, France ([email protected]) 2Beicip-Franlab, Rueil-Malmaison, France At the Lesser Antilles Subduction Zone (LASZ), the American plates subduct under the Caribbean plate at a slow rate of ~2 cm/yr. No major subduction megathrust earthquakes have occurred in the area since the 1839 and 1843 historical events, and the LASZ is typically considered weakly coupled. At the front of the LASZ, the Barbados accretionary wedge (BAW) is one of the largest accretionary wedges in the world. The width of the BAW decreases northward, owing to the increasing distance to the sediment source (Orinoco river) and the presence of several aseismic oceanic ridges, in particular the Tiburon ridge, that stops sediment progression. Marine geophysical studies conducted to date over the northern part of the BAW (Guadeloupe-Martinique sector) have mostly focused on resolving the geometry of the backstop. However, the structure of the wedge and the mechanical behavior of the subduction interface remain poorly known. Our study aims to describe the geometry of the BAW by a detailed morpho-tectonic analysis in order to place constraints on present and past dynamic interactions between the subducting and overriding plates. -
The Saharides and Continental Growth During the Final Assembly of Gondwana-Land
Reconstructing orogens without biostratigraphy: The Saharides and continental growth during the final assembly of Gondwana-Land A. M. Celâl S¸ engöra,b,1, Nalan Lomc, Cengiz Zabcıb, Gürsel Sunalb, and Tayfun Önerd aIstanbul_ Teknik Üniversitesi (ITÜ)_ Avrasya Yerbilimleri Enstitüsü, Ayazaga˘ 34469 Istanbul,_ Turkey; bITÜ_ Maden Fakültesi, Jeoloji Bölümü, Ayazaga˘ 34469 Istanbul,_ Turkey; cDepartement Aardwetenschappen, Universiteit Utrecht, 3584 CB Utrecht, The Netherlands; and dSoyak Göztepe Sitesi, Üsküdar 34700 Istanbul,_ Turkey Contributed by A. M. Celâl S¸ engör, October 3, 2020 (sent for review July 17, 2020; reviewed by Jonas Kley and Leigh H. Royden) A hitherto unknown Neoproterozoic orogenic system, the Sahar- identical to those now operating (the snowball earth and the ab- ides, is described in North Africa. It formed during the 900–500-Ma sence of land flora were the main deviating factors), yet the interval. The Saharides involved large subduction accretion com- dominantly biostratigraphy-based methods used to untangle oro- plexes occupying almost the entire Arabian Shield and much of genic evolution during the Phanerozoic are not applicable Egypt and parts of the small Precambrian inliers in the Sahara in- to them. cluding the Ahaggar mountains. These complexes consist of, at least by half, juvenile material forming some 5 million km2 new Method of Reconstructing Complex Orogenic Evolution in continental crust. Contrary to conventional wisdom in the areas the Neoproterozoic without Biostratigraphy: Example of the they occupy, -
From Oceanic Plateaus to Allochthonous Terranes: Numerical Modelling
Gondwana Research 25 (2014) 494–508 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr From oceanic plateaus to allochthonous terranes: Numerical modelling Katharina Vogt a,⁎, Taras V. Gerya a,b a Geophysical Fluid Dynamics Group, Institute of Geophysics, Department of Earth Sciences, Swiss Federal Institute of Technology (ETH-Zurich), Sonneggstrasse, 5, 8092 Zurich, Switzerland b Adjunct Professor of Geology Department, Moscow State University, 119899 Moscow, Russia article info abstract Article history: Large segments of the continental crust are known to have formed through the amalgamation of oceanic pla- Received 29 April 2012 teaus and continental fragments. However, mechanisms responsible for terrane accretion remain poorly un- Received in revised form 25 August 2012 derstood. We have therefore analysed the interactions of oceanic plateaus with the leading edge of the Accepted 4 November 2012 continental margin using a thermomechanical–petrological model of an oceanic-continental subduction Available online 23 November 2012 zone with spontaneously moving plates. This model includes partial melting of crustal and mantle lithologies and accounts for complex rheological behaviour including viscous creep and plastic yielding. Our results in- Keywords: Crustal growth dicate that oceanic plateaus may either be lost by subduction or accreted onto continental margins. Complete Subduction subduction of oceanic plateaus is common in models with old (>40 Ma) oceanic lithosphere whereas models Terrane accretion with younger lithosphere often result in terrane accretion. Three distinct modes of terrane accretion were Oceanic plateau identified depending on the rheological structure of the lower crust and oceanic cooling age: frontal plateau accretion, basal plateau accretion and underplating plateaus. -
Coulomb Stress Evolution in Northeastern Caribbean Over the Past 250 Years Due to Coseismic, Postseismic and Interseismic Deformation
Geophys. J. Int. (2008) 174, 904–918 doi: 10.1111/j.1365-246X.2008.03634.x Coulomb stress evolution in Northeastern Caribbean over the past 250 years due to coseismic, postseismic and interseismic deformation Syed Tabrez Ali,1 Andrew M. Freed,1 Eric Calais,1 David M. Manaker1,∗ and William R. McCann2 1Department of Earth and Atmospheric Sciences, Purdue University, 550 Stadium Mall Dr, West Lafayette, IN 47907, USA. E-mail: [email protected] 2Earth Scientific Consultants, 10210 West 102nd Ave, Westminster, CO 80021,USA Accepted 2007 September 24. Received 2007 September 19; in original form 2007 July 21 SUMMARY The Northeastern Caribbean region accommodates ∼20 mm yr−1 of oblique convergence be- tween the North American and Caribbean plates, which is distributed between the subduction interface and major strike-slip faults within the overriding plate. As a result, this heavily populated region has experienced eleven large (M ≥ 7.0) earthquakes over the past 250 yr. In an effort to improve our understanding of the location and timing of these earthquakes, with an eye to understand where current seismic hazards may be greatest, we calculate the evolution of Coulomb stress on the major faults since 1751 due to coseismic, postseismic, and interseismic deformation. Our results quantify how earthquakes serve to relieve stress accumulated due to interseismic loading and how fault systems communicate with each other, serving both to advance or retard subsequent events. We find that the observed progressive westwards propagation of earthquakes on the Septentrional and Enriquillo strike-slip faults and along the megathrust was encouraged by coseismic stress changes associated with prior earthquakes. -
Oceanic Plateau and Island Arcs of Southwestern Ecuador: Their Place in the Geodynamic Evolution of Northwestern South America
Reprinted from TECTONOPHYSICS INTERNATIONAL JOURNAL OF GEOTECTONICS AND THE GEOLOGY AND PHYSICS OF THE INTERIOR OF THE EARTH Tectonophysics 307 (1999) 235-254 Oceanic plateau and island arcs of southwestern Ecuador: their place in the geodynamic evolution of northwestern South America Cédric Reynaud a, fitienne Jaillard a,b, Henriette Lapierre al*, Marc Mamberti %c, Georges H. Mascle a '' UFRES, A-5025, Université Joseph Fourier; Institut Doloniieu, 15 rue Maurice-Gignoux, 38031 Grenoble cedex, Francel IO, "IRD lfoniierly ORSTOM), CSI, 209-213 rue Lu Fayette, 75480 Faris cedex France 'Institut de Minéralogie et Fétrogrphie, Université de Lausanne, BFSH2 (3171), I015 Lausanne, Switzerland Received 12 August 1997; accepted 11 March 1999 Fonds Documentaire ORSTOM 9" ELSEVIER Cote :&e4 973 9 Ex : LII>f c.- TECTONOPHYSICS Editors-in-Chief J.-P. BURG ETH-Zentrum, Geologisches Institut, Sonneggstmße 5, CH-8092, Zürich, Switzerland. Phone: +41.1.632 6027; FAX: +41.1.632 1080; e-mail: [email protected] T. ENGELDER Pennsylvania State University, College of Earth & Mineral Sciences, 336 beike Building, University Park, PA 16802, USA. Phone: +I .814.865.3620/466.7208; FAX: +I .814.863.7823; e-mail: engelderOgeosc.psu.edu K.P. FURLONG Pennsylvania State University, Department of Geosciences, 439 Deike Building, University Park, PA 16802, USA. Phone: +1 .814.863.0567; FAX: +1.814.865.3191; e-mail: kevinOgeodyn.psu.edu F. WENZEL Universität Fridericiana Karlsruhe, Geophysikalisches Institut, Hertzstraße Bau Karlsruhe, Germany. .physik.uni-karlsruhe.de16, 42, D-76187 Phone: +49.721.608 4431; FAX +49.721.711173; e-mail: fwenzel@gpiwapl Honorary Editor: S. Uyeda Editorial Board Z. -
Future Accreted Terranes: a Compilation of Island Arcs, Oceanic Plateaus, Submarine Ridges, Seamounts, and Continental Fragments” by J
Open Access Solid Earth Discuss., 6, C1212–C1222, 2014 www.solid-earth-discuss.net/6/C1212/2014/ Solid Earth © Author(s) 2014. This work is distributed under Discussions the Creative Commons Attribute 3.0 License. Interactive comment on “Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments” by J. L. Tetreault and S. J. H. Buiter J. L. Tetreault and S. J. H. Buiter [email protected] Received and published: 30 October 2014 Response to Review C472: M. Pubellier I thank M. Pubellier for his in-depth review; the suggestions are very constructive and have truly improved the manuscript. I will first reply to the review letter below, and then to points in the supplement that need further explanation/discussion. Otherwise, if the point is not addressed, it has simply been corrected. In the review letter, the reviewer writes: I agree with most of the results presented in this paper but I regret a bit that the empha- C1212 sis was a bit too much on ancient examples (except the Solomon Islands and Taiwan that has been just mentioned). The authors could give more attention to the recent examples such as Southeast Asia. I have suggested some examples (which of course are those I know well) for reference; but there are others. I am sorry to have put some references of papers for which I participated but it is just for the sake of discussion. I think some examples of recent tectonics bring elements in this interesting discussion. The reviewer comments that my paper is quite heavy on ancient examples of accreted terranes, and I admit, now looking back on my review, that it was done so, albeit sub- consciously. -
Plate Boundary Evolution in the Halmahera Region, Indonesia
~ectono~h~s~c~, 144 (1987) 337-352 337 EIsevier Science Publishers B.Y., Amsterd~ - Printed in The Netberiands Plate boundary evolution in the Halmahera region, Indonesia ROBERT HALL (Received December 1.1986; revised version accepted March 10,1987) Abstract Hall, R., 1987. Plate boundaryevolution in the Halmahera region, Indonesia. ~e~~~no~~.y~jcs,144: 337-352, H&mahera is situated in eastern Indonesia at the southwest comer of the Philippine Sea PIate. Active arc-arc collision is in process in the Molucca Sea to the west of Halmahera. New stratigraphic observations from Halmahera link this island and the east P~Iippin~ and record the history of subduction of the Molucca Sea lithosphere. The HaImahera Basement Complex and the basement of east Mindanao were part of an arc and forearc of Late Cretaceous-Early Tertiary age and have formed part of a single plate since the Late Eocene-Early Oligocene. There is no evidence that HaImabera formed part of an Oligo-Miocene arc but arc volcanism, associated with eastwards subduction of the Molucca Sea beneath Halmahera, began in the Pliocene and the Pliocene arc is built on a basement of the early Tertiary arc. Arc volcanism ceased briefIy during the Pleistocene and the arc shifted westwards after an episode of deformation. The present active arc is built upon deformed rocks of the Ptiocene arc. The combination of new strati~ap~c info~ation from the genera islands and models of the present-day tectonic structure of the region deduced from seismic and other geophysicat studies is used to constrain the tectonic evolution of the region since the Miocene. -
Geological–Tectonic Framework of Solomon Islands, SW Pacific
ELSEVIER Tectonophysics 301 (1999) 35±60 Geological±tectonic framework of Solomon Islands, SW Paci®c: crustal accretion and growth within an intra-oceanic setting M.G. Petterson a,Ł, T. Babbs b, C.R. Neal c, J.J. Mahoney d, A.D. Saunders b, R.A. Duncan e, D. Tolia a,R.Magua, C. Qopoto a,H.Mahoaa, D. Natogga a a Ministry of Energy Water and Mineral Resources, Water and Mineral Resources Division, P.O. Box G37, Honiara, Solomon Islands b Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK c Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA d School of Ocean and Earth Science and Technology, University of Hawaii, 2525 Correa Road, Honolulu, Hawaii 96822, USA e College of Oceanographic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA Received 10 June 1997; accepted 12 August 1998 Abstract The Solomon Islands are a complex collage of crustal units or terrains (herein termed the `Solomon block') which have formed and accreted within an intra-oceanic environment since Cretaceous times. Predominantly Cretaceous basaltic basement sequences are divided into: (1) a plume-related Ontong Java Plateau terrain (OJPT) which includes Malaita, Ulawa, and northern Santa Isabel; (2) a `normal' ocean ridge related South Solomon MORB terrain (SSMT) which includes Choiseul and Guadalcanal; and (3) a hybrid `Makira terrain' which has both MORB and plume=plateau af®nities. The OJPT formed as an integral part of the massive Ontong Java Plateau (OJP), at c. 122 Ma and 90 Ma, respectively, was subsequently affected by Eocene±Oligocene alkaline and alnoitic magmatism, and was unaffected by subsequent arc development.